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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.
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 Basic idea:
Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.
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Basic idea:
Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.
Moving away from pure random networks was a
key first step.
We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
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Basic idea: N
Random networks with arbitrary degree N
distributions cover much territory but do not i
represent all networks.

Moving away from pure random networks was a

key first step.

We can extend in many other directions and a

natural one is to introduce correlations between

different kinds of nodes.

Node attributes may be anything, e.g.:

1. degree
2. demographics (age, gender, etc.)
3. group affiliation
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Networks are still random at base but now have AL
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~ General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....
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General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.
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Varying e,,,, allows us to move between the
following:
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Notes:

Varying e ,,, allows us to move between the
following:
1. Perfectly assortative networks where nodes only

connect to like nodes, and the network breaks into
subnetworks.
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Notes:

Varying e ,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and ZH e, =1
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Notes:

Varying e ,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and ZH e, =1
2. Uncorrelated networks (as we have studied so far)
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Notes:

Varying e ,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and ZH e, =1

2. Uncorrelated networks (as we have studied so far)

For these we must have independence:

€y =0a,b,.
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Notes:

Varying e ,,, allows us to move between the
following:
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connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and ZH e, =1

2. Uncorrelated networks (as we have studied so far)
For these we must have independence:
€y =0a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.
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For these we must have independence:
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Varying e ,,, allows us to move between the Definition
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1. Perfectly assortative networks where nodes only Droskn - 6
connect to like nodes, and the network breaks into C(;MWI
subnetworks. s ki

Requires e, = 0if u # v and Zuewzl. e
2. Uncorrelated networks (as we have studied so far) References
For these we must have independence:
€y =0a,b,.
3. Disassortative networks where nodes connect to
nodes distinct from themselves.

Disassortative networks can be hard to build and
may require constraints on thee,, .. 4. PoCS
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Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!:

i 2 P 2 O _ TrE-|E?||;

o= =
1_zuaubu 1_||E2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.
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- Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!:

i 2 P 2 O _ TrE-|E?||;

o= =
1_zuaubu 1_HE2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

[|E2||, is the fraction of edges that would be
within groups if connections were random.
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 Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!:

i 2 P 2 O _ TrE-|E?||;

o= =
1_2;4,0'#1)/14 1_HE2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

[|E2||, is the fraction of edges that would be
within groups if connections were random.

1 —||E?||; is a normalization factor so 7., = 1.
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 Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!:

i 2 P 2 O _ TrE-|E?||;

o= =
1_2;4,0'#1)/14 1_HE2H1

where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.

[|E2||, is the fraction of edges that would be
within groups if connections were random.

1 —||E?||; is a normalization factor so 7., = 1.
When Tre,, =1, we haver=1. ¢«
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- Correlation coefficient:

Notes:

r = —1 is inaccessible if three or more types are
present.
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- Correlation coefficient:

r = —1 is inaccessible if three or more types are
present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.
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- Correlation coefficient:

r = —1 is inaccessible if three or more types are
present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.

Minimum value of r occurs when all links between
non-like nodes: Tr A
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- Correlation coefficient:

r = —1 is inaccessible if three or more types are

present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how

unlike nodes are.

Minimum value of r occurs when all links between

non-like nodes: Tr A

Tmin =

where —1 < r,i, < 0.

—lIE21l4

1—[|E2|];
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~Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...

e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...

e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).

a; and b, are defined as before.
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).
a; and b, are defined as before.
Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (4"
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Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).
a; and b, are defined as before.
Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (4"
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- Degree-degree correlations

Natural correlation is between the degrees of
connected nodes.
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an edge connects a degree j + 1 node
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- Degree-degree correlations

Natural correlation is between the degrees of Definition
connected nodes. General mixing

Now define e, with a slight twist: Aotk

an edge connects a degree j + 1 node
7 to a degree k + 1 node

References
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
connected nodes. General mixing

Now define e, with a slight twist: Aotk

an edge connects a degree j + 1 node
7 to a degree k + 1 node

References

_pr( @ edge runs between a node of in-degree j
i and a node of out-degree k

Useful for calculations (as per R;)
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
Connected nodes, General mixing

Now define e, with a slight twist: Aotk

an edge connects a degree j + 1 node
7 to a degree k + 1 node

References

_pr( @ edge runs between a node of in-degree j
i and a node of out-degree k

Useful for calculations (as per R;)

Important: Must separately define P, as the {e;; } &< PoCS
contain no information about isolated nodes. ¥ iy
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
Connected nodes, General mixing
2 . . o A 0
Now define e, with a slight twist: Srd ke
Contagion

U an edge connects a degree j + 1 node
2ES to a degree k + 1 node o
an edge runs between a node of in-degree
= Pr
and a node of out-degree k

Useful for calculations (as per R;)

Important: Must separately define P, as the {e;; } & PoCS
contain no information about isolated nodes. ¥ isiiicinay

Directed networks still fine but we will assume
from here on thate;; = e ;. [ el
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Degree-degree correlations

Notation reconciliation for undirected networks:

Zj = jk<ejk = Rij)

where, as before, R,, is the probability that a
randomly chosen edge leads to a node of degree

k+1,and

D,
O

ot =Y PR
i

D iR,
J

2
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Degree-degree correlations

Error estimate for r;

Remove edge i and recompute r to obtain r,.

RSO 2 v i
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| ‘Degree-degreé correlations S

Definition
General mixing

Assortativity by

Remove edge i and recompute r to obtain r,.

Repeat for all edges and compute using the
jackknife method (2 [3] References
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Degree-degree correlations

Remove edge i and recompute r to obtain r,.

Repeat for all edges and compute using the
jackknife method ('3

Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...
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Measurements of degree-degree

correlations

Group Network Type Size n Assortativity r  Error o,

a Physics coauthorship undirected 52909 0.363 0.002
a Biology coauthorship undirected 1 520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002
Social c Film actor collaborations undirected 449913 0.208 0.0002

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 —=0.029 0.037

fi Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0.013

Technological h Internet undirected 10 697 —0.189 0.002
i World Wide Web directed 269 504 —=0.067 0.0002

j Software dependencies directed 3162 —-0.016 0.020

k Protein interactions undirected 251415 —0.156 0.010

1 Metabolic network undirected 765 —0.240 0.007

Biological m Neural network directed 307 —0.226 0016

n Marine food web directed 134 —0.263 0.037

o Freshwater food web directed 92 —0.326 0.031

Social networks tend to be assortative (homophily)

Technological and biological networks tend to be

disassortative
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- Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
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- Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
As before, by allowing that a node of degree & is

activated by one neighbor with probability B, ,,
we can handle various problems:
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- Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
As before, by allowing that a node of degree & is

activated by one neighbor with probability B, ,,
we can handle various problems:

1. find the giant component size.
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Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.

As before, by allowing that a node of degree & is
activated by one neighbor with probability B, ,,
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
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COcoNuTS

Spreading on degree-correlated networks

Definition
General mixing

Assortativity by
degree

Next: Generalize our work for random networks
Contagion
to degree-correlated networks. Bt

As before, by allowing that a node of degree & is Expeciedsi
activated by one neighbor with probability B, ,, References
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
3. find the probability of spreading for simple

threshold models.
# PoCS
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Spreading on degree-correlated networks
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- Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .
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- Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .

Define B, = [By,]-
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- Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability B, .

Define B, = [By,]-

Plan: Find the generating function

Fj(l'% B1> = ZZOZO fn,jxn'
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 Spreading on degree-correlated networks

Recursive relationship:

o SlPriE
Fy{w;By) =0y L
k=0 ""J

o= €k gl
+$I§§;Bk+1,1 [Fy(z;B,)]

(1—=Bgi11)
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- Spreading on degree-correlated networks

Recursive relationship:

o SlPriE
Fy{w;By) =0y L
k=0 ""J

o= €k gl
+xk§::0R—jBk+1,1 [Fy(z;B,)]

(1= Bgy1,1)

First term = Pr (that the first node we reach is not
in the game).
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- Spreading on degree-correlated networks

Recursive relationship:

o0

e (0
Fi(z;B,) =2°) 22(1—B, 4 ,)
k=0 Rj

o= €k gl
+xkz::0R—jBk+1,1 [Fy(z;B,)]

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).
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- Spreading on degree-correlated networks

Recursive relationship:
0 = ik
e, Bii— Z ]:T(l —Byi1,1)
k=0 ~7J

o= €k gl
+x};)?j3k+l,l [Fy(z;B,)]

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).

Next: find average size of active components
reached by following a link from a degree j + 1
node = F;(1; By).
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3 Spreadihg on degree-correlated networks

Differentiate F(x; B,), setz = 1, and rearrange.
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- Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. A L
Assortativity by
degree

We use F,,(1; B,) = 1 which is true when no giant
component exists.
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COcoNuTS

- Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. A L

Assortativity by

We use F,,(1; B,) = 1 which is true when no giant i
component exists. We find: Csf,m:i“d

Expe
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COcoNuTS

- Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. Rl L
Assortativity by
degree

We use F,,(1; B,) = 1 which is true when no giant
component exists. We find: Csff:if LD

Expected si

RJFJ/<1,B1 ZejkerJrl 1+Z kejkBk:Jrl 1F/(1 B1>Refe|ences

Rearranging and introducing a sneaky 4,

oo

o0
Z (6ijk o ]‘CBk+1,1€jk) Fy(1;By) = Z €k Brr1, 1 r@apocs
k=0 B

O
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COcoNuTS

- Spreading on degree-correlated networks

Definition

General mixing

In matrix form, we have Assortativity by
degree
I > 2 Contagion
AE,BlF/(:l?Bl) = EBl Spead gcod(o

Where References

A - | — b R kB e
[ E,B, j+1,k+1 jk*'k k+1,1%jk>

/(1. 13 /
[F'(1;B,)] = B)),
[E]j+1,k+1 = €k, and [ ] k:+1 1-

&< PoCS
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- Spreading on degree-correlated networks
So, in principle at least:

F’(l; Bl) == AE,]-Bl EBl'
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Spreading on degree-correlated networks

So, in principle at least:

F/<1; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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- Spreading on degree-correlated networks

So, in principle at least:

F/<1; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.
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Spreading on degree-correlated networks

So, in principle at least:

F/<1; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.
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Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.

The condition is therefore:

detAE’B,I =0
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- Spreading on degree-correlated networks

General condition details:

detAE.“é1 = det [6]]{1Rk:—1 = <k =1 1)Bk,16j—1,k—1] = O

The above collapses to our standard contagion
condition when e, = R; R, (see next slide). '
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- Spreading on degree-correlated networks

General condition details:

detAE"B1 = det [6]kRk:—1 =% <k 7y 1)Bk,16j—1,k—1] == O

The above collapses to our standard contagion
condition when e, = R, R, (see next slide).

When B, = B1, we have the condition for a simple
disease model's successful spread

det [5jk:Rk3—1 S B(k = ]-)ej—l,k:—l] 523 0
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COcoNuTS

Spreading on degree-correlated networks

General condition details:

Definition

General mixing

detA; 5 =det[6., Ry ; — (k—1)By qe; S

E,B; [Jk k-1 ( ) k1 Jfl’kfl] Assortativity by
degree

The above collapses to our standard contagion Contagion
condition when e, = R;R,, (see next slide). ot e

When B, = B1, we have the condition for a simple  reirence:
disease model's successful spread

det [(5JkRk_1 o B(k = 1>ej—l,k:—1] = 0

When B, = 1, we have the condition for the
existence of a giant component:

detidd s Ry (boilfel il f il =0,
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COcoNuTS

Spreading on degree-correlated networks

General condition details:

Definition

General mixing
detAE’Bl = det I:(%kRkil % <k B3 1)Bk’1€j71’k71] = Assortativity by
degree
The above collapses to our standard contagion Contagion
condition when e, = R;R,, (see next slide). oo

Expected si

When B, = B1, we have the condition for a simple  reirence:
disease model's successful spread

det [6gk:Rk—l o B(k = 1>ej—l,k—1] = 0

When B, = 1, we have the condition for the
existence of a giant component: L
oL

detidd s Ry (boilfel il f il =0,

Bonusville: We'll find a much better version of this [t [2]

o VERMONT 10l
set of conditions later... o of A0
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networks

Al S
| Assortativity by
~rdegree

Principles of
Cortplex Sysem
: g



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Outline

Contagion

Triggering probability

2 e SRR R B

COcoNuTS = *

Definition
General mixing

Assortativity by
degree

Contagion
Spreading condition
B ) e

Expected size

References

!n‘ UNIVERSIFYI |
OJVERMO\II'

DA 29 of 40


http://www.uvm.edu
http://www.uvm.edu/pdodds

RS S

COCONUTS b

,Spreadir{igbn degree-correlated networks

Definition

General mixing

.. We'll next find two more pieces:
|1, Pyig, the probability of starting a cascade Assortativity by

degree

Contagion
Spreading condition
B ) e

Expected size

References

UNIVERSITY I | 3
o VERMONT

“a > 30of 40



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Spreading on degree-correlated networks
We'll next find two mort
1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.
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- Spreading on degree-correlated networks =~ """

Definition

General mixing

1. Pyig, the probability of starting a cascade Assoltatiely

degree
2. S, the expected extent of activation given a small Contagion
seed. g e

Expected size

References
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- Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

=

H(z;By) =2 > Py [Foa(@:By)] -
k=0

Generating function for vulnerable component
size is more complicated.

COcoNuTS

Definition
General mixing

Assortativity by
degree

Contagion
Spreading dition
g probability

Trigg

Expected size

References

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

“Ha > 30 0f 40


http://www.uvm.edu
http://www.uvm.edu/pdodds

; Spreading‘ on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)
= = iy
by [Fk71<13B1>] :
k=0
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- Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)

=1 B P, [Fk71<13§1)]k :
k=0

Last piece: we have to compute F,, ,(1; B,).
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- Spreading on degree-correlated networks

Definition

Want probability of not reaching a finite

General mixing

Component' Assortativity by
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Puig = Suig =1 — H(1; By)

& condition
g probability

Trig
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= Z Pk [kal(L Bl)] 1 ' References
k=0

Last piece: we have to compute F,, ,(1; B,).
Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

EBT=0 5 %j(l B

co e = k
2 k=0 B, Br+1,1 [Fi(1;By)] -
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- Spreading on degree-correlated networks

Definition

Want probability of not reaching a finite

General mixing

Component' Assortativity by
degree
‘Ptrig = Strig =1 — H(l, B]_) C"‘(")‘r‘yn‘a‘%\on

& condition
g probability

Trig

Expected size

SR Z Pk [kal(lﬁ Bl)] 1 ' References
k=0

Last piece: we have to compute F,, ,(1; B,).

Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

EBT=0 5 %j(l — Bpi1,1)+

oo e = k
2 k=0 B, Br+1,1 [Fi(1;By)] -
Iterative methods should work here.
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.
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- Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.
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- Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:

i Gj(ét) = ¢ + (1 = ¢g) ¥

S €j—1,k-1 “— k1 9 (1—0 k-1-ip
,;—RH ; e e i
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- Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:
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oo k-1
€i1,k—1 K1 ; —1—4

Sl e i

k=1 J=1 i=0
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Spreading on degree-correlated networks
As before, these equations give the actual
evolution of ¢, for synchronous updates.
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- Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.

=

Contagion condition follows from 6§, , = G(6,).

COcoNuTS

Definition
General mixing

Assortativity by
degree

Contagion
Spre: ditiol

References

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

DA 340f40


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2018-01UVM-303/docs/{2018-01UVM-303}assignment9.pdf

- Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
Contagion condition follows from 6§, , = G(6,).
Expand G around 6, = 0.
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- Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
Contagion condition follows from 6, ,, = G(0,).
Expand G around 6, = 6

> 0G 4(

Hﬂ'vt*l:Gj(OHkZ ae,” Q'Z 802 Qi’t
=1
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- Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
Contagion condition follows from 6, ,, = G(0,).

Expand G around 6, = 6.
> 9G(

0j,t+1 =

GO

80k i

0082

2' Z 802

—

;(0)
ei’ﬁ

If Gj(ﬁ) + 0 for at least one j, always have some
infection.
IfG. (q) = 0V j, want largest eigenvalue

|

8G ()
89k i

b,
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COcoNuTS

Spreading on degree-correlated networks
As before, these equations give the actual

evolution of ¢, for synchronous updates. ks
Contagion condition follows from 6, = G(6,). i L
— = = Assortativity by
Expand G around 6, = 0. degree
- Contagion
o X 0G( =, 92G;(0) soresi
0 ¢11 = G;(0)+ 92 +
B Z aek e Z 802 i o
If Gj(ﬁ) + 0 for at least one j, always have some
infection.
If G;(0) = 0V j, want largest eigenvalue
aG (6 L
[ 50, , } >

Condition for spreading is therefore dependent on
eigenvalues of this matrix:

8(;j(6):: €j—1,k-1
80]{371: ijl

Insert question from assignment 9 (4 agpunaonel
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- How the giaht component changes with

© assortative
o neutral

4 disassortative

assortativity:
10
08 [
é 06 [
2 04
i 02 |
0.0 heett

10

exponential parameter K

from Newman, 2002 (5]

100

More assortative
networks
percolate for
lower average
degrees

But
disassortative
networks end up
with higher
extents of
spreading.
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