Optimal Supply Networks III: Redistribution

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox
Optimal Supply

Distributed

Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

These slides are brought to you by:

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

On Instagram at pratchett_the_cat

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

9 a @ 3 of 48

Outline

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

PoCS | @pocsvox **Optimal Supply** Networks III

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

How do we distribute sources?

Focus on 2-d (results generalize to higher dimensions).

Sources hospitals, post offices, pubs, ...

Key problem: How do we cope with uneven population densities?

Obvious: if density is uniform then sources are best distributed uniformly.

Which lattice is optimal?

Q2. Given population density is uneven, what do we do?

We'll follow work by Stephan (1977, 1984)
Gastner and Newman (2006) , Um et al. (2009) and work cited by them.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

How do we distribute sources?

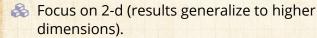
Focus on 2-d (results generalize to higher dimensions).

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

A reasonable derivation Public versus Private

How do we distribute sources?



Sources = hospitals, post offices, pubs, ...

Key problem: How do we cope with uneven population densities?

Obvious: If density is uniform then sources are best distributed uniformly.

Which lattice is optimal?

Q2: Given population density is uneven, what do we do?

We'll follow work by Stephan (1977, 1984)

Gastner and Newman (2006) , Um et al. (2009) and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

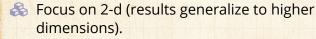
Distributed Sources

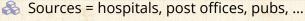
Size-density law

A reasonable derivation

Public versus Private

How do we distribute sources?





Key problem: How do we cope with uneven population densities?

Obvious: if density is uniform then sources are best distributed uniformly.

Which lattice is optimal?

Q2: Given population density is uneven, what do we do?

We'll follow work by Stephan (1977, 1984)

Gastner and Newman (2006) , Um et al. (2009) and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
 - Which lattice is optimal?
 - Q2: Given population density is uneven, what do we do?
 - We'll follow work by Stephan (1977, 1984)

 Gastner and Newman (2006) , Um et al. (2009) and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law

A reasonable derivation
Global redistribution
Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice

 Q2: Given population density is uneven, what do

 we do?
 - We'll follow work by Stephan (1977, 1984)
 Gastner and Newman (2006) , Um et al. (2009) and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
 - We'll follow work by Stephan (1977, 1984)

 Gastner and Newman (2006) , Um et al. (2009)

 and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

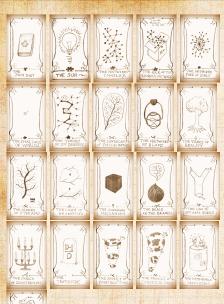
How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Cartograms
A reasonable derivation
Global redistribution
Public versus Private



THE ILLESCALING

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Cartograms

A reasonable derivation

Global redistribution Public versus Private

References

20 6 of 48

Solidifying the basic problem

- Given a region with some population distribution *ρ*, most likely uneven.
- Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-defisity is

Cartograms

A reasonable derivation

Public versus Private

Solidifying the basic problem

Given a region with some population distribution ρ , most likely uneven.

PoCS | @pocsvox **Optimal Supply** Networks III

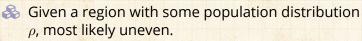
Distributed Sources

Cartograms

A reasonable derivation

Public versus Private

Solidifying the basic problem



& Given resources to build and maintain N facilities.

Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the hearest facility?

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law

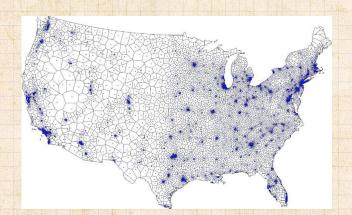
Size derisity in

A reasonable derivation

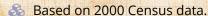
Global redistribution Public versus Private

"Optimal design of spatial distribution networks" ☑

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



Approximately optimal location of 5000 facilities.



PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

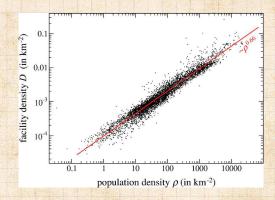
Size-density I

Cartograms

A reasonable derivation Global redistribution Public versus Private

References

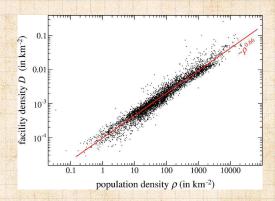
20 € 8 of 48

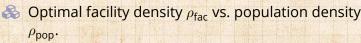


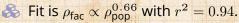
 $\red {}_{h}$ Optimal facility density $ho_{
m fac}$ vs. population density ρ_{pop} .

Distributed Sources

A reasonable derivation Global redistribution Public versus Private





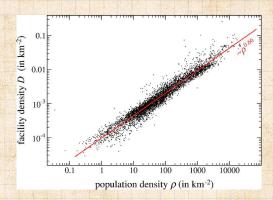


Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private



Distributed Sources

Size-density law

Cartograms

Global redistribution

- $ho_{
 m pop}$. Optimal facility density $ho_{
 m fac}$ vs. population density
- \Re Fit is $\rho_{\text{fac}} \propto \rho_{\text{pop}}^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power ...

Outline

Distributed Sources Size-density law

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

Why

Again: Different story to branching networks where there was either one source or one sink.

Now sources & sinks are distributed throughout region.

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $\rho_{\rm fac} \propto \rho_{\rm pop}^{2/3}$

Again: Different story to branching networks where there was either one source or one sink. Now sources & sinks are distributed throughout region.

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

Again: Different story to branching networks where there was either one source or one sink.

Now sources & sinks are distributed throughout region.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, 196, 523-524, 1977. [4]

We first examine Stephan's treatment (1977) [4, 5]

Distributed

Size-density law

A reasonable derivation Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- 🚵 We first examine Stephan's treatment (1977) [4, 5]
- Zipf-like approach: invokes principle of minimal effort.

Also known as the Homer Simpson principle.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- 🙈 We first examine Stephan's treatment (1977) [4, 5]
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution
Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Public versus Private
References

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

Size-density law A reasonable derivation

Global redistribution Public versus Private

PoCS | @pocsvox **Optimal Supply** Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

Size-density law A reasonable derivation

Global redistribution Public versus Private

References

& Call this quantity τ .

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Public versus Private
References

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law
Cartograms
A reasonable derivation

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Public versus Private
References

 \Longrightarrow Replace P by $\rho_{\mathsf{pop}}A$ where ρ_{pop} is density.

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law Cartograms A reasonable derivation

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Public versus Private
References

 $\red{Replace} \ P \ ext{by} \
ho_{ ext{pop}} A \ ext{where} \
ho_{ ext{pop}} \ ext{is density}.$

Important assumption: uniform density.

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law
Cartograms
A reasonable derivation

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Public versus Private
References

 $\red{Replace } P$ by $ho_{\mathsf{pop}} A$ where ho_{pop} is density.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A)$$

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed

& Call this quantity τ .

Size-density law A reasonable derivation

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Public versus Private References

 \Longrightarrow Replace P by $\rho_{pop}A$ where ρ_{pop} is density.

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

PoCS | @pocsvox
Optimal Supply
Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

If burden of mainenance is shared then average cost per person is τ/P where P = population.

References

 $\red{Replace} \ P \ ext{by} \
ho_{ ext{pop}} A \ ext{where} \
ho_{ ext{pop}} \ ext{is density}.$

Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

 $\red {\mathbb N}$ Now Minimize with respect to $A \dots$

Differentiating ...

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right)$$

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} \end{split}$$

Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law Cartograms A reasonable derivation

Global redistribution Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3}$$

Sources

Size-density law A reasonable derivation Global redistribution

Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

Size-density law A reasonable derivation Global redistribution

Public versus Private References

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

Size-density law A reasonable derivation Global redistribution

Public versus Private References

Differentiating ...

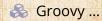
$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$



PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources Size-density law

A reasonable derivation Global redistribution Public versus Private

PoCS | @pocsvox **Optimal Supply** Networks III

An issue:

 \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)

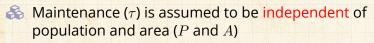
Distributed Sources

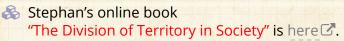
Size-density law Cartograms

A reasonable derivation Public versus Private

PoCS | @pocsvox Optimal Supply Networks III

An issue:





- The Readme
 is well worth reading (1995).

Distributed Sources Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private

Outline

Distributed Sources

Cartograms

PoCS | @pocsvox Optimal Supply Networks III

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Standard world map:

PoCS | @pocsvox

Optimal Supply Networks III

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Cartogram of countries 'rescaled' by population:

PoCS | @pocsvox Optimal Supply

Networks III

Distributed
Sources
Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).
- Many methods put forward—typically involve, some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Diffusion is constrained by boundary condition of surrounding area having density ρ_{pop} .

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Diffusion-based cartograms:

Idea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0$$

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Size-density law Cartograms

A reasonable derivation Public versus Private

Diffusion-based cartograms:



Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.

Algorithm due to Gastner and Newman (2004) is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries.

Diffusion is constrained by boundary condition of surrounding area having density ρ_{pop} .

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries.

Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{\text{poo}}$.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries.

Diffusion is constrained by boundary condition of surrounding area having density $\rho_{\rm pop}$.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

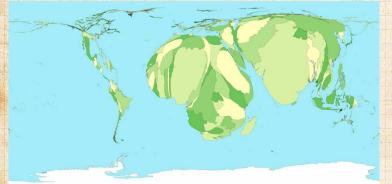
$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

Optimal Supply Networks III

Distributed Size-density law Cartograms A reasonable derivation Public versus Private

Child mortality:



PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

References

9 9 € 21 of 48

Energy consumption:



PoCS | @pocsvox

Optimal Supply Networks III

Distributed

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Gross domestic product:

PoCS | @pocsvox

Optimal Supply Networks III

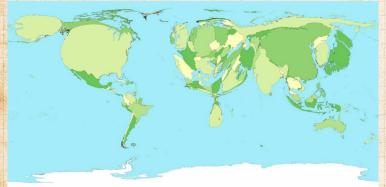
Distributed Sources

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Greenhouse gas emissions:



PoCS | @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Spending on healthcare:



PoCS | @pocsvox

Optimal Supply Networks III

Size-density law

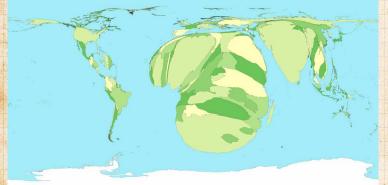
Cartograms

A reasonable derivation Global redistribution Public versus Private

References

9 a @ 25 of 48

People living with HIV:



PoCS | @pocsvox

Optimal Supply Networks III

Sources

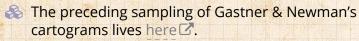
Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

References

9 a @ 26 of 48



A larger collection can be found at worldmapper.org .

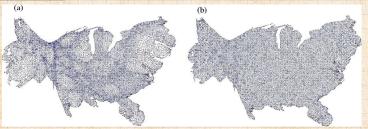
WSRLDMAPPER The world as you've never seen it before

PoCS | @pocsvox Optimal Supply Networks III

Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]



Left: population density-equalized cartogram.

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

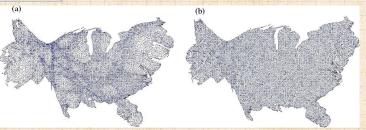
Size-density law

Cartograms A reasonable derivation

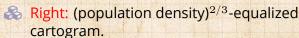
Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



Left: population density-equalized cartogram.



PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

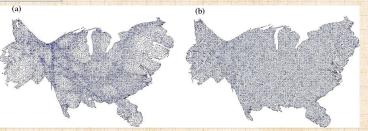
Size-density law

Cartograms

Public versus Private

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



- Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- $\red{8}$ Facility density is uniform for $ho_{pop}^{2/3}$ cartogram.

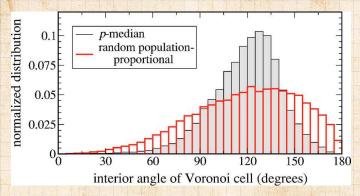
PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

Global redistribution



From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

> Size-density law Cartograms

A reasonable derivation

Public versus Private

Outline

Distributed Sources

Size density lav

Cartograms

A reasonable derivation

Global redistribution

References

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Public versus Private

Deriving the optimal source distribution:

Basicidea: Minimize the average distance from a random individual to the nearest facility.

Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region $\Omega.$

Formally, we want to find the locations of n sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost-function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathrm{pop}}(\vec{x}) \min_{\vec{x}} ||\vec{x} - \vec{x}_{\vec{x}}|| \mathrm{d}\vec{x}$$

Approximate solution originally due to Gusein-Zade

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Deriving the optimal source distribution:

Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{v}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x}$$

PoCS | @pocsvox **Optimal Supply** Networks III

Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

Distributed

20 a 0 31 of 48

Deriving the optimal source distribution:

Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]

& Assume given a fixed population density ρ_{pop} defined on a spatial region Ω .

PoCS | @pocsvox **Optimal Supply** Networks III

Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

Distributed

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x} \,.$$

Also known as the p-median problem.

Not easy ...

Approximate solution originally due to Gusein-Zade

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

Also known as the p-median problem.

Not easy

Approximate solution originally due to Gusein-Zade

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]

Approximate solution originally due to Gusein-Zade

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
Areasonable derivation
Global redistribution
Public versus Private
References

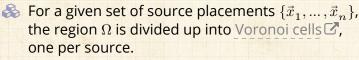
Approximations:

 \mathbb{R} For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}_{t}$ the region Ω is divided up into Voronoi cells \mathbb{Z} , one per source.

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources Size-density law Cartograms A reasonable derivation Public versus Private

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

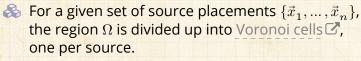
As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

 $c_i A(\vec{x})^{1/2}$

where a_i is a shape factor for the *i*th Voronoi cell Approximate e_i as a constant a_i PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

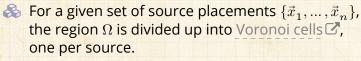
where c_i is a shape factor for the *i*th Voronoi cell.

Approximate e, as a constant e

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

 $\ensuremath{\&}$ Approximate c_i as a constant c.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$. Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathsf{d}\vec{x}}{A(\vec{x})} = n.$$

Within each cell, $A(\vec{x})$ is constant. So ...integral over each of the n cells equals 1. PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law

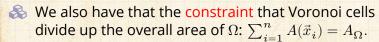
Cartograms
A reasonable derivation
Global redistribution

Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$



Sneakily turn this into an integral constraint

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n$$

Within each cell, $A(\vec{x})$ is constant.

So ...integral over each of the n cells equals 1.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

Within each cell, $A(\vec{x})$ is constant. So ...integral over each of the n cells equals 1

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

Within each cell, $A(\vec{x})$ is constant.

So ...integral over each of the n cells equals 1

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- Within each cell, $A(\vec{x})$ is constant.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

 \Leftrightarrow By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathsf{d}\vec{x} = 0$$

$$\rho_{\text{pop}}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}$$

Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

 \mathbb{R} By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

$$\int_{\Omega} \left[rac{c}{2}
ho_{\mathsf{DOD}}(ec{x})A(ec{x})^{-1/2} + \lambda\left[A(ec{x})
ight]^{-2}
ight]\mathsf{d}ec{x} = 0.$$

$$\rho_{\text{pop}}(\vec{x}) = 2\lambda e^{-1}A(\vec{x})^{-3/2}$$

Sources

A reasonable derivation Global redistribution Public versus Private

 \mathbb{R} By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathsf{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

& Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathsf{d}\vec{x} = 0$$

$$\rho_{\text{pop}}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}$$

Sources

A reasonable derivation Global redistribution Public versus Private

 $\mbox{\&}$ By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

& Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

$$\rho_{\text{pop}}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}$$

Sources

A reasonable derivation Public versus Private

 \mathbb{R} By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathsf{d}\vec{x} \right)^{\text{Distribut}}_{\text{Sources}}$$

I Can Haz Calculus of Variations ??

& Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

A reasonable derivation Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

$$ho_{\mathsf{fac}}(x) = \left(rac{1}{2\lambda}
ho_{\mathsf{pop}}
ight)$$

$$= n \frac{[\rho_{\mathsf{pop}}(\vec{x})]^{2/3}}{[\rho_{\mathsf{pop}}(\vec{x})]^{2/3} \mathsf{d}\vec{x}}$$

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

Size-density law

Cartograms A reasonable derivation Global redistribution

Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

 \Longrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{fac}(\vec{x})$, an approximation of the local source density.

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

Size-density law

A reasonable derivation Global redistribution Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- $\red {\Bbb S}$ Substituting $ho_{\sf fac}=1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

Normalizing (or solving for λ):

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{\text{fac}} = 1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Outline

Distributed Sources

Cartograms

Global redistribution

Global redistribution

Dafarani ac

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

One more thing:

How do we supply these facilities?

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops})$$

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law A reasonable derivation Global redistribution Public versus Private

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources Size-density law A reasonable derivation Global redistribution

Public versus Private References

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

How do we get beer to the pubs?

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources Size-density law A reasonable derivation Global redistribution

Public versus Private References

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

How do we get beer to the pubs?

Gastner and Newman model: cost is a function of basic maintenance and travel time:

 $C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

 $(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops})$

When $\delta = 1$, only number of hops matters.

PoCS | @pocsvox
Optimal Supply
Networks III

Sources
Size-density law
Cartograms

Distributed

A reasonable derivation Global redistribution Public versus Private

One more thing:

- How do we supply these facilities?
- & How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

When $\delta = 1$, only number of hops matters.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

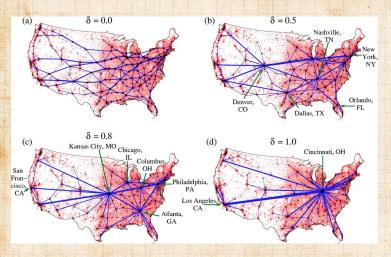
$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution



From Gastner and Newman (2006) [2]

PoCS | @pocsvox

Optimal Supply Networks III

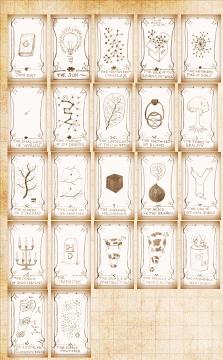
Distributed

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

References

少 a ○ 38 of 48



PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Public versus Priv

References

少 Q ← 39 of 48

Outline

Distributed Sources

Cartograms
A reasonable derivation
Global reastribution
Public versus Private

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution
Public versus Private

Public versus private facilities

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009.
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

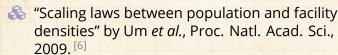
- does not universally hold with $\alpha = 2/3$
- Two idealized limiting classes:

Um et al. Investigate facility locations in the United States and South Korea.

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

9 Q @ 41 of 48

Beyond minimizing distances:



Um et al. find empirically and argue theoretically that the connection between facility and population density

 $\rho_{\rm fac} \propto \rho_{\rm por}^{\alpha}$

does not universally hold with $\alpha = 2/3$

Two idealized limiting classes:

Um et al. investigate facility locations in the United States and South Korea.

PoCS | @pocsvox
Optimal Supply
Networks III

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- When the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

Um et al. investigate facility locations in the United States and South Korea.

PoCS | @pocsvox
Optimal Supply
Networks III

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- When the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha=1$;

Um et al. Investigate facility locations in the United States and South Korea.

PoCS | @pocsvox
Optimal Supply
Networks III

Beyond minimizing distances:

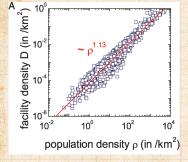
- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [6]
- With the connection between facility and population density

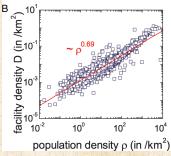
$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

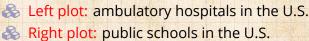
PoCS | @pocsvox
Optimal Supply
Networks III

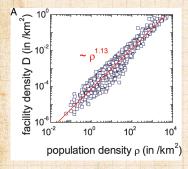


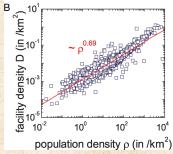


PoCS | @pocsvox Optimal Supply Networks III

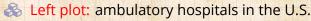
Distributed Sources Size-density law Public versus Private References

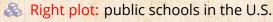


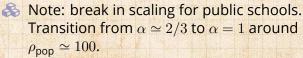




PoCS | @pocsvox
Optimal Supply
Networks III







US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.91
* Primary clinic	1.09(2)	1.00
* Hospital	0.96(5)	0.97
* University/college	0.93(9)	0.89
Market place	0.87(2)	0.90
* Secondary school	0.77(3)	0.98
* Primary school	0.77(3)	0.97
Social welfare org.	0.75(2)	0.84
* Police station	0.71(5)	0.94
Government office	0.70(1)	0.93
* Fire station	0.60(4)	0.93
* Public health center	0.09(5)	0.19

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

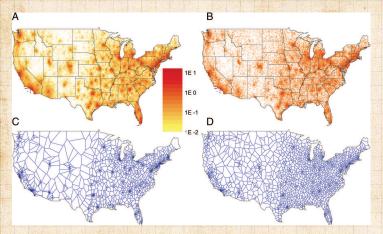
PoCS | @pocsvox

Optimal Supply Networks III

Sources Size-density law Cartograms A reasonable derivation Global redistribution

Distributed

Public versus Private References



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law

Cartograms

A reasonable derivation

Global redistribution
Public versus Private

Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

PoCS | @pocsvox **Optimal Supply** Networks III

Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

Commercial institutions seek to maximize the number of visitors.

Optimal Supply Networks III

Distributed Sources Size-density law Cartograms A reasonable derivation Public versus Private

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the *i*th facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - A_i = area of ith cell (s_i in

Objective function to maximize for a facility (highly constructed):

 $v_i = n_j(r_i)^{\beta}$ with $0 \le \beta \le 1$.

Limits

 $\beta = 0$: purely commercial. $\beta = 1$: purely social.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- \clubsuit Defns: For the ith facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

Limits

 $\beta = 0$: purely commercial. $\beta = 1$: purely social.

PoCS | @pocsvox Optimal Supply Networks III

Public versus private facilities: the story So what's going on?

Social institutions seek to minimize distance of travel.

Commercial institutions seek to maximize the number of visitors.

& Defns: For the ith facility and its Voronoi cell V_i , define

 n_i = population of the *i*th cell;

 $\langle r_i \rangle$ = the average travel distance to the *i*th facility.

Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

PoCS | @pocsvox Optimal Supply Networks III

PoCS | @pocsvox **Optimal Supply** Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\mathrm{fac}}(\vec{x}) = n \frac{[\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}.$$

Distributed Sources Size-density law A reasonable derivation Public versus Private

PoCS | @pocsvox **Optimal Supply** Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofac} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

Distributed Sources Size-density law A reasonable derivation Public versus Private

References

 β For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

PoCS | @pocsvox **Optimal Supply** Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

 \Longrightarrow For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

 \Rightarrow For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

Distributed Sources Size-density law A reasonable derivation Public versus Private References

PoCS | @pocsvox Optimal Supply Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

Distributed

$$\frac{\rho_{\rm fac}(\vec{x})}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

- \Leftrightarrow For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.
- \Leftrightarrow For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

References I

[1] M. T. Gastner and M. E. J. Newman.
Diffusion-based method for producing density-equalizing maps.
Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman.
Optimal design of spatial distribution networks.
Phys. Rev. E, 74:016117, 2006. pdf

✓

[3] S. M. Gusein-Zade.

Bunge's problem in central place theory and its generalizations.

Geogr. Anal., 14:246–252, 1982. pdf

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

2 0 47 of 48

References II

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf 2

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

