Scaling-a Plenitude of Power Laws
 Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Scaling-at-large
Allometry
Biology
Physics

Prof. Peter Dodds | @peterdodds

People
Money
Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core I University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

PoCS | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

These slides are also brought to you by:

Pocs | @poesvox Scaling

Special Guest Executive Producer: Pratchett

O On Instagram at pratchett_the_cat[

Outline

Pocs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
Money
Language
Technology
Specialization
References

References

Archival object:

Pocs | @poesvox Scaling

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
unw $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
っのल 6 of 99

Scalingarama

General observation:
 Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scalingarama

General observation:
 Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

 Outline-All about scaling:Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scalingarama

General observation:
 Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Outline-All about scaling:

- Basic definitions.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scalingarama

General observation:
 Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Outline-All about scaling:

- Basic definitions.

Examples.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Outline-All about scaling:
Basic definitions.
Examples.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
In CocoNuTs:

Advances in relationships

 Scaling in blood and rivernetworks. mheunsoued ainometrymineornciaes
Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
Outline-All about scaling:
Basic definitions.
\& Examples.
People
Money
Language
Technology
Specialization
References
In CocoNuTs:
Advances in measuring your power-law relationships.

Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
Outline-All about scaling:
\& Basic definitions.
Examples.
People
Money
Language
Technology
Specialization
References
In CocoNuTs:
\& Advances in measuring your power-law relationships.
Scaling in blood and river networks.

Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
Outline-All about scaling:
\& Basic definitions.
Examples.
People
Money
Language
Technology
Specialization
References
In CocoNuTs:
\& Advances in measuring your power-law relationships.
Scaling in blood and river networks.
The Unsolved Allometry Theoricides.

Definitions

A power law relates two variables x and y as follows:

$$
y=c x^{\alpha}
$$

Biology
Physics
People
Money
Language
Technology
α is the scaling exponent (or just exponent)
α can be any number in principle but we will find various restrictions.
c is the prefactor (which can be important!)

Specialization
References

Definitions

The prefactor c must balance dimensions.

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Definitions

The prefactor c must balance dimensions. Imagine the height ℓ and volume v of a family of shapes are related as:

$$
\ell=c v^{1 / 4}
$$

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Definitions

The prefactor c must balance dimensions.
s. Imagine the height ℓ and volume v of a family of shapes are related as:

Biology
Physics
People
Money

$$
\ell=c v^{1 / 4}
$$

Using [•] to indicate dimension, then

$$
[c]=[l] /\left[V^{1 / 4}\right]=L / L^{3 / 4}=L^{1 / 4}
$$

Definitions

The prefactor c must balance dimensions.
\& Imagine the height ℓ and volume v of a family of shapes are related as:

Biology
Physics
People
Money

$$
\ell=c v^{1 / 4}
$$

Language
Technology
Using [$\cdot]$ to indicate dimension, then

$$
[c]=[l] /\left[V^{1 / 4}\right]=L / L^{3 / 4}=L^{1 / 4}
$$

More on this later with the Buckingham π theorem.

Looking at data

Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Looking at data

. Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.
Much searching for straight lines on log-log or double-logarithmic plots.

Looking at data

Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.
Much searching for straight lines on log-log or double-logarithmic plots.
Good practice: Always, always, always use base 10.

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Looking at data

Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.
Much searching for straight lines on log-log or double-logarithmic plots.
Bood practice: Always, always, always use base 10.
Talk only about orders of magnitude (powers of 10).

Biology
Physics
People
Money
Language
Technology
Specialization
References

um for \mid

A beautiful, heart-warming example:

R $W=$ volume of white matter: 'wiring'

Why is $\alpha \simeq 1.23 ?$

$G=$ Volume of gray matter (cortex/processors)
WZil Volime of white matter (wiring)

$$
T=\text { Cortical thickness (wiring) }
$$

$$
S=\text { Cortical surface area }
$$

$$
L=\text { Average length of white matter fibers }
$$

$$
p=\text { density of axons on white matter/cortex }
$$

interface

Pocs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Why is $\alpha \simeq 1.23 ?$

Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
$T=$ Cortical thickness (wiring)
\& $S=$ Cortical surface area
\& $L=$ Average length of white matter fibers

- $p=$ density of axons on white matter/cortex interface

Why is $\alpha \simeq 1.23 ?$

Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
$T=$ Cortical thickness (wiring)
R $S=$ Cortical surface area
\& $L=$ Average length of white matter fibers

- $p=$ density of axons on white matter/cortex interface

A rough understanding:

Why is $\alpha \simeq 1.23 ?$

Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
$T=$ Cortical thickness (wiring)
R $S=$ Cortical surface area
\& $L=$ Average length of white matter fibers

- $p=$ density of axons on white matter/cortex interface

A rough understanding:

- $G \sim S T$ (convolutions are okay)

Why is $\alpha \simeq 1.23 ?$

Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
领 $T=$ Cortical thickness (wiring)
R $S=$ Cortical surface area
\& $L=$ Average length of white matter fibers
. $p=$ density of axons on white matter/cortex interface

A rough understanding:

- $G \sim S T$ (convolutions are okay)
. $W \sim \frac{1}{2} p S L$

Why is $\alpha \simeq 1.23 ?$

Quantities（following Zhang and Sejnowski）：
$G=$ Volume of gray matter（cortex／processors）
$W=$ Volume of white matter（wiring）
领 $T=$ Cortical thickness（wiring）
B S Cortical surface area
$L=$ Average length of white matter fibers
．$p=$ density of axons on white matter／cortex interface

A rough understanding：
\＆$G \sim S T$（convolutions are okay）
．$W \sim \frac{1}{2} p S L$
－$G \sim L^{3}$

uvy $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Why is $\alpha \simeq 1.23 ?$
Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
领 $T=$ Cortical thickness (wiring)
R $S=$ Cortical surface area
$L=$ Average length of white matter fibers

- $p=$ density of axons on white matter/cortex interface

A rough understanding:
\& $G \sim S T$ (convolutions are okay)
$W \sim \frac{1}{2} p S L$

- $G \sim L^{3}$

Eliminate S and L to find $W \propto G^{4 / 3} / T$

Why is $\alpha \simeq 1.23 ?$
Quantities（following Zhang and Sejnowski）：
$G=$ Volume of gray matter（cortex／processors）
$W=$ Volume of white matter（wiring）
领 $T=$ Cortical thickness（wiring）
R $S=$ Cortical surface area
$L=$ Average length of white matter fibers
－$p=$ density of axons on white matter／cortex interface

A rough understanding：
\＆$G \sim S T$（convolutions are okay）
\＆$W \sim \frac{1}{2} p S L$
－$G \sim L^{3} \leftarrow$ this is a little sketchy．．．
Eliminate S and L to find $W \propto G^{4 / 3} / T$

Why is $\alpha \simeq 1.23 ?$

PoCS｜＠poesvox Scaling

Scaling－at－large
Allometry
Biology
Physics
A rough understanding：
We are here：$W \propto G^{4 / 3} / T$

People
Money
Language
Technology
Specialization
References

UVM $\left|\begin{array}{l}O \\ O \\ \text { On }\end{array}\right|$
っのく 13 of 99

Why is $\alpha \simeq 1.23 ?$

PoCS | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics

A rough understanding:

We are here: $W \propto G^{4 / 3} / T$
Observe weak scaling $T \propto G^{0.10 \pm 0.02}$.

People
Money
Language
Technology
Specialization
References

Why is $\alpha \simeq 1.23 ?$

PoCS 1@poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics

A rough understanding:

We are here: $W \propto G^{4 / 3} / T$
Observe weak scaling $T \propto G^{0.10 \pm 0.02}$.
Implies $S \propto G^{0.9} \rightarrow$ convolutions fill space.

People
Money
Language
Technology
Specialization
References

Why is $\alpha \simeq 1.23 ?$

PoCS 1@poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics

A rough understanding:

We are here: $W \propto G^{4 / 3} / T$
Observe weak scaling $T \propto G^{0.10 \pm 0.02}$.
\& Implies $S \propto G^{0.9} \rightarrow$ convolutions fill space.
$\Rightarrow W \propto G^{4 / 3} / T \propto G^{1.23 \pm 0.02}$

People
Money
Language
Technology
Specialization
References

Uvm
๑aع 13 of 99

Tricksiness:

PoCs 1 @poesvox Scaling

With $V=G+W$, some power laws must be approximations.

Tricksiness:

8
With $V=G+W$, some power laws must be approximations.
Measuring exponents is a hairy business...
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Good scaling:

Pocs | @poesvox Scaling

General rules of thumb:

High quality: scaling persists over three or more orders of magnitude for each variable.

Good scaling:

General rules of thumb:

High quality: scaling persists over three or more orders of magnitude for each variable.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
.8 Medium quality: scaling persists over three or more orders of magnitude for only one variable and at least one for the other.

Good scaling:

General rules of thumb:

High quality: scaling persists over three or more orders of magnitude for each variable.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
R Medium quality: scaling persists over three or more orders of magnitude for only one variable and at least one for the other.

Technology
Specialization
References

Unconvincing scaling:

Average walking speed as a function of city population:

Two problems:

1. use of natural log, and
2. minute varation in dependent variable.
from Bettencourt et al. (2007) ${ }^{[4]}$; otherwise totally great-see later.

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

๑aع 16 of 99

Definitions

Power laws are the signature of scale invariance:

Scaling-at-large
Allometry
Biology
Physics

Scale invariant 'objects' look the 'same'

 when they are appropriately rescaled.People
Money
Language
Technology
Specialization
References

Definitions

Power laws are the signature of scale invariance:

Scaling-at-large
Allometry
Biology
Scale invariant 'objects' look the 'same' when they are appropriately

Physics
People
Money
Language
rescaled.
Technology
Specialization
References
R Objects = geometric shapes, time series, functions, relationships, distributions,...

Definitions

Power laws are the signature of scale invariance:

Scaling-at-large
Allometry
Biology
Scale invariant 'objects' look the 'same' when they are appropriately

Physics
People
Money
Language
rescaled.
Technology
Specialization
References
R Objects = geometric shapes, time series, functions, relationships, distributions,...
ใ 'Same' might be 'statistically the same'

measurenent for the relevant variables

Definitions

Power laws are the signature of scale invariance:

Scaling-at-large
Allometry
Biology
Scale invariant 'objects'
Physics
look the 'same' when they are appropriately

People
Money
Language
rescaled.
Technology
Specialization
References
Objects = geometric shapes, time series, functions, relationships, distributions,...
ใ 'Same' might be 'statistically the same'
R To rescale means to change the units of measurement for the relevant variables

Scale invariance

PoCS | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scale invariance

Our friend $y=c x^{\alpha}$:
If we rescale x as $x=r x^{\prime}$ and y as $y=r^{\alpha} y^{\prime}$,
then

$$
r^{\alpha} y^{\prime}=c\left(r x^{\prime}\right)^{\alpha}
$$

Scale invariance

Our friend $y=c x^{\alpha}$:

\& If we rescale x as $x=r x^{\prime}$ and y as $y=r^{\alpha} y^{\prime}$, \& then

$$
\begin{aligned}
& r^{\alpha} y^{\prime}=c\left(r x^{\prime}\right)^{\alpha} \\
\Rightarrow & y^{\prime}=c r^{\alpha} x^{\prime \alpha} r^{-\alpha}
\end{aligned}
$$

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scale invariance

Our friend $y=c x^{\alpha}$:

\& If we rescale x as $x=r x^{\prime}$ and y as $y=r^{\alpha} y^{\prime}$, onen

$$
\begin{gathered}
r^{\alpha} y^{\prime}=c\left(r x^{\prime}\right)^{\alpha} \\
\Rightarrow y^{\prime}=c r^{\alpha} x^{\prime \alpha} r^{-\alpha} \\
\Rightarrow y^{\prime}=c x^{\prime \alpha}
\end{gathered}
$$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

vin $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
つのल 18 of 99

Scale invariance

PoCS | @poesvox Scaling

Compare with $y=c e^{-\lambda x}$:
R If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uva $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っの\& 19 of 99

Scale invariance

Compare with $y=c e^{-\lambda x}$:
R If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scale invariance

Pocs | @poesvox Scaling

Compare with $y=c e^{-\lambda x}$:
If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scale invariance

Compare with $y=c e^{-\lambda x}$:
If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
More on $y=c e^{-\lambda x}$:

Scale invariance

Compare with $y=c e^{-\lambda x}$:
If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
More on $y=c e^{-\lambda x}$:
Say $x_{0}=1 / \lambda$ is the characteristic scale.

Scale invariance

Compare with $y=c e^{-\lambda x}$:
If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
More on $y=c e^{-\lambda x}$:
Say $x_{0}=1 / \lambda$ is the characteristic scale.
For $x \gg x_{0}, y$ is small, while for $x \ll x_{0}, y$ is large.

Isometry：
－Dimensions scale linearly with each other．

Dimensions scale nonlinearly．

PoCS｜＠poesvox Scaling

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Isometry:

- Dimensions scale linearly with each other.

Dimensions scale nonlinearly.

PoCs 1 @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Allometry:

Refers to differential growth rates of the parts of a living organism's body part or process.

- Dimensions scale linearly with each other.

Dimensions scale nonlinearly.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Definitions

Isometry versus Allometry:

. Iso-metry = 'same measure'
A Allo-metry = 'other measure'

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Definitions

Isometry versus Allometry:
 . Iso-metry = 'same measure'
 A Allo-metry = 'other measure'

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
We use allometric scaling to refer to both:
Specialization
References

Definitions

Isometry versus Allometry:
. Iso-metry = 'same measure'
Allo-metry = 'other measure'

We use allometric scaling to refer to both:

1. Nonlinear scaling of a dependent variable on an independent one (e.g., $y \propto x^{1 / 3}$)

Allometry
Biology
Physics
People
Money
Language
Technology

References

UVM

つaल 21 of 99

Definitions

Isometry versus Allometry:
Iso-metry = 'same measure'
\& Allo-metry = 'other measure'
Allometry
Biology
Physics
People
Money
Language
Technology

We use allometric scaling to refer to both:

1. Nonlinear scaling of a dependent variable on an independent one (e.g., $y \propto x^{1 / 3}$)
2. The relative scaling of correlated measures (e.g., white and gray matter).

An interesting, earlier treatise on scaling:

Pocs | @poesvox Scaling

ON SIZE AND LIFE

THOMAS A. MCMAHON AND JOHN TYLER BONNER

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

のaく 22 of 99

The many scales of life:

The biggest living things (left). All the organisms are drawn to the same scale. 1, The largest flying bird (albatross); 2, the largest known animal (the blue whale), 3, the largest extinct land mammal (Baluchitherium) with a human figure shown for scale; 4, the tallest living land animal (giraffe); 5, Tyrannosaurus; 6, Diplodocus; 7, one of the largest flying reptiles (Pteranodon); 8, the largest extinct snake; 9 , the length of the largest tapeworm found in man; 10, the largest living reptile (West African crocodile); 11, the largest extinct lizard; 12, the largest extinct bird (Aepyornis); 13, the largest jellyfish (Cyanea); 14, the largest living lizard (Komodo dragon); 15, sheep; 16, the largest bivalve mollusc (Tridacna); 17; the largest fish (whale shark); 18, horse; 19, the largest crustacean (Japanese spider crab); 20, the largest sea scorpion (Eurypterid); 21, large tarpon; 22, the largest lobster; 23, the largest mollusc (deep-water squid, Architeuthis); 24, ostrich; 25, the lower 105 feet of the largest organism (giant sequoia), with a 100-foot larch superposed.

p. 2, McMahon and Bonner [24]

The many scales of life:

Medium-sized creatures (above). 1, Dog; 2, common herring; 3, the largest egg (Aepyornis); 4, song thrush with egg; 5, the smallest bird (hummingbird) with egg; 6 , queen bee; 7 , common cockroach; 8 , the largest stick insect; 9, the largest polyp (Branchiocerianthus); 10, the smallest mammal (flying shrew); 11, the smallest vertebrate (a tropical frog); 12, the largest frog (goliath frog); 13, common grass frog; 14, house mouse; 15, the largest land snail (Achatina) with egg; 16, common snail; 17, the largest beetle (goliath beetle); 18, human hand; 19, the largest starfish (Luidia); 20 , the largest free-moving protozoan (an extinct nummulite).

p. 3, McMahon and Bonner [24] More on the Elephant Bird

 here ${ }^{\text {E }}$.

The many scales of life:

Small, "naked-eye" creatures (lower left). 1, One of the smallest fishes (Trimmatom nanus); 2, common brown hydra, expanded; 3, housefly; 4, medium-sized ant; 5, the smallest vertebrate (a tropical frog, the same as the one numbered 11 in the figure above); 6, flea (Xenopsylla cheopis); 7 , the smallest land snail; 8 , common water flea (Daphnia).

The smallest "naked-eye" creatures and some large microscopic animals and cells (below right). 1, Vorticella, a ciliate; 2, the largest ciliate protozoan (Bursaria); 3, the smallest many-celled animal (a rotifer); 4, smallest flying insect (Elaphis); 5, another ciliate (Paramecium); 6, cheese mite; 7, human sperm; 8, human ovum; 9 , dysentery amoeba; 10, human liver cell; 11, the foreleg of the flea (numbered 6 in the figure to the left).

3, McMahon and Bonner ${ }^{[24]}$

Size range (in grams) and cell differentiation:

PoCs | @poesvox Scaling

Scaling-at-large
Allometry

Biology

Physics
People
Money
Language
Technology
Specialization
References

UVM $\left.\right|_{0} ^{0}$

つa^ 26 of 99

Non-uniform growth:

PoCS | @poesvox Scaling

p. 32, McMahon and Bonner ${ }^{[24]}$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References
©
のac 27 of 99

Non－uniform growth－arm length versus height：

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Weightlifting: $M_{\text {world record }} \propto M_{\text {lifter }}^{2 / 3}$
PoCS | @poesvox

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Idea: Power ~ cross-sectional area of isometric lifters.
p. 53, McMahon and Bonner ${ }^{[24]}$

"Scaling in athletic world records"

PoCS | @poesvox

Savaglio and Carbone,
 Nature, 404, 244, 2000. ${ }^{[30]}$

Scaling-at-large Allometry

Biology

Figure 1 Plos of worid-record mean speads sgainst the reord tme sat vovember 1999. \mathbf{a}, b, funnirg, and \mathbf{c}, \mathbf{d}, swimming reocrds: to men (a,c), we constiter 11 races $\{200 \mathrm{~m}, 400 \mathrm{~m}, 800 \mathrm{~m}, 1,000 \mathrm{~m}, 1,500 \mathrm{~m}$, the mile, $3,000 \mathrm{~m}, 5,000 \mathrm{~m}, 10,000 \mathrm{~m}, 1$ hour, and

 speed is strongly stected by the striding stat of aitictes.

Mean speed $\langle s\rangle$ decays with race time τ :

$$
\langle s\rangle \sim \tau^{-\beta}
$$

Physics
People
Money
Language
Technology
Specialization
References
vum $\left\lvert\, \begin{aligned} & \text { O } \\ & \text { gis }\end{aligned}\right.$
のac 30 of 99

"Scaling in athletic world records" [/] Savaglio and Carbone,

Nature, 404, 244, 2000. ${ }^{[30]}$
 men (a,c), we constiter 11 races $\{200 \mathrm{~m}, 400 \mathrm{~m}, 800 \mathrm{~m}, 1,000 \mathrm{~m}, 1,500 \mathrm{~m}$, the mile, $3.000 \mathrm{~m}, 5,000 \mathrm{~m}, 10,000 \mathrm{~m}, 1$ hour, and
 mirimbation on a briken power law. Tnangles in a, represert the 100 m race, which is axcuded from the anaysle because the mea speedis strongly stected by the stiving stat of athictes.

Physics
People
Money

$$
\langle s\rangle \sim \tau^{-\beta}
$$

Language
Technology
8. Break in scaling at around $\tau \simeq 150-170$ seconds
Mean speed $\langle s\rangle$ decays with race time τ :

Specialization
References

Eek: Small scaling regimes

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology

"Scaling in athletic world records" [/]
PoCS | @poesvox Scaling Savaglio and Carbone, Nature, 404, 244, 2000. ${ }^{[30]}$

Scaling-at-large
Allometry
Biology

Figure 1 Ploss of worid-record mean speeds sgainst the reoord tme ast November 1999]. $\mathbf{a , b}$, funnirg, and \mathbf{c}, \mathbf{d}, swimming reords: for men (a,c), we constar 17 races $(200 \mathrm{~m}, 400 \mathrm{~m}, 800 \mathrm{~m}, 1,000 \mathrm{~m}, 1,500 \mathrm{~m}$, the mile, $3.000 \mathrm{~m}, 5,000 \mathrm{~m}, 10,000 \mathrm{~m}, 1$ har, and marathorte the same races are considered tor wamen b,di. apart from the 1 hour race. Lines represent the best tis. The scaling

 speedis strongy stected by the striding stat of athictes.

Bean speed $\langle s\rangle$ decays with race time τ :

$$
\langle s\rangle \sim \tau^{-\beta}
$$

R Break in scaling at around $\tau \simeq 150-170$ seconds

- Anaerobic-aerobic transition

Physics
People
Money
Language
Technology
Specialization
References

vin $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っのल 30 of 99

"Scaling in athletic world records" [/]
PoCs | @poesvox Scaling Savaglio and Carbone, Nature, 404, 244, 2000. ${ }^{[30]}$

Scaling-at-large
Allometry
Biology

Figure 1 Ploss of worid-record mean speeds sgainst the reoord tme ast November 1999]. $\mathbf{a , b}$, funnirg, and \mathbf{c}, \mathbf{d}, swimming reords: for Then (a,c), we constar 17 races $(200 \mathrm{~m}, 400 \mathrm{~m}, 800 \mathrm{~m}, 1,000 \mathrm{~m}, 1,500 \mathrm{~m}$, the mile, $3.000 \mathrm{~m}, 5,000 \mathrm{~m}, 10,000 \mathrm{~m}, 1$ har, and marathorte the same races are consisered tor wamen b,di. apart from the ithor race. Unes represent the best iss. The scaling
 invimbation on a ardien power law. Tnangles in ab represert the 100 m race, which is amided from He analysle because the mean speadis strongy stected by the striding stat of athictes:

Bean speed $\langle s\rangle$ decays with race time τ :

$$
\langle s\rangle \sim \tau^{-\beta}
$$

R Break in scaling at around $\tau \simeq 150-170$ seconds
-8 Anaerobic-aerobic transition

R Roughly 1 km running race

Physics
People
Money
Language
Technology
Specialization
References

"Scaling in athletic world records" [/]
PoCs | @poesvox Scaling

Savaglio and Carbone,
 Nature, 404, 244, 2000. ${ }^{[30]}$

Scaling-at-large
Allometry
Biology
Bean speed $\langle s\rangle$ decays with race time τ :

Physics
People
Money

$$
\langle s\rangle \sim \tau^{-\beta}
$$

8 Break in scaling at around $\tau \simeq 150-170$ seconds

- Anaerobic-aerobic transition

R Roughly 1 km running race
8. Running decays faster than swimming

Language
Technology
Specialization
References

"Athletics: Momentous sprint at the 2156 OIympics?" "त्र

PoCs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Linear extrapolation for the 100 metres:

Hgure 1 The vinning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regres sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and women, respectively) and 95% confidence intervals (dotted black lines) based on the avalable points are superimposed. The projections inter sect just before the 2156 Olympics, when the winning vomen's 100 -metre sprint time of 8.079 s vill be faster than the men's at 8.098 s

Tatem: [] "If I'm wrong anyone is welcome to come and question me about the result after the 2156 Olympics."

Titanothere horns: $L_{\text {horn }} \sim L_{\text {skull }}{ }^{4}$

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References
p. 36, McMahon and Bonner ${ }^{[24]}$; a bit dubious.

Animal power

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UMM $\left\lvert\, \begin{aligned} & \text { O } \\ & 0\end{aligned}\right.$
のac 33 of 99

Animal power

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

$P=c M^{\alpha}$

PoCs｜＠poesvox Scaling

Prefactor c depends on body plan and body

 temperature：Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$$
P=c M^{\alpha}
$$

Prefactor c depends on body plan and body temperature:

Birds	$39-41^{\circ} \mathrm{C}$
Eutherian Mammals	$36-38^{\circ} \mathrm{C}$
Marsupials	$34-36^{\circ} \mathrm{C}$
Monotremes	$30-31^{\circ} \mathrm{C}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vim $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑aع 34 of 99

What one might expect:

$$
\alpha=2 / 3
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

for radiated energy

um
っのल 35 of 99

What one might expect:

PoCs | @poesvox Scaling
$\alpha=2 / 3$ because ...
Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

What one might expect:

$\alpha=2 / 3$ because ...
Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

Assumes isometric scaling (not quite the spherical cow).

What one might expect:

$\alpha=2 / 3$ because ...
Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

Assumes isometric scaling (not quite the spherical cow).
Lognormal fluctuations:
Gaussian fluctuations in 이 P around 이 $c M^{\alpha}$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

um 10
つのल 35 of 99

What one might expect:

$\alpha=2 / 3$ because ...
Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

Assumes isometric scaling (not quite the spherical cow).
Lognormal fluctuations:
Gaussian fluctuations in 이 P around 이 $c M^{\alpha}$.
\& Stefan-Boltzmann law \leftrightarrows for radiated energy:

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sigma \varepsilon S T^{4} \propto S
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

um s. $\left\lvert\, \begin{gathered}0 \\ 0\end{gathered}\right.$
のаल 35 of 99

The prevailing belief of the Church of Quarterology:

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization

$$
P \propto M^{3 / 4}
$$

References

The prevailing belief of the Church of Quarterology:

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization

$$
P \propto M^{3 / 4}
$$

References

Huh?

The prevailing belief of the Church of Quarterology:

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Most obvious concern:

$$
3 / 4-2 / 3=1 / 12
$$

An exponent higher than $2 / 3$ points suggests a fundamental inefficiency in biology.

Physics
People
Money
Language
Technology
Specialization
References

のac 37 of 99

The prevailing belief of the Church of Quarterology:

Scaling-at-large Allometry
Biology
Most obvious concern:

$$
3 / 4-2 / 3=1 / 12
$$

Physics
People
Money
Language
Technology
An exponent higher than $2 / 3$ points suggests a fundamental inefficiency in biology.
\& Organisms must somehow be running 'hotter' than they need to balance heat loss.

Related putative scalings:

Scaling-at-large
Allometry
Biology

Wait! There's more!:

number of capillaries $\propto M^{3 / 4}$
\& time to reproductive maturity $\propto M^{1 / 4}$
, heart rate $\propto M^{-1 / 4}$
cross-sectional area of aorta $\propto M^{3 / 4}$
population density $\propto M^{-3 / 4}$

Physics
People
Money
Language
Technology
Specialization
References

のac 38 of 99

The great＇law＇of heartbeats：

Assuming：

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
\＆Irrelevant but perhaps $\beta=1 / 4$ ．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

The great 'law' of heartbeats:

Pocs | @poesvox Scaling

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
\& Irrelevant but perhaps $\beta=1 / 4$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM = $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 39 of 99

The great＇law＇of heartbeats：

Assuming：

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$ ．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM 黄 $\left\lvert\, \begin{aligned} & 0 \\ & 5 \\ & 0\end{aligned}\right.$
っのल 39 of 99

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
\& Irrelevant but perhaps $\beta=1 / 4$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
vin $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っa@ 39 of 99

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
\& Irrelevant but perhaps $\beta=1 / 4$.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$$
\begin{aligned}
& \propto M^{\beta-\beta} \\
& \propto M^{0}
\end{aligned}
$$

Average number of heart beats in a lifespan \simeq (Average lifespan $) \times$ (Average heart rate)

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Then:
Technology
Average number of heart beats in a lifespan \simeq (Average lifespan) \times (Average heart rate)

$$
\begin{aligned}
& \propto M^{\beta-\beta} \\
& \propto M^{0}
\end{aligned}
$$

N Number of heartbeats per life time is independent of organism size!

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Then:
Technology
Average number of heart beats in a lifespan \simeq (Average lifespan) \times (Average heart rate)

$$
\begin{aligned}
& \propto M^{\beta-\beta} \\
& \propto M^{0}
\end{aligned}
$$

R Number of heartbeats per life time is independent of organism size!
\& ≈ 1.5 billion....

Specialization
References

Scaling-at-large
Allometry

Biology

Physics
People
Money
Language
Technology
Specialization
References

Stories-The Fraction Assassin:

Biology
Physics
People
Money
Language
Technology
Specialization
References

$\begin{array}{llllll}0 & 7,0 & 8,0 & 9,0 & 100\end{array}$

$\begin{array}{lllll}6 & 1.5 & 1.4 & 1.3 & 1.2\end{array}$

Uum $|0|$
のаく 41 of 99

Ecology-Species-area law: [

Allegedly (data is messy): ${ }^{[19,17]}$

> "An equilibrium theory of insular zoogeography" MacArthur and Wilson, Evolution, 17, 373-387, 1963. ${ }^{[19]}$

PoCs | @poesvox Scaling

Scaling-at-large Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$$
N_{\text {species }} \propto A^{\beta}
$$

According to physicists-on islands: $\beta \approx 1 / 4$.

- Also-on continuous land: $\beta \approx 1 / 8$.

Cancer:

PoCS 1@poesvox Scaling

"Variation in cancer risk among tissues can be explained by the number of stem cell divisions" $\overline{\text { IN }}$
Tomasetti and Vogelstein, Science, 347, 78-81, 2015. ${ }^{[33]}$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References
"雷
\rightarrow 啹

Roughly: $p \sim r^{2 / 3}$ where $p=$ life time probability and r = rate of stem cell replication.
"How fast do living organisms move: Maximum speeds from bacteria to élephants and whales"
Meyer-Vernet and Rospars,
American Journal of Physics, 83, 719-722, 2015. ${ }^{[25]}$

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127 swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed [Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by François Meyer).

PoCs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $\left\lvert\, \begin{aligned} & \text { On } \\ & 0\end{aligned}\right.$
つa@ 44 of 99
"A general scaling law reveals why the largest animals are not the fastest" [

PoCs 1 @poesvox Scaling Hirt et al.,
Nature Ecology \& Evolution, 1, 1116, 2017. [11]
Scaling-at-large Allometry

Biology

Physics
People
Money
Language
Technology
Specialization
References

UVM = $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のаल 45 of 99

＂A general scaling law reveals why the largest animals are not the fastest＂［J Hirt et al．， Nature Ecology \＆Evolution，1，1116，2017．［11］

Scaling－at－large
Allometry

Biology

Physics
People
Money
Language
Technology
Specialization
References

っのく 46 of 99

Theoretical story：

PoCs｜＠poesvox Scaling

Maximum speed increases with size：$v_{\max }=a M^{b}$

Theoretical story:

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Figure $4 \mid$ Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant
species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological mode calculations (values in Table 1) and were not used to obtain model parameters.

Extant species
Dinosaurs (morphological calculations)

- Model prediction (fitted to data from extant species)

Maximum speed increases with size: $v_{\max }=a M^{b}$

Takes a while to get going: $v(t)=v_{\max }\left(1-e^{-k t}\right)$

8

Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{\max }=a M^{b}$

R Takes a while to get going: $v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$ $k \sim F_{\max } / M \sim c M^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$

Figure 4 ｜Predicting the maximum speed of extinct species with the time－
dependent model．The model prediction（grey line）is fitted to data of extant
species（grey circles）and extended to higher body masses．Speed data for dinosaurs（green triangles）come from detailed morphological model calculations（values in Table 1）and were not used to obtain model parameters．

R Maximum speed increases with size：$v_{\max }=a M^{b}$
－Takes a while to get going： $v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$
暗 $k \sim F_{\max } / M \sim c M^{d-1}$
Literature： $0.75 \lesssim d \lesssim 0.94$
Acceleration time＝ depletion time for anaerobic energy：$\tau \sim f M^{g}$ Literature： $0.76 \lesssim g \lesssim 1.27$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Figure 4 ｜Predicting the maximum speed of extinct species with the time－ dependent model．The model prediction（grey line）is fitted to data of extant species（grey circles）and extended to higher body masses．Speed data for dinosaurs（green triangles）come from detailed morphological model calculations（values in Table 1）and were not used to obtain model parameters．

R Maximum speed increases with size：$v_{\max }=a M^{b}$
R Takes a while to get going： $v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$
㫰 $k \sim F_{\max } / M \sim c M^{d-1}$
Literature： $0.75 \lesssim d \lesssim 0.94$
Acceleration time＝ depletion time for anaerobic energy：$\tau \sim f M^{g}$ Literature： $0.76 \lesssim g \lesssim 1.27$
（8）$v_{\text {max }}=a M^{b}\left(1-e^{-h M^{i}}\right)$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters.

8

Maximum speed increases with size: $v_{\max }=a M^{b}$

8
Takes a while to get going:
$v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$
$k \sim F_{\max } / M \sim c M^{d-1}$
Literature: $0.75 \lesssim d \lesssim 0.94$
Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^{g}$ Literature: $0.76 \lesssim g \lesssim 1.27$
\& $v_{\text {max }}=a M^{b}\left(1-e^{-h M^{i}}\right)$
$i=d-1+g$ and $h=c f$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Figure 4 ｜Predicting the maximum speed of extinct species with the time－
dependent model．The model prediction（grey line）is fitted to data of extant
species（grey circles）and extended to higher body masses．Speed data for dinosaurs（green triangles）come from detailed morphological model calculations（values in Table 1）and were not used to obtain model parameters．

Maximum speed increases with size：$v_{\max }=a M^{b}$
（8）Takes a while to get going： $v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$

组 $k \sim F_{\max } / M \sim c M^{d-1}$ Literature： $0.75 \lesssim d \lesssim 0.94$

Acceleration time＝ depletion time for anaerobic energy：$\tau \sim f M^{g}$ Literature： $0.76 \lesssim g \lesssim 1.27$
\＆$v_{\text {max }}=a M^{b}\left(1-e^{-h M^{i}}\right)$
，$i=d-1+g$ and $h=c f$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
vim

つの® 47 of 99

Engines:

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vinmet $\left|\begin{array}{l}\text { O } \\ 0\end{array}\right|$
$\mathrm{BHP}=$ brake horse power
๑aع 48 of 99

The allometry of nails:
Observed: Diameter \propto Length $^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Since $\ell d^{2} \propto$ Volume v :
Diameter \propto
\square
Nails lengthen faster than they broaden (c.f. trees)
p. 58-59, McMahon and Bonner ${ }^{[24]}$

The allometry of nails:
Observed: Diameter \propto Length $^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Since $\ell d^{2} \propto$ Volume v :
Diameter α
\square
p. 58-59, McMahon and Bonner ${ }^{[24]}$

The allometry of nails:
Observed: Diameter \propto Length $^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Since $\ell d^{2} \propto$ Volume v :
Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
\square
p. 58-59, McMahon and Bonner ${ }^{[24]}$

PoCs 1 @poesvox Scaling

Scaling-at-large Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

The allometry of nails:
Observed: Diameter \propto Length $^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Since $\ell d^{2} \propto$ Volume v :
Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
\& Length \propto
Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References
p. 58-59, McMahon and Bonner ${ }^{[24]}$

The allometry of nails:
Observed: Diameter \propto Length ${ }^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Since $\ell d^{2} \propto$ Volume v :
Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
Length \propto Mass $^{3 / 7}$ or $\ell \propto v^{3 / 7}$.

vun $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
p. 58-59, McMahon and Bonner ${ }^{[24]}$

The allometry of nails:

Pocs | @poesvox Scaling
Observed: Diameter \propto Length $^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Since $\ell d^{2} \propto$ Volume v :

Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
Length \propto Mass $^{3 / 7}$ or $\ell \propto v^{3 / 7}$.

Nails lengthen faster than they broaden (c.f. trees).
p. 58-59, McMahon and Bonner ${ }^{[24]}$

The allometry of nails:

A buckling instability?:

The allometry of nails:

Pocs | @poesvox Scaling

A buckling instability?:
Physics/Engineering result[「: Columns buckle under a load which depends on d^{4} / ℓ^{2}.
To drivernails in, posit resistive force

\square Technology
Specialization
References

Also see McMahon, "Size and Shape in Biology, Science 1973

The allometry of nails:

A buckling instability?:
Physics/Engineering result[]: Columns buckle under a load which depends on d^{4} / ℓ^{2}.
To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

The allometry of nails:

A buckling instability?:
\& Physics/Engineering result[]: Columns buckle under a load which depends on d^{4} / ℓ^{2}.
To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

The allometry of nails:

A buckling instability?:

- Physics/Engineering result[]: Columns buckle under a load which depends on d^{4} / ℓ^{2}.
To drive nails in, posit resistive force \propto nail circumference $=\pi d$. Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$. Leads to $d \propto \ell^{2 / 3}$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uva $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っのल 50 of 99

The allometry of nails:

A buckling instability?:
\& Physics/Engineering result[]: Columns buckle under a load which depends on d^{4} / ℓ^{2}.
To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.
Leads to $d \propto \ell^{2 / 3}$.
Argument made by Galileo ${ }^{[10]}$ in 1638 in "Discourses on Two New Sciences." [‘] Also, see here. $\overline{6}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

つのल 50 of 99

The allometry of nails:

A buckling instability?:

* Physics/Engineering result [\because : Columns buckle under a load which depends on d^{4} / ℓ^{2}.
R To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.
R Leads to $d \propto \ell^{2 / 3}$.
Argument made by Galileo ${ }^{[10]}$ in 1638 in "Discourses on Two New Sciences." Also, see here.
- Another smart person's contribution: Euler, 1757주

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM $\left|\begin{array}{c}0 \\ 0 \\ 0\end{array}\right|$

The allometry of nails:

A buckling instability?:

* Physics/Engineering result [\because : Columns buckle under a load which depends on d^{4} / ℓ^{2}.
R To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.
Leads to $d \propto \ell^{2 / 3}$.
Argument made by Galileo ${ }^{[10]}$ in 1638 in "Discourses on Two New Sciences." Also, see here.
\& Another smart person's contribution: Euler, 1757■
R Also see McMahon, "Size and Shape in Biology," Science, 1973. ${ }^{[23]}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

$|$| 0 |
| :--- |
| 0 |
| 0 |

Rowing: Speed \propto (number of rowers) ${ }^{1 / 9}$

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Very weak scaling and size variation but it's theoretically explainable ...

Physics:

Scaling in elementary laws of physics:

Inverse-square law of gravity and Coulomb's law:

$$
F \propto \frac{m_{1} m_{2}}{r^{2}} \text { and } F \propto \frac{q_{1} q_{2}}{r^{2}} .
$$

Force is diminished by expansion of space away from source.

Scaling-at-large

Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

つのल 52 of 99

Physics:

Scaling in elementary laws of physics:

Inverse-square law of gravity and Coulomb's law:

$$
F \propto \frac{m_{1} m_{2}}{r^{2}} \quad \text { and } \quad F \propto \frac{q_{1} q_{2}}{r^{2}}
$$

Force is diminished by expansion of space away from source.
The square is $d-1=3-1=2$, the dimension of a sphere's surface.

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

つのल 52 of 99

Physics:

Scaling in elementary laws of physics:

Inverse-square law of gravity and Coulomb's law:

$$
F \propto \frac{m_{1} m_{2}}{r^{2}} \quad \text { and } \quad F \propto \frac{q_{1} q_{2}}{r^{2}}
$$

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Dimensional Analysis:

Pocs | @poesvox Scaling

Scaling-at-large
The Buckingham π theorem ${ }^{\top}: 1$
"On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations"
E. Buckingham,
Phys. Rev., 4, 345-376, 1914. Allometry

Biology
Physics
People
Money
Language
Technology
As captured in the 1990s in the MIT physics library:
Specialization
References

'Stigler's Law of Eponymy applies. See here
っa^53 of 99

Dimensional Analysis: ${ }^{2}$

Pocs | @poesvox Scaling

Fundamental equations cannot depend on units:

Dimensional Analysis：²

Fundamental equations cannot depend on units：

． 8 System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$ ．

\qquad $A=l^{2}$ where $\left.A\right]=I^{2}$ and $[\ell]=I$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

${ }^{2}$ Length is a dimension，furlongs and smoots $\sqrt{6}$ are units

Dimensional Analysis：${ }^{2}$

Fundamental equations cannot depend on units：

\＆System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$ ．

Geometric ex．：area of a square，side length ℓ ： $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$ ．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

つのく 54 of 99

Dimensional Analysis: ${ }^{2}$

Fundamental equations cannot depend on units:

. 8 System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Geometric ex.: area of a square, side length ℓ : $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$.
R Rewrite as a relation of $p \leq n$ independent dimensionless parameters 3 where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$
F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)=0
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Dimensional Analysis: ${ }^{2}$

Fundamental equations cannot depend on units:

. 8 System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Geometric ex.: area of a square, side length ℓ : $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$.
R Rewrite as a relation of $p \leq n$ independent dimensionless parameters σ where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$
F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)=0
$$

\&.g., $A / \ell^{2}-1=0$ where $\pi_{1}=A / \ell^{2}$.

Dimensional Analysis: ${ }^{2}$

Fundamental equations cannot depend on units:

. 8 System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Geometric ex.: area of a square, side length ℓ : $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$.
R Rewrite as a relation of $p \leq n$ independent dimensionless parameters σ where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$
F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)=0
$$

\& e.g., $A / \ell^{2}-1=0$ where $\pi_{1}=A / \ell^{2}$.
Another example: $F=m a \Rightarrow F / m a-1=0$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Dimensional Analysis: ${ }^{2}$

Fundamental equations cannot depend on units:

R System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Geometric ex.: area of a square, side length ℓ : $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$.
R Rewrite as a relation of $p \leq n$ independent dimensionless parameters σ where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$
F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)=0
$$

\& e.g., $A / \ell^{2}-1=0$ where $\pi_{1}=A / \ell^{2}$.
(s. Another example: $F=m a \Rightarrow F / m a-1=0$.

R Plan: solve problems using only backs of envelopes.
${ }^{2}$ Length is a dimension, furlongs and smoots $]$ are units

Example:

Pocs | @poesvox Scaling

Simple pendulum:

s Idealized mass/platypus swinging forever.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Pocs | @poesvox Scaling

Simple pendulum:

. Idealized mass/platypus swinging forever. Four quantities:

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Pocs | @poesvox Scaling

Simple pendulum:

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Pocs | @poesvox Scaling

Simple pendulum:

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

PoCS 1@poesvox Scaling

Simple pendulum:

\& Idealized mass/platypus swinging forever.
Four quantities:

1. Length ℓ,
2. mass m,
3. gravitational acceleration g, and

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Simple pendulum:

- Idealized mass/platypus swinging forever. Four quantities:

1. Length ℓ,
2. mass m,
3. gravitational acceleration g, and
4. pendulum's period τ.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Simple pendulum:

\& Idealized mass/platypus

 swinging forever.Four quantities:

1. Length ℓ,
2. mass m,
3. gravitational acceleration g, and
4. pendulum's period τ.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Simple pendulum:

- Idealized mass/platypus swinging forever. Four quantities:

$$
\text { 1. Length } \ell \text {, }
$$

2. mass m,
3. gravitational acceleration g, and
4. pendulum's period τ.

R Variable dimensions: $[\ell]=L,[m]=M,[g]=L T^{-2}$, and $[\tau]=T$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Example:

Simple pendulum:

- Idealized mass/platypus swinging forever.
\& Four quantities:

1. Length ℓ,
2. mass m,
3. gravitational acceleration g, and
4. pendulum's period τ.

Variable dimensions: $[\ell]=L,[m]=M,[g]=L T^{-2}$, and $[\tau]=T$.
Turn over your envelopes and find some π 's.

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2,}, \ldots, \pi_{m}\right\}$, where we need to figure out p (which must be $\leq n$).

Consider $\pi_{i}=q_{1}^{x} q_{2}^{x}$
q_{n}
Wedecneratelyil inant to find all sets of powers x that create dimensionless quantities.

Dimensions: want $\left[\pi_{i}\right.$
Eorthe nlativnue nenditum we have
$\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{2}$, and $\left[q_{4}\right]=T$,
with dimensions $d_{1}=L_{1}, d_{2}=M$, and $d_{3}=T$
So:rmin
We regroup:
We nointrapent.
Time for

PoCs | @poesvox
Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．

Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.

We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.

Scaling-at-large
Allometry
Biology

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.

We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.
Dimensions: want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$.

Scaling-at-large
Allometry
Biology

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．
－Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$ ．

We（desperately）want to find all sets of powers x_{j} that create dimensionless quantities．
Dimensions：want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$ ．
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$ ，and $\left[q_{4}\right]=T$ ，

Scaling－at－large
Allometry
Biology

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.
Dimensions: want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$.
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$, and $\left[q_{4}\right]=T$, with dimensions $d_{1}=L, d_{2}=M$, and $d_{3}=T$.

Scaling-at-large Allometry

Biology

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.
Dimensions: want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$.
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$, and $\left[q_{4}\right]=T$, with dimensions $d_{1}=L, d_{2}=M$, and $d_{3}=T$.
So: $\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$.

Scaling-at-large Allometry

Biology

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.
Dimensions: want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$.
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$, and $\left[q_{4}\right]=T$, with dimensions $d_{1}=L, d_{2}=M$, and $d_{3}=T$.
So: $\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$.
We regroup: $\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$.

Scaling-at-large Allometry

Biology

A little formalism:

Game: find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out p (which must be $\leq n$).

- Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$.We (desperately) want to find all sets of powers x_{j} that create dimensionless quantities.
Dimensions: want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$.
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$, and $\left[q_{4}\right]=T$, with dimensions $d_{1}=L, d_{2}=M$, and $d_{3}=T$.
So: $\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$.
We regroup: $\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$.
We now need: $x_{1}+x_{3}=0, x_{2}=0$, and $-2 x_{3}+x_{4}$.

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．
－Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$ ．We（desperately）want to find all sets of powers x_{j} that create dimensionless quantities．
Dimensions：want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$ ．
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$ ，and $\left[q_{4}\right]=T$ ， with dimensions $d_{1}=L, d_{2}=M$ ，and $d_{3}=T$ ．
So：$\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$ ．
We regroup：$\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$ ．
We now need：$x_{1}+x_{3}=0, x_{2}=0$ ，and $-2 x_{3}+x_{4}$ ．
Time for

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．
－Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$ ．We（desperately）want to find all sets of powers x_{j} that create dimensionless quantities．
Dimensions：want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$ ．
For the platypus pendulum we have $\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$ ，and $\left[q_{4}\right]=T$ ， with dimensions $d_{1}=L, d_{2}=M$ ，and $d_{3}=T$ ．
－So：$\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$ ．
We regroup：$\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$ ．
We now need：$x_{1}+x_{3}=0, x_{2}=0$ ，and $-2 x_{3}+x_{4}$ ．
．Time for matrixology ．．．

Well, of course there are matrices:

PoCS | @poesvox Scaling

Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

つのल 57 of 99

Well, of course there are matrices:

PoCS | @poesvox Scaling

Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

A nullspace equation: $\mathbf{A} \vec{x}=\overrightarrow{0}$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

つのल 57 of 99

Well, of course there are matrices:

Pocs | @poesvox Scaling

Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

のac 57 of 99

Well, of course there are matrices:

Thrillingly, we have:
Scaling-at-large

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References A and r is the rank of \mathbf{A}.

Here: $n=4$ and $r=3$

Well, of course there are matrices:

Thrillingly, we have:
Scaling-at-large

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References A and r is the rank of \mathbf{A}.

Here: $n=4$ and $r=3 \rightarrow F\left(\pi_{1}\right)=0$

Well, of course there are matrices:

Thrillingly, we have:
Scaling-at-large

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References A and r is the rank of \mathbf{A}.

Here: $n=4$ and $r=3 \rightarrow F\left(\pi_{1}\right)=0 \rightarrow \pi_{1}=$ const.

Well, of course there are matrices:

R Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vin $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

Well，of course there are matrices：

Thrillingly，we have：

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling－at－large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Well，of course there are matrices：

Thrillingly，we have：

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling－at－large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Well, of course there are matrices:

Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM
N10
のac 57 of 99
> "Scaling, self-similarity, and intermediate asymptotics" a by G. I. Barenblatt (1996).
> [2]

Pocs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

> "Scaling, self-similarity, and intermediate asymptotics" á ${ }^{\text {an- }}$ by G. I. Barenblatt (1996). ${ }^{[2]}$

PoCS | @poesvox
G. I. Taylor, magazines, and classified secrets:

Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
G. I. Taylor, magazines, and classified secrets:

Self-similar blast wave:

1945
New Mexico
Trinity test:

Radius: $[R]=L$, Time: $[t]=T$, Density of air: $[\rho]=M / L^{3}$, Energy: $[E]=M L^{2} / T^{2}$.

Four variables, three dimensions.

One dimensionless variable: $E=$ constant
\qquad

Physics
People
Money
Language
Technology
Specialization
References

vim $\left\lvert\, \begin{aligned} & \text { O } \\ & \text { ond }\end{aligned}\right.$
つのल 58 of 99

> "Scaling, self-similarity, and intermediate asymptotics" a

Scaling-at-large
Allometry
Biology

Self-similar blast wave:

1945
New Mexico
Trinity test:

Radius: $[R]=L$, Time: $[t]=T$,
Density of air: $[\rho]=M / L^{3}$, Energy: $[E]=M L^{2} / T^{2}$.

Four variables, three dimensions.

- One dimensionless variable: $E=$ constant $\times \rho R^{5} / t^{2}$.

Physics
People
Money
Language
Technology
Specialization
References

uvM

> "Scaling, self-similarity, and intermediate asymptotics" a a

Scaling-at-large
Allometry
Biology

Self-similar blast wave:

1945
New Mexico
Trinity test:

Radius: $[R]=L$, Time: $[t]=T$,
Density of air: $[\rho]=M / L^{3}$, Energy: $[E]=M L^{2} / T^{2}$.
\& Four variables, three dimensions.
\& One dimensionless variable: $E=$ constant $\times \rho R^{5} / t^{2}$.
Scaling: Speed decays as $1 / R^{3 / 2}$.
"Scaling, self-similarity, and intermediate asymptotics" ác
G. I. Taylor, magazines, and classified secrets:

1945
New Mexico Trinity test:

Self-similar blast wave:
R Radius: $[R]=L$, Time: $[t]=T$,
Density of air: $[\rho]=M / L^{3}$, Energy: $[E]=M L^{2} / T^{2}$.

Four variables, three dimensions.
One dimensionless variable: $E=$ constant $\times \rho R^{5} / t^{2}$.

Scaling: Speed decays as $1 / R^{3 / 2}$.

We're still sorting out units:

PoCS | @poesvox Scaling

Proposed 2018 revision of SI base units: [J

by Dono/Wikipedia

by Wikipetzi/Wikipedia

Now: kilogram is an Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 \mathrm{X} \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}$. Metre chosen to fix speed of light at $299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

We're still sorting out units:

PoCS | @poesvox Scaling

Proposed 2018 revision of SI base units: [

by Dono/Wikipedia

by Wikipetzi/Wikipedia

Now: kilogram is an artifact ${ }^{\top}$ in Sèvres, France.

Future: Defined by fixing Planck's constant as $6.62606 \times \times 10^{-34} \mathrm{~s}^{1} \cdot \mathrm{~m}$ Vetre chosen to fix speed of light at $299792458 \mathrm{~m} \cdot \mathrm{~s}$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $|$| On |
| :---: | :---: |
| 0 |

つa^59 of 99

We're still sorting out units:

PoCs 1 @poesvox Scaling

by Wikipetzi/Wikipedia

Now: kilogram is an artifact \mathbb{C}^{3} in Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 \mathrm{X} \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} .{ }^{3}$

Scaling-at-large

 AllometryBiology
Physics
People
Money
Language
Technology
Specialization
References

uvas. $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
๑ด^59 of 99

We're still sorting out units:

PoCs 1 @poesvox Scaling

by Dono/Wikipedia

by Wikipetzi/Wikipedia

* Now: kilogram is an artifact $\sqrt{3}$ in Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 \mathrm{X} \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} .{ }^{3}$

[^0]
We're still sorting out units:

by Wikipetzi/Wikipedia

Now: kilogram is an artifact ${ }^{3}$ in Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 X \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} .{ }^{3}$
\& Metre chosen to fix speed of light at $299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

PoCs 1 @poesvox Scaling

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvas. $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
つa® 59 of 99

We're still sorting out units:

PoCs | @poesvox Scaling

Proposed 2018 revision of SI base units: [J

Scaling-at-large
Allometry
by Dono/Wikipedia

by Wikipetzi/Wikipedia

R Now: kilogram is an artifact $\mathbb{}$ in Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 \mathrm{X} \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} .{ }^{3}$
R Metre chosen to fix speed of light at $299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
\& Radiolab piece: $\leq \mathrm{kg}$ ■

Biology
Physics
People
Money
Language
Technology
Specialization
References

vis. $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
つa^ 59 of 99

Turbulence:

Big whirls have little whirls That heed on their velocity, And little whirls have littler whirls
And so on to viscosity.

- Lewis Fry Richardson®

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

8 Image from here[].
Jonathan Swift (1733): "Big fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so, ad infinitum." The Siphonaptera. ${ }^{*}$

uvy $\left|\begin{array}{l}0 \\ 0\end{array}\right|$

Hegy a Aragón et al., J. Math. Imaging Vis., 30, 275-283, 2008.

Examined the probability pixels a distance R apart share the same luminance.
"Van Gogh painted perfect turbulence" $[\mathcal{C}$ by Phillip Ball, July 2006.
Apparently not observed in other famous painter's works or when van Gogh was stable.
Oops: Small ranges and natural log used.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Advances in turbulence:

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

$E(k)=$ energy spectrum function.
$\epsilon=$ rate of energy dissipation.
R $k=2 \pi / \lambda$ = wavenumber.

Pocs 1 @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Advances in turbulence:

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

R $E(k)=$ energy spectrum function.
\& ϵ rate of energy dissipation.
R $k=2 \pi / \lambda$ = wavenumber.

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Advances in turbulence:

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

$E(k)=$ energy spectrum function.

- $\epsilon=$ rate of energy dissipation.

R $k=2 \pi / \lambda=$ wavenumber.

Energy is distributed across all modes, decaying with wave number.

Advances in turbulence:

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

$E(k)=$ energy spectrum function.
\& ϵ rate of energy dissipation.
\& $k=2 \pi / \lambda=$ wavenumber.

Energy is distributed across all modes, decaying with wave number.
8
No internal characteristic scale to turbulence.

Advances in turbulence:

In 1941, Kolmogorov, armed only with dimensional analysis and an envelope figures this out:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

R $E(k)=$ energy spectrum function.
R ϵ rate of energy dissipation.
s $k=2 \pi / \lambda=$ wavenumber.

Energy is distributed across all modes, decaying with wave number.
8
No internal characteristic scale to turbulence.
Stands up well experimentally and there has been no other advance of similar magnitude.

PoCS | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM
$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
つのल 63 of 99

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

つのヘ 63 of 99

8. "Anomalous" scaling of lengths, areas, volumes relative to each other.

R The enduring question: how do self-similar geometries form?

R Robert E. Horton [J: Self-similarity of river (branching) networks (1945). ${ }^{[12]}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $\left\lvert\, \begin{aligned} & \text { On } \\ & 0\end{aligned}\right.$
のac 63 of 99

＂Anomalous＂scaling of lengths，areas，volumes relative to each other．

良 The enduring question： how do self－similar geometries form？

R Robert E．Horton［J：Self－similarity of river（branching） networks（1945）．${ }^{[12]}$

Harold Hurst［＾——Roughness of time series（1951）．${ }^{[13]}$

\qquad

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvM

っの® 63 of 99

＂Anomalous＂scaling of lengths，areas，volumes relative to each other．

良 The enduring question： how do self－similar geometries form？

R Robert E．Horton［：：Self－similarity of river（branching） networks（1945）．${ }^{[12]}$
\＆Harold Hurst［©—Roughness of time series（1951）．${ }^{[13]}$
R Lewis Fry Richardson［＾－Coastlines（1961）．
R Benoît B．Mandelbrot［3－Introduced the term ＂Fractals＂and explored them everywhere，1960s on．${ }^{[20,21,22]}$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

＂Anomalous＂scaling of lengths，areas，volumes relative to each other．

R The enduring question： how do self－similar geometries form？

R Robert E．Horton［J：Self－similarity of river（branching） networks（1945）．${ }^{[12]}$
\＆Harold Hurst［©—Roughness of time series（1951）．${ }^{[13]}$
R Lewis Fry Richardson［＾－Coastlines（1961）．
R Benoît B．Mandelbrot［3－Introduced the term ＂Fractals＂and explored them everywhere，1960s on．${ }^{[20,21,22]}$
${ }^{d}$ Note to self：Make millions with the＂Fractal Diet＂

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling in Cities:

Scaling-at-large

"Growth, innovation, scaling, and the pace ōf life in cities" "̄
Bettencourt et al.,
Proc. Natl. Acad. Sci., 104, 7301-7306, 2007. ${ }^{[4]}$

Quantified levels of

- Infrastructure
- Wealth
- Crime levels
- Disease
- Energy consumption
as a function of city size N (population).

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vine $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っの^ 64 of 99

Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for the U.S. (blue points) vs. metropolitan population. (b) Supercreative employment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population. Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace of biological life, which decreases with organism size. (a) Scaling of walking speed vs. population for cities around the world. (b) Heart rate vs. the size (mass) of organisms.

Scaling-at-large

Allometry

Biology

Physics

People

Money

Language

Technology
Specialization

References

UVM

つa^65 of 99

Scaling in Cities:

PoCs 1 @poesvox Scaling

Table 1. Scaling exponents for urban indicators vs. city size

Y	β	$95 \% \mathrm{Cl}$	Adj- R^{2}	Observations	Country-year
New patents	1.27	$[1.25,1.29]$	0.72	331	U.S. 2001
Inventors	1.25	$[1.22,1.27]$	0.76	331	U.S. 2001
Private R\&D employment	1.34	$[1.29,1.39]$	0.92	266	U.S. 2002
"Supercreative" employment	1.15	$[1.11,1.18]$	0.89	287	U.S. 2003
R\&D establishments	1.19	$[1.14,1.22]$	0.77	287	U.S. 1997
R\&D employment	1.26	$[1.18,1.43]$	0.93	295	China 2002
Total wages	1.12	$[1.09,1.13]$	0.96	361	U.S. 2002
Total bank deposits	1.08	$[1.03,1.11]$	0.91	267	U.S. 1996
GDP	1.15	$[1.06,1.23]$	0.96	295	China 2002
GDP	1.26	$[1.09,1.46]$	0.64	196	EU 1999-2003
GDP	1.13	$[1.03,1.23]$	0.94	37	Germany 2003
Total electrical consumption	1.07	$[1.03,1.11]$	0.88	392	Germany 2002
New AIDS cases	1.23	$[1.18,1.29]$	0.76	93	U.S. 2002-2003
Serious crimes	1.16	$[1.11,1.18]$	0.89	287	U.S. 2003
Total housing	1.00	$[0.99,1.01]$	0.99	316	U.S. 1990
Total employment	1.01	$[0.99,1.02]$	0.98	331	U.S. 2001
Household electrical consumption	1.00	$[0.94,1.06]$	0.88	377	Germany 2002
Household electrical consumption	1.05	$[0.89,1.22]$	0.91	295	China 2002
Household water consumption	1.01	$[0.89,1.11]$	0.96	295	China 2002
Gasoline stations	0.77	$[0.74,0.81]$	0.93	318	U.S. 2001
Gasoline sales	0.79	$[0.73,0.80]$	0.94	318	U.S. 2001
Length of electrical cables	0.87	$[0.82,0.92]$	0.75	380	Germany 2002
Road surface	0.83	$[0.74,0.92]$	0.87	29	Germany 2002

[^1]Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM
UVM

っのल 66 of 99

Scaling in Cities:

Intriguing findings:

Global supply costs scale sublinearly with N ($\beta<1$).
Returns to scale for infrastructure.
Total individual costs scale

whth
Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling in Cities：

Intriguing findings：

Global supply costs scale sublinearly with N （ $\beta<1$ ）．
－Returns to scale for infrastructure．
R Total individual costs scale linearly with $N(\beta=1)$
－Individuals consume similar amounts independent of city size．

Scaling－at－large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling in Cities:

Intriguing findings:

Global supply costs scale sublinearly with N
Scaling-at-large ($\beta<1$).

- Returns to scale for infrastructure.

R Total individual costs scale linearly with $N(\beta=1)$

- Individuals consume similar amounts independent of city size.
Social quantities scale superlinearly with $N(\beta>1)$
- Creativity (\# patents), wealth, disease, crime, ...

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling in Cities:

Intriguing findings:
Global supply costs scale sublinearly with N
($\beta<1$).
Returns to scale for infrastructure.
R Total individual costs scale linearly with $N(\beta=1)$

- Individuals consume similar amounts independent of city size.
Social quantities scale superlinearly with $N(\beta>1)$
- Creativity (\# patents), wealth, disease, crime, ...

Density doesn't seem to matter...
\& Surprising given that across the world, we observe two orders of magnitude variation in area covered by agglomerations $\widehat{\beta}$ of fixed populations.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

"Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities" [/ Bettencourt et al., PLoS ONE, 5, e13541, 2010. ${ }^{\text {[5] }}$

Comparing city features across populations:
Cities $=$ Metropolitan Statistical Areas (MSAs)

"Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities" [/
Bettencourt et al., PLoS ONE, 5, e13541, 2010. ${ }^{\text {[5] }}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Comparing city features across populations:
Cities $=$ Metropolitan Statistical Areas (MSAs)
Story: Fit scaling law and examine residuals

"Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities" []

Scaling-at-large
Allometry
Biology
Bettencourt et al.,
PLoS ONE, 5, e13541, 2010. ${ }^{\text {[5] }}$
Physics
People
Money
Comparing city features across populations:
Cities $=$ Metropolitan Statistical Areas (MSAs)
Story: Fit scaling law and examine residuals
R Does a city have more or less crime than expected when normalized for population?

Figure 1. Urban Agglomeration effects result in per capita nonlinear scaling of urban metrics. Subtracting these effects produces a truly local measure of urban dynamics and a reference scale for ranking cities. a) A typical superlinear scaling law (solid line): Gross Metropolitan Product of US MSAs in 2006 (red dots) vs. population; the slope of the solid line has exponent, $\beta=1.126(95 \% \mathrm{Cl}$ [1.101,1.149]). b) Histogram showing frequency of residuals, (SAMIs, see Eq. (2)); the statistics of residuals is well described by a Laplace distribution (red line). Scale independent ranking (SAMIs) for US MSAs by c) personal income and d) patenting (red denotes above average performance, blue below). For more details see Text S1, Table S1 and Figure 51 .

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics

People

Money
Language
Technology
Specialization
References

Scaling－at－large Allometry

A possible theoretical explanation？

＂The origins of scaling in cities＂ Luís M．A．Bettencourt， Science，340，1438－1441，2013．${ }^{[3]}$

Biology
Physics
People
Money
Language
Technology
Specialization
References

Density of public and private facilities:

$$
\rho_{\mathrm{fac}} \propto \rho_{\mathrm{pop}}^{\alpha}
$$

Left plot: ambulatory hospitals in the U.S.
Right plot: public schools in the U.S.
Pocs | @poesvox

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $\left\lvert\, \begin{aligned} & \text { On } \\ & 0\end{aligned}\right.$
っの^ 71 of 99

> "Pattern in escalations in insurgent and terrorist activity" Johnson et al., Science Magazine, S33, 81-84, 2011.

Fig．1．（A）Schematic timeline of successive fatal days shown as vertical bars．τ_{1} is the time interval between the first two fatal days，labeled 0 and 1 ．（B）Successive time intervals τ_{0} ，between days with IED fatalities in the Afghanistan province of Kandahar（squares）．On this log－log plot，the best－fit power－law progress curve is by definition a straight（blue）line with slope $-b$（ b is an escalation rate）．（C）The solid blue line shows best linear fit through progress－curve parameter values I_{1} and b for individual Afghanistan provinces（blue squares）for all hostile fatalities（all coalition military fatalities attributed to insurgent activity）．The green dashed line shows value $b=0.5$ ，which is the situation in which there are no correlations．The subset of fatalities recorded in icasualties as＂southern Afghanistan＂is shown as a separate region because of their likely connection to operations near the Pakistan border．

Escalation：$\tau_{n} \sim \tau_{1} n^{-b}$
\＆$b=$ scaling exponent （escalation rate）
\＆Interevent time τ_{n} between fatal attacks $n-1$ and n（binned by days）

R Learning curves organizations ${ }^{\text {［34］}}$

R More later on size distributions ${ }^{[9,16,6]}$

Physics
People
Money
Language
Technology
Specialization
References

PoCs | @poesvox Scaling

Explore the original zoomable and interactive version here: http://xkcd.com/980/[.].

Irregular verbs

Cleaning up the code that is English:

"Quantifying the evolutionary dynamics of language" ${ }^{\text {C }}$
Lieberman et al.,
Nature, 449, 713-716, 2007. ${ }^{[18]}$

Allometry

Biology
Physics
People
Money

Exploration of how verbs with irregular conjugation gradually become regular over time.

- Comparison of verb behavior in Old, Middle, and Modern English.

Irregular verbs

PoCS | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

\& Universal tendency towards regular conjugation Rare verbs tend to be regular in the first place

Irregular verbs

Scaling-at-large

Rates are relative.

\square
\square
\square
\qquad
\qquad

Irregular verbs

Pocs 1 ＠poesvox Scaling

Scaling－at－large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Rates are relative．
The more common a verb is，the more resilient it is to change．

Irregular verbs

Table 1 | The 177 irregular verbs studied

[^2]Red = regularized
Estimates of half-life for regularization ($\propto f^{1 / 2}$)

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $|$| On |
| :---: | :---: |
| 0 |

๑a^ 78 of 99

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Projecting back in time to proto-Zipf story of many tools.

Moore's Law: E

PoCs 1 @poesvox Scaling

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization

References

vum $\left\lvert\, \begin{aligned} & \text { O } \\ & \text { gis }\end{aligned}\right.$

つa^ 80 of 99

Scaling laws for technology production:

Pocs | @poesvox Scaling
"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.

Scaling laws for technology production:

Pocs | @poesvox Scaling
"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.
$y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.
. $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff made: ${ }^{[34]}$

$$
y_{t} \propto x_{t}^{-w}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.
. $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff made: ${ }^{[34]}$

$$
y_{t} \propto x_{t}^{-w} .
$$

R Moore's Law [$\}$, framed as cost decrease connected with doubling of transistor density every two years: ${ }^{\text {[27] }}$

$$
y_{t} \propto e^{-m t}
$$

Scaling-at-large Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.
\& $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff made: ${ }^{[34]}$

$$
y_{t} \propto x_{t}^{-w}
$$

\& Moore's Law π, framed as cost decrease connected with doubling of transistor density every two years: ${ }^{[27]}$

$$
y_{t} \propto e^{-m t}
$$

R Sahal's observation that Moore's law gives rise to Wright's law if stuff production grows exponentially: [29]

$$
x_{t} \propto e^{g t}
$$

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress ${ }^{[28] "}$ Nagy et al., PLoS ONE, 2013.
\& $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff

Pocs | @poesvox

Scaling-at-large Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM
N.

PoCs | @poesvox Scaling

Scaling-at-large

Allometry

Biology
Physics
People
Money
Language
Technology
Specialization

References

つのल 83 of 99

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are equivalent to Wright's law. The value of the Wright parameter w is plotted against the prediction m / g based on the Sahal formula, where m is the exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004

Scaling of Specialization:

"Scaling of Differentiation in Networks: Nervous Systems, Organisms, Ant Colonies, Ecosystems, Businesses, Universities, Cities, Electronic Circuits, and Legos"
M. A. Changizi, M. A. McDannald and D. Widders ${ }^{[8]}$ J. Theor. Biol., 2002.

Fig. 3. $\log -\log ($ base 10$)$ (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts in Lego structures $(n=391)$. To help to distinguish the data points, logarithmic values were perturbed by adding a random number in the interval $[-0.05,0.05]$, and non-logarithmic values were perturbed by adding a random number in the interval $[-1,1]$.

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvM
$C \sim N^{1 / d}, d \geq 1:$
. $C=$ network differentiation = \# node types.
\& $N=$ network size $=\#$ nodes.
\& d = combinatorial degree.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$C \sim N^{1 / d}, d \geq 1:$
. $C=$ network differentiation = \# node types.
. $N=$ network size $=\#$ nodes.
$d=$ combinatorial degree.
Low d : strongly specialized parts.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$C \sim N^{1 / d}, d \geq 1$:
. C = network differentiation = \# node types.
\& $N=$ network size $=$ \# nodes.
\& d = combinatorial degree.
Low d : strongly specialized parts.
High d : strongly combinatorial in nature, parts are reused.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$C \sim N^{1 / d}, d \geq 1$:
. C = network differentiation = \# node types.
\& $N=$ network size $=\#$ nodes.
\& d = combinatorial degree.
Low d : strongly specialized parts.
High d : strongly combinatorial in nature, parts are reused.
Claim: Natural selection produces high d systems.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$C \sim N^{1 / d}, d \geq 1:$
8 C = network differentiation = \# node types.
\& $N=$ network size $=$ \# nodes.
\& d = combinatorial degree.
Low d : strongly specialized parts.
High d : strongly combinatorial in nature, parts are reused.
Claim: Natural selection produces high d systems.
Claim: Engineering/brains produces low d systems.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Table 1
Summary of results*

Network	Node	No. data points	Range of $\log N$	Log-log R^{2}	Semi-log R^{2}	$p_{\text {power }} / p_{\text {log }}$	Relationship between C and N	Comb. degree	Exponent v for type-net scaling	Figure in text
Selected networks Electronic circuits	Component	373	2.12	0.747	0.602	0.05/4e-5	Power law	2.29	0.92	2
Legos ${ }^{\text {³ }}$	Piece	391	2.65	0.903	0.732	$0.09 / 1 \mathrm{e}-7$	Power law	1.41	-	3
Businesses military vessels military offices universities insurance co.	Employee Employee Employee Employee	$\begin{aligned} & 13 \\ & 8 \\ & 9 \\ & 52 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.59 \\ & 1.55 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 0.971 \\ & 0.964 \\ & 0.786 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 0.832 \\ & 0.789 \\ & 0.749 \\ & 0.685 \end{aligned}$	$\begin{aligned} & 0.05 / 3 \mathrm{e}-3 \\ & 0.16 / 0.16 \\ & 0.27 / 0.27 \\ & 0.11 / 0.10 \end{aligned}$	Power law Increasing Increasing Increasing	$\begin{aligned} & 1.60 \\ & 1.13 \\ & 1.37 \\ & 3.04 \end{aligned}$	-	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
Universities across schools history of Duke	Faculty Faculty	$\begin{aligned} & 112 \\ & 46 \end{aligned}$	$\begin{aligned} & 2.72 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.695 \\ & 0.921 \end{aligned}$	$\begin{aligned} & 0.549 \\ & 0.892 \end{aligned}$	$\begin{aligned} & 0.09 / 0.01 \\ & 0.09 / 0.05 \end{aligned}$	Power law Increasing	$\begin{aligned} & 1.81 \\ & 2.07 \end{aligned}$	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
Ant colonies caste $=$ type size range $=$ type	Ant Ant	$\begin{aligned} & 46 \\ & 22 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.481 \\ & 0.658 \end{aligned}$	$\begin{aligned} & 0.454 \\ & 0.548 \end{aligned}$	$\begin{aligned} & 0.11 / 0.04 \\ & 0.17 / 0.04 \end{aligned}$	Power law Power law	$\begin{aligned} & 8.16 \\ & 8.00 \end{aligned}$	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$
Organisms	Cell	134	12.40	0.249	0.165	0.08/0.02	Power law	17.73	-	7
Neocortex	Neuron	10	0.85	0.520	0.584	0.16/0.16	Increasing	4.56	-	9
Competitive networks Biotas	Organism	-	-	-	-	-	Power law	≈ 3	0.3 to 1.0	-
Cities	Business	82	2.44	0.985	0.832	0.08/8e-8	Power law	1.56	-	10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. $\log \left(N_{m a x} / N_{\text {min }}\right)$), (5) the $\log -\log$ correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship between differentiation C and organization size N (if one of the two models can be refuted with $p<0.05$; otherwise we just write "increasing" to denote that neither model can be rejected), (9) the combinatorial degree (i.e. the inverse of the best-fit slope of a $\log -\log$ plot of C versus N), (10) the scaling exponent for how quickly the edge-degree δ scales with type-network size C (in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.

Scaling-at-large

Allometry
Biology
Physics
People

Money

Language
Technology
Specialization
References

Shell of the nut:
 Scaling is a fundamental feature of complex systems.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Shell of the nut：

Scaling is a fundamental feature of complex systems．
Basic distinction between isometric and allometric scaling．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Shell of the nut：

Scaling is a fundamental feature of complex systems．
Basic distinction between isometric and allometric scaling．
Powerful envelope－based approach：Dimensional analysis．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Shell of the nut：

Scaling is a fundamental feature of complex systems．
Basic distinction between isometric and allometric scaling．
Powerful envelope－based approach：Dimensional analysis．
＂Oh yeah，well that＇s just dimensional analysis＂ said the［insert your own adjective］physicist．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM
｜o

Shell of the nut:

Scaling is a fundamental feature of complex systems.
Basic distinction between isometric and allometric scaling.
8
Powerful envelope-based approach: Dimensional analysis.
8
"Oh yeah, well that's just dimensional analysis" said the [insert your own adjective] physicist.
Tricksiness: A wide variety of mechanisms give rise to scalings, both normal and unusual.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References I

[1] J. L. Aragón, G. G. Naumis, M. Bai, M. Torres, and P. K. Maini.

Turbulent luminance in impassioned van Gogh paintings.

Scaling-at-large
Allometry
Biology
Physics
People
J. Math. Imaging Vis., 30:275-283, 2008. pdf©
[2] G.I. Barenblatt.
Scaling, self-similarity, and intermediate asymptotics, volume 14 of Cambridge Texts in Applied Mathematics.
Cambridge University Press, 1996.
[3] L. M. A. Bettencourt.
The origins of scaling in cities.
Science, 340:1438-1441, 2013. pdf[3

uvy $\left|\begin{array}{l}0 \\ 0\end{array}\right|$

References II

[4] L. M. A. Bettencourt, J. Lobo, D. Helbing, Kühnhert, and G. B. West. Growth, innovation, scaling, and the pace of life in cities.

```
Proc. Natl. Acad. Sci., 104(17):7301-7306, }2007
pdf[
```

[5] L. M. A. Bettencourt, J. Lobo, D. Strumsky, and G. B. West. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities.
PLoS ONE, 5: 13541,2010 . pdfC®
[6] J. C. Bohorquez, S. Gourley, A. R. Dixon, M. Spagat, and N. F. Johnson.
Common ecology quantifies human insurgency. Nature, 462:911-914, 2009. pdf[

Scaling-at-large Allometry

References III

[7] E. Buckingham.
On physically similar systems: Illustrations of the use of dimensional equations.
Phys. Rev., 4:345-376, 1914. pdf[
[8] M. A. Changizi, M. A. McDannald, and D. Widders. Scaling of differentiation in networks: Nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos.
J. Theor. Biol, 218:215-237, 2002. pdf[3
[9] A. Clauset, M. Young, and K. S. Gleditsch. On the Frequency of Severe Terrorist Events. Journal of Conflict Resolution, 51(1):58-87, 2007. pdf[

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References IV

[10] G. Galilei.
Dialogues Concerning Two New Sciences.
Kessinger Publishing, 2010.
Translated by Henry Crew and Alfonso De Salvio.
[11] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose.
A general scaling law reveals why the largest animals are not the fastest.
Nature Ecology \& Evolution, 1:1116, 2017. pdf®
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
[12] R. E. Horton.
Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.
Bulletin of the Geological Society of America, 56(3):275-370, 1945. pdf[־

References V

[13] H. E. Hurst.
Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770-808, 1951.

Scaling-at-large
Allometry
Biology
Physics
People
Money
[14] J. S. Huxley and G. Teissier.
Terminology of relative growth.
Nature, 137:780-781, 1936. pdf[
[15] N. Johnson, S. Carran, J. Botner, K. Fontaine, N. Laxague, P. Nuetzel, J. Turnley, and B. Tivnan. Pattern in escalations in insurgent and terrorist activity.
Science Magazine, 333:81-84, 2011. pdf[a

References VI

[16] N. F. Johnson, M. Spagat, J. A. Restrepo,
O. Becerra, J. C. Bohorquez, N. Suarez, E. M. Restrepo, and R. Zarama.
Universal patterns underlying ongoing wars and terrorism, 2006. pdf[

Scaling-at-large
Allometry
Biology
Physics
People
Money
[17] S. Levin.
The problem of pattern and scale in ecology.
Ecology, 73(6):1943-1967, 1992.
. pdf[
Language
Technology
Specialization
References

References VII

[19] R. H. MacArthur and E. O. Wilson. An equilibrium theory of insular zoogeography. Evolution, 17:373-387, 1963. pdf[
[20] B. B. Mandelbrot.
How long is the coast of britain? statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. pdf■
[21] B. B. Mandelbrot.
Fractals: Form, Chance, and Dimension. Freeman, San Francisco, 1977.
[22] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco, 1983.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References VIII

Scaling-at-large
[23] T. McMahon.
Size and shape in biology.
Science, 179:1201-1204, 1973. pdf[6
[24] T. A. McMahon and J. T. Bonner.
On Size and Life.
Scientific American Library, New York, 1983.
[25] N. Meyer-Vernet and J.-P. Rospars.
How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719-722, 2015. pdf[

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM

References IX

[26] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg,

Scaling-at-large
D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A.

Allometry
Nowak, and E. A. Lieberman.
Quantitative analysis of culture using millions of digitized books.
Science Magazine, 2010. pdf[
Biology
Physics
People
Money
Language
Technology
[27] G. E. Moore.
Cramming more components onto integrated circuits.
Electronics Magazine, 38:114-117, 1965.
[28] B. Nagy, J. D. Farmer, Q. M. Bui, and J. E. Trancik. Statistical basis for predicting technological progress.
PloS one, 8(2):e52669, 2013. pdf[^
Specialization
References

References X

[29] D. Sahal.
A theory of progress functions.
AllE Transactions, 11:23-29, 1979.
Scaling-at-large
Allometry
Biology
Physics
[30] S. Savaglio and V. Carbone.
Scaling in athletic world records.
Nature, 404:244, 2000. pdf[
[31] A. Shingleton.
Allometry: The study of biological scaling. Nature Education Knowledge, 1:2, 2010.
[32] A. J. Tatem, C. A. Guerra, P. M. Atkinson, and S. I. Hay.
Athletics: Momentous sprint at the 2156 Olympics?
Nature, 431(7008):525-525, 2004. pdf[天

Specialization
References

References XI

[33] C. Tomasetti and B. Vogelstein.
Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347:78-81, 2015. pdf[T
[34] T. P. Wright.
Factors affecting the costs of airplanes. Journal of Aeronautical Sciences, 10:302-328, 1936. pdf[ß
[35] K. Zhang and T. J. Sejnowski.
A universal scaling law between gray matter and white matter of cerebral cortex.
Proceedings of the National Academy of Sciences, 97:5621-5626, 2000. pdf匚

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vim $\left\lvert\, \begin{aligned} & \text { O } \\ & \text { On } \\ & 0\end{aligned}\right.$

[^0]: ${ }^{3} X=$ still arguing \ldots

[^1]: Data sources are shown in SI Text. CI, confidence interval; Adj- R^{2}, adjusted R^{2}; GDP, gross domestic product.

[^2]: 177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As we move down the list; an increasingly large fraction of the verbs are red; the frequencydependent regularization of irregular verbs becomes immediately apparent.

