Assortativity and Mixing

Last updated: 2018/03/23, 20:59:06

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COCONUTS

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

These slides are brought to you by:

COcoNuTS -

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COCONUTS

Definition

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size

References

20 3 of 40

Outline

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

References

COcoNuTS

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition
Triggering probability
Expected size

COCONUTS

Basic idea:

- Random networks with arbitrary degree distributions cover much territory but do not represent all networks.
- Moving away from pure random networks was a key first step.
- We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.
- Node attributes may be anything, e.g.:
 - 1. degree
 - 2. demographics (age, gender, etc.)
 - 3. group affiliation
- & We speak of mixing patterns, correlations, biases...
- Networks are still random at base but now have more global structure.
- Build on work by Newman [5, 6], and Boguñá and Serano. [1].

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

General mixing between node categories

- Assume types of nodes are countable, and are assigned numbers 1, 2, 3,
- 🙈 Consider networks with directed edges.

$$e_{\mu\nu} = \Pr\left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array}\right)$$

 $a_{\mu} = \mathbf{Pr}(\text{an edge comes from a node of type } \mu)$

 $b_{
u} = \mathbf{Pr}($ an edge leads to a node of type $\nu)$

- $\red{\$}$ Write $\mathbf{E}=[e_{\mu\nu}]$, $\vec{a}=[a_{\mu}]$, and $\vec{b}=[b_{\nu}]$.
- Requirements:

$$\sum_{\mu \ \nu} e_{\mu \nu} = 1, \ \sum_{\nu} e_{\mu \nu} = a_{\mu}, \ \text{and} \ \sum_{\mu} e_{\mu \nu} = b_{\nu}.$$

COcoNuTS -

Definition

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size

Notes:



1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

Uncorrelated networks (as we have studied so far) For these we must have independence:

 $e_{\mu\nu}=a_{\mu}b_{\nu}.$ 3. Disassortative networks where nodes connect to

Disassortative networks can be hard to build and may require constraints on the $e_{\mu\nu}$.

Basic story: level of assortativity reflects the degree to which nodes are connected to nodes within their group.

nodes distinct from themselves.

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Correlation coefficient:

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

- Tr E is the fraction of edges that are within groups.
- $||E^2||_1$ is the fraction of edges that would be within groups if connections were random.
- $3 ||E^2||_1$ is a normalization factor so $r_{\text{max}} = 1$.
- $lap{8}$ When $\operatorname{Tr} e_{\mu\mu}=1$, we have r=1.

Definition

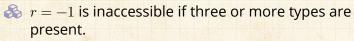
General mixing

Assortativity by degree

Contag

Spreading condition
Triggering probability
Expected size

Notes:



Disassortative networks simply have nodes connected to unlike nodes—no measure of how unlike nodes are.

Minimum value of r occurs when all links between non-like nodes: $\operatorname{Tr} e_{\mu\mu} = 0$.

$$r_{\min} = \frac{-||E^2||_1}{1 - ||E^2||_1}$$

where $-1 \le r_{\min} < 0$.

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

COcoNuTS

Watch your step

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

COCONUTS

zzzhhhhwoooommmmmm

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

NuhnuhNuhnuhNuhnuhNuhnuhNuhnuh

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Scalar quantities

Now consider nodes defined by a scalar integer quantity.

Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

 $\begin{cases} \&a_j \end{case}$ and b_k are defined as before.

& Can now measure correlations between nodes based on this scalar quantity using standard Pearson correlation coefficient ☑:

This is the observed normalized deviation from randomness in the product jk.

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Degree-degree correlations

- Natural correlation is between the degrees of connected nodes.
- $\red {\lozenge}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \mathbf{Pr} \left(\begin{array}{c} ext{an edge connects a degree } j+1 ext{ node} \\ ext{to a degree } k+1 ext{ node} \end{array} \right)$$

 $= \mathbf{Pr} \left(\begin{array}{c} \text{an edge runs between a node of in-degree } j \\ \text{and a node of out-degree } k \end{array} \right)$

- & Useful for calculations (as per R_k)
- Must separately define P_0 as the $\{e_{jk}\}$ contain no information about isolated nodes.
- Directed networks still fine but we will assume from here on that $e_{jk}=e_{kj}$.

General mixing

Assortativity by degree

Spreading condition

Expected size

Degree-degree correlations

Notation reconciliation for undirected networks:

$$r = \frac{\sum_{j\,k} j\,k(e_{jk} - R_j R_k)}{\sigma_R^2}$$

where, as before, R_k is the probability that a randomly chosen edge leads to a node of degree k+1, and

$$\sigma_R^2 = \sum_j j^2 R_j - \left[\sum_j j R_j\right]^2.$$

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Error estimate for r:

 \mathbb{R} Remove edge i and recompute r to obtain r_i .

Repeat for all edges and compute using the jackknife method [3]

$$\sigma_r^2 = \sum_i (r_i - r)^2.$$

Mildly sneaky as variables need to be independent for us to be truly happy and edges are correlated...

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Measurements of degree-degree correlations

	Group	Network	Туре	Size n	Assortativity r	Error σ_r
	a	Physics coauthorship	undirected	52 909	0.363	0.002
	a	Biology coauthorship	undirected	1 520 251	0.127	0.0004
	b	Mathematics coauthorship	undirected	253 339	0.120	0.002
Social	c	Film actor collaborations	undirected	449 913	0.208	0.0002
	d	Company directors	undirected	7 673	0.276	0.004
	e	Student relationships	undirected	573	-0.029	0.037
	f	Email address books	directed	16 881	0.092	0.004
Technological	g	Power grid	undirected	4 941	-0.003	0.013
	h	Internet	undirected	10 697	-0.189	0.002
	i	World Wide Web	directed	269 504	-0.067	0.0002
	j	Software dependencies	directed	3 162	-0.016	0.020
Biological	k	Protein interactions	undirected	2 115	-0.156	0.010
	1	Metabolic network	undirected	765	-0.240	0.007
	m	Neural network	directed	307	-0.226	0.016
	n	Marine food web	directed	134	-0.263	0.037
	0	Freshwater food web	directed	92	-0.326	0.031

Social networks tend to be assortative (homophily) Technological and biological networks tend to be disassortative

COCONUTS

Definition

General mixing Assortativity by degree

Spreading condition Triggering probability Expected size

Hot lava 🗷

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

"I like it" 🗷

Definition

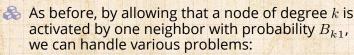
General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Next: Generalize our work for random networks to degree-correlated networks.



- 1. find the giant component size.
- find the probability and extent of spread for simple disease models.
- 3. find the probability of spreading for simple threshold models.

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probabilit
Expected size

- Goal: Find $f_{n,j}$ = **Pr** an edge emanating from a degree j+1 node leads to a finite active subcomponent of size n.
- Repeat: a node of degree k is in the game with probability B_{k1} .
- \clubsuit Define $\vec{B}_1 = [B_{k1}]$.
- Plan: Find the generating function $F_j(x; \vec{B}_1) = \sum_{n=0}^{\infty} f_{n,j} x^n$.

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected Size

Recursive relationship:

$$\begin{split} F_{j}(x;\vec{B}_{1}) &= x^{0} \sum_{k=0}^{\infty} \frac{e_{jk}}{R_{j}} (1 - B_{k+1,1}) \\ &+ x \sum_{k=0}^{\infty} \frac{e_{jk}}{R_{j}} B_{k+1,1} \left[F_{k}(x;\vec{B}_{1}) \right]^{k}. \end{split}$$

- First term = Pr (that the first node we reach is not in the game).
- Second term involves \mathbf{Pr} (we hit an active node which has k outgoing edges).
- Next: find average size of active components reached by following a link from a degree j+1 node = $F'_j(1; \vec{B}_1)$.

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

 \mathbb{R} Differentiate $F_i(x; \vec{B}_1)$, set x = 1, and rearrange.

We use $F_k(1; \vec{B}_1) = 1$ which is true when no giant component exists. We find:

Definition

General mixing

Assortativity by degree

Expected size

Spreading condition

$$R_{j}F'_{j}(1;\vec{B}_{1}) = \sum_{k=0}^{\infty} e_{jk}B_{k+1,1} + \sum_{k=0}^{\infty} ke_{jk}B_{k+1,1}F'_{k}(1;\vec{B}_{1}).^{\text{References}}$$

& Rearranging and introducing a sneaky δ_{ik} :

$$\sum_{k=0}^{\infty} \left(\delta_{jk} R_k - k B_{k+1,1} e_{jk} \right) F_k'(1; \vec{B}_1) = \sum_{k=0}^{\infty} e_{jk} B_{k+1,1}.$$

COCONUTS

In matrix form, we have

$${\bf A}_{{\bf E},\vec{B}_1}\vec{F}'(1;\vec{B}_1)={\bf E}\vec{B}_1$$

where

$$\begin{split} \left[\mathbf{A}_{\mathbf{E},\vec{B}_1} \right]_{j+1,k+1} &= \delta_{jk} R_k - k B_{k+1,1} e_{jk}, \\ \left[\vec{F}'(1;\vec{B}_1) \right]_{k+1} &= F_k'(1;\vec{B}_1), \\ \left[\mathbf{E} \right]_{j+1,k+1} &= e_{jk}, \text{ and } \left[\vec{B}_1 \right]_{k+1} &= B_{k+1,1}. \end{split}$$

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

COCONUTS

So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

- Now: as $\vec{F}'(1; \vec{B}_1)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.
- Right at the transition, the average component size explodes.
- Exploding inverses of matrices occur when their determinants are 0.
- The condition is therefore:

$$\det \mathbf{A}_{\mathbf{E},\vec{B}_1} = 0$$

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

COCONUTS

General condition details:

$$\det\!\mathbf{A}_{\mathbf{E},\vec{B}_1} = \det\left[\delta_{jk}R_{k-1} - (k-1)B_{k,1}e_{j-1,k-1}\right] = 0.$$

The above collapses to our standard contagion condition when $e_{ik} = R_i R_k$ (see next slide). [2]

When $\vec{B}_1 = B\vec{1}$, we have the condition for a simple disease model's successful spread

$$\det\left[\delta_{jk}R_{k-1} - B(k-1)e_{j-1,k-1}\right] = 0.$$

When $\vec{B}_1 = \vec{1}$, we have the condition for the existence of a giant component:

$$\det\left[\delta_{jk}R_{k-1} - (k-1)e_{j-1,k-1}\right] = 0.$$

Bonusville: We'll find a much better version of this set of conditions later...

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

Retrieving the cascade condition for uncorrelated networks

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size

We'll next find two more pieces:

- 1. P_{trigr} the probability of starting a cascade
- 2. *S*, the expected extent of activation given a small seed.

Triggering probability:

Generating function:

$$H(x; \vec{B}_1) = x \sum_{k=0}^{\infty} P_k \left[F_{k-1}(x; \vec{B}_1) \right]^k$$
.

Generating function for vulnerable component size is more complicated.

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition
Triggering probability
Expected size

Want probability of not reaching a finite component.

$$\begin{split} P_{\mathrm{trig}} &= S_{\mathrm{trig}} = 1 - H(1; \vec{B}_1) \\ &= 1 - \sum_{k=0}^{\infty} P_k \left[F_{k-1}(1; \vec{B}_1) \right]^k. \end{split}$$

 \clubsuit Last piece: we have to compute $F_{k-1}(1; \vec{B}_1)$.

Nastier (nonlinear)—we have to solve the recursive expression we started with when x = 1: $F_j(1; \vec{B}_1) = \sum_{k=0}^{\infty} \frac{e_{jk}}{R_i} (1 - B_{k+1,1}) +$

$$\textstyle \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(1; \vec{B}_1) \right]^k.$$

Iterative methods should work here.

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

3

Truly final piece: Find final size using approach of Gleeson [4], a generalization of that used for uncorrelated random networks.

General mixing
Assortativity by degree
Contagion

COCONUTS

Definition

Need to compute $\theta_{j,t}$, the probability that an edge leading to a degree j node is infected at time t.

Contagion
Spreading condition
Triggering probability
Expected size
References

Evolution of edge activity probability:

$$\theta_{j,\,t+1} = G_j(\vec{\theta}_t) = \phi_0 + (1-\phi_0) \times$$

$$\sum_{k=1}^{\infty} \frac{e_{j-1,k-1}}{R_{j-1}} \sum_{i=0}^{k-1} \binom{k-1}{i} \theta_{k,t}^{i} (1-\theta_{k,t})^{k-1-i} B_{ki}.$$

Overall active fraction's evolution:

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{i=0}^k \binom{k}{i} \theta_{k,t}^i (1 - \theta_{k,t})^{k-i} B_{ki}.$$

As before, these equations give the actual

evolution of ϕ_t for synchronous updates. Contagion condition follows from $\vec{\theta}_{t+1} = \vec{G}(\vec{\theta}_t)$.

 \Longrightarrow Expand \vec{G} around $\vec{\theta}_0 = \vec{0}$.

$$\theta_{j,t+1} = G_j(\vec{0}) + \sum_{k=1}^{\infty} \frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} \theta_{k,t} + \frac{1}{2!} \sum_{k=1}^{\infty} \frac{\partial^2 G_j(\vec{0})}{\partial \theta_{k,t}^2} \theta_{k,t}^2 + \dots$$

If $G_j(\vec{0}) \neq 0$ for at least one j, always have some infection.

 $\text{If } G_j(\vec{0}) = 0 \ \forall \ j \text{, want largest eigenvalue} \\ \left\lceil \frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} \right\rceil > 1.$

Condition for spreading is therefore dependent on eigenvalues of this matrix:

$$\frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} = \frac{e_{j-1,k-1}}{R_{j-1}}(k-1)B_{k1}$$

COcoNuTS

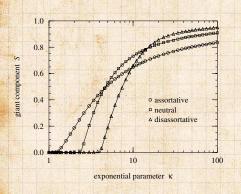
Definition

General mixing

Assortativity by degree

Contagion
Spreading conditio
Triggering probabil

How the giant component changes with assortativity:



from Newman, 2002 [5]

More assortative networks percolate for lower average degrees

But disassortative networks end up with higher extents of

spreading.

COCONUTS

Definition

General mixing Assortativity by

degree

Spreading condition Triggering probability Expected size

Toy guns don't pretend blow up things ...

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Splsshht

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Robust-yet-Fragileness of the Death Star

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

[1] M. Boguñá and M. Ángeles Serrano.

Generalized percolation in random directed networks.

Phys. Rev. E, 72:016106, 2005. pdf

[2] P. S. Dodds and J. L. Payne.
Analysis of a threshold model of social contagion on degree-correlated networks.
Phys. Rev. E, 79:066115, 2009. pdf

[3] B. Efron and C. Stein. The jackknife estimate of variance. The Annals of Statistics, 9:586–596, 1981. pdf

[4] J. P. Gleeson.
Cascades on correlated and modular random networks.
Phys. Rev. E, 77:046117, 2008. pdf

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

References II

COcoNuTS

Definition

General mixing

[5] M. Newman.

Assortative mixing in networks.

Phys. Rev. Lett., 89:208701, 2002. pdf

Assortativity by degree

Contagion

[6] M. E. J. Newman.
Mixing patterns in networks.
Phys. Rev. E, 67:026126, 2003. pdf

Spreading condition
Triggering probability

Expected size
References

