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Scale-free networks

 Networks with power-law degree distributions
have become known as scale-free networks.

 Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:� ∼ �−� for ‘large’ �

 One of the seminal works in complex networks:
ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7 ) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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“Emergence of scaling in random
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Barabási and Albert,
Science, 286, 509–511, 1999. [2]
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connectivity is free of scale, following a power

law for large k with an exponent g between
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e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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where vertices are individuals or organiza-

tions and the edges are the social interactions
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(WWW), whose vertices are HTML docu-

ments connected by links pointing from one
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the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random
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dent of the system and the identity of its
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vertices decays as a power law, following

P(k) ; k2g. This result indicates that large
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served in real networks. Finally, we argue

that these ingredients play an easily identifi-
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many complex systems, which implies that

our results are relevant to a large class of
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data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A
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edges being to the high-voltage transmission
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shown that the probability that a paper is
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mon feature that the distribution of their local
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law for large k with an exponent g between

2.1 and 4, which is unexpected within the
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e2llk/k!, where
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vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-
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leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-
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z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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Scale-free networks

 Networks with power-law degree distributions
have become known as scale-free networks.

 Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:� ∼ �−� for ‘large’ �

 One of the seminal works in complex networks:
ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7 ) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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 Scale-free refers specifically to the degree
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 One of the seminal works in complex networks:
ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6 ), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7 ) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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Scale-free networks

 Scale-free networks are not fractal in any sense.
 Usually talking about networks whose links are

abstract, relational, informational, …(non-physical)
 Primary example: hyperlink network of the Web
 Much arguing about whether or networks are

‘scale-free’ or not…
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Some real data (we are feeling brave):

From Barabási and Albert’s original paper [2]:

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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Random networks: largest components

� = 2.5⟨ ⟩ = 1.8

� = 2.5⟨ ⟩ = 1.6

� = 2.5⟨ ⟩ = 2.05333

� = 2.5⟨ ⟩ = 1.50667

� = 2.5⟨ ⟩ = 1.66667

� = 2.5⟨ ⟩ = 1.62667

� = 2.5⟨ ⟩ = 1.92

� = 2.5⟨ ⟩ = 1.8
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Scale-free networks

The big deal:
 We move beyond describing networks to finding

mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:
 How does the exponent � depend on the

mechanism?
 Do the mechanism details matter?
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BA model

 Barabási-Albert model = BA model.
 Key ingredients:

Growth and Preferential Attachment (PA).
 Step 1: start with �0 disconnected nodes.
 Step 2:

1. Growth—a new node appears at each time step� = 0, 1, 2, ….
2. Each new node makes � links to nodes already

present.
3. Preferential attachment—Probability of

connecting to �th node is ∝ � .

 In essence, we have a rich-gets-richer scheme.
 Yes, we’ve seen this all before in Simon’s model.
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BA model

 Definition: � is the attachment kernel for a node
with degree �.

 For the original model:� = �
 Definition: �attach(�, �) is the attachment

probability.
 For the original model:�attach(node �, �) = � (�)∑�(�)=1 � (�) = � (�)∑ max(�)=0 �� (�)

where �(�) = �0 + � is # nodes at time �
and � (�) is # degree � nodes at time �.
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Approximate analysis
 When (� + 1)th node is added, the expected

increase in the degree of node � is�(� ,�+1 − � ,�) ≃ � � ,�∑�(�)=1 � (�) .
 Assumes probability of being connected to is

small.
 Dispense with Expectation by assuming (hoping)

that over longer time frames, degree growth will
be smooth and stable.

 Approximate � ,�+1 − � ,� with d
d�� ,�:

d
d�� ,� = � � (�)∑�(�)=1 � (�)

where � = �(�) − �0.
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 Deal with denominator: each added node brings �
new edges. ∴ �(�)∑=1 � (�) = 2��

 The node degree equation now simplifies:

d
d�� ,� = � � (�)∑�(�)=1 � (�) = �� (�)2�� = 12�� (�)

 Rearrange and solve:

d� (�)� (�) = d�2� ⇒ � (�) = � �1/2.
 Next find � …
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Approximate analysis

 Know �th node appears at time� ,start = { � − �0 for � > �00 for � ≤ �0
 So for � > �0 (exclude initial nodes), we must have� (�) = � ( �� ,start)1/2

for � ≥ � ,start.
 All node degrees grow as �1/2 but later nodes have

larger � ,start which flattens out growth curve.
 First-mover advantage: Early nodes do best.
 Clearly, a Ponzi scheme.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Ponzi_scheme
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Approximate analysis
We are already at the Zipf distribution:
 Degree of node � is the size of the �th ranked node:� (�) = � ( �� ,start)1/2

for � ≥ � ,start.
 From before:� ,start = { � − �0 for � > �00 for � ≤ �0

so � ,start ∼ � which is the rank.
 We then have: � ∝ �−1/2 = �−�.
 Our connection � = 1/(� − 1) or � = 1 + 1/� then

gives � = 1 + 1/(1/2) = 3.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Approximate analysis:

0 10 20 30 40 50
0

5

10

15

20

t

k
i
(t)  � = 3

 � ,start =1, 2, 5, and 10.
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Degree distribution
 So what’s the degree distribution at time �?
 Use fact that birth time for added nodes is

distributed uniformly between time 0 and t:

Pr(� ,start)d� ,start ≃ d� ,start�
 Also use� (�) = � ( �� ,start)1/2 ⇒� ,start = �2�� (�)2 .

Transform variables—Jacobian:

d� ,start
d� = −2 �2�� (�)3 .

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Degree distribution


Pr(� )d� = Pr(� ,start)d� ,start
 = Pr(� ,start)d� ∣d� ,start

d� ∣
 = 1�d� 2 �2�� (�)3
 = 2 �2� (�)3d�
 ∝ �−3d� .
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Degree distribution

 We thus have a very specific prediction of
Pr(�) ∼ �−� with � = 3.

 Typical for real networks: 2 < � < 3.
 Range true more generally for events with size

distributions that have power-law tails.
 2 < � < 3: finite mean and ‘infinite’ variance (wild)
 In practice, � < 3 means variance is governed by

upper cutoff.
 � > 3: finite mean and variance (mild)
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Back to that real data:

From Barabási and Albert’s original paper [2]:

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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Examples

Web � ≃ 2.1 for in-degree
Web � ≃ 2.45 for out-degree

Movie actors � ≃ 2.3
Words (synonyms) � ≃ 2.8

The Internets is a different business...
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Things to do and questions

 Vary attachment kernel.
 Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

 Deal with directed versus undirected networks.
 Important Q.: Are there distinct universality

classes for these networks?
 Q.: How does changing the model affect �?
 Q.: Do we need preferential attachment and

growth?
 Q.: Do model details matter? Maybe …
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Outline

Scale-free networks
Main story
Model details
Analysis
A more plausible mechanism
Robustness
Krapivsky & Redner’s model
Generalized model
Analysis
Universality?
Sublinear attachment kernels
Superlinear attachment kernels
Nutshell

References

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
28 of 57

Preferential attachment

 Let’s look at preferential attachment (PA) a little
more closely.

 PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

 For example: If �attach(�) ∝ �, we need to
determine the constant of proportionality.

 We need to know what everyone’s degree is...
 PA is ∴ an outrageous assumption of node

capability.
 But a very simple mechanism saves the day…
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Preferential attachment through
randomness

 Instead of attaching preferentially, allow new
nodes to attach randomly.

 Now add an extra step: new nodes then connect
to some of their friends’ friends.

 Can also do this at random.
 Assuming the existing network is random, we

know probability of a random friend having
degree � is � ∝ ��

 So rich-gets-richer scheme can now be seen to
work in a natural way.
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Robustness
 Albert et al., Nature, 2000:

“Error and attack tolerance of complex
networks” [1]

 Standard random networks (Erdős-Rényi)
versus Scale-free networks:

from Albert et al., 2000
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Robustness
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from Albert et al., 2000

 Plots of network
diameter as a function
of fraction of nodes
removed

 Erdős-Rényi versus
scale-free networks

 blue symbols =
random removal

 red symbols =
targeted removal
(most connected first)
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Robustness

 Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

 All very reasonable: Hubs are a big deal.
 But: next issue is whether hubs are vulnerable or

not.
 Representing all webpages as the same size node

is obviously a stretch (e.g., google vs. a random
person’s webpage)

 Most connected nodes are either:
1. Physically larger nodes that may be harder to

‘target’
2. or subnetworks of smaller, normal-sized nodes.

 Need to explore cost of various targeting schemes.
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Robustness

Not a robust paper:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) � �(i, j)�E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax � max{s(g): g �

G(D)}, we define the measure 0 � S(g) � 1 of the graph g as
S(g) � s(g)�smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) � 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) � 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) � 0.33 and S(gd) � 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet

An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the

Abilene network are available from www.internet2.edu�abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-

fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent

the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having

the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree

nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified

version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di � 1 is shown.

14498 � www.pnas.org�cgi�doi�10.1073�pnas.0501426102 Doyle et al.

“The “Robust yet Fragile” nature of the
Internet”
Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497–14502,
2005. [3]

 HOT networks versus scale-free networks
 Same degree distributions, different

arrangements.
 Doyle et al. take a look at the actual Internet.
 Excellent project material.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/doyle2005a.pdf
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Generalized model

Fooling with the mechanism:
 2001: Krapivsky & Redner (KR) [4] explored the

general attachment kernel:

Pr(attach to node �) ∝ � = ��
where � is the attachment kernel and � > 0.

 KR also looked at changing the details of the
attachment kernel.

 KR model will be fully studied in CoNKS.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Generalized model

 We’ll follow KR’s approach using rate equations.
 Here’s the set up:

d�
d� = 1� [� −1� −1 − � � ] + � 1

where � is the number of nodes of degree �.
1. One node with one link is added per unit time.
2. The first term corresponds to degree � − 1 nodes

becoming degree � nodes.
3. The second term corresponds to degree � nodes

becoming degree � − 1 nodes.
4. � is the correct normalization (coming up).
5. Seed with some initial network

(e.g., a connected pair)
6. Detail: �0 = 0

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Rate_equation
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Generalized model

 In general, probability of attaching to a specific
node of degree � at time � is

Pr(attach to node �) = ��(�)
where �(�) = ∑∞=1 � � (�).

 E.g., for BA model, � = � and � = ∑∞=1 �� (�).
 For � = �, we have�(�) = ∞∑′=1 �′� ′(�) = 2�

since one edge is being added per unit time.
 Detail: we are ignoring initial seed network’s

edges.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Generalized model
 So now

d�
d� = 1� [� −1� −1 − � � ] + � 1

becomes

d�
d� = 12� [(� − 1)� −1 − �� ] + � 1

 As for BA method, look for steady-state growing
solution: � = � �.

 We replace d� /d� with d� �/d� = � .
 We arrive at a difference equation:� = 12✄� [(� − 1)� −1 ✄� − �� ✄�] + � 1
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Universality?

 As expected, we have the same result as for the
BA model:� (�) = � (�)� ∝ �−3� for large �.

 Now: what happens if we start playing around
with the attachment kernel � ?

 Again, we’re asking if the result � = 3 universal?
 KR’s natural modification: � = �� with � ≠ 1.
 But we’ll first explore a more subtle modification

of � made by Krapivsky/Redner [4]

 Keep � linear in � but tweak details.
 Idea: Relax from � = � to � ∼ � as � → ∞.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/w/index.php?title=Universality_%28dynamical_systems%29&oldid=204738455
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Universality?

 Recall we used the normalization:�(�) = ∞∑′=1 �′� ′(�) ≃ 2� for large �.
 We now have �(�) = ∞∑′=1 � ′� ′(�)

where we only know the asymptotic behavior of� .
 We assume that � = ��
 We’ll find � later and make sure that our

assumption is consistent.
 As before, also assume � (�) = � �.
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Universality?
 For � = � we had� = 12 [(� − 1)� −1 − �� ] + � 1
 This now becomes� = 1� [� −1� −1 − � � ] + � 1⇒ (� + �)� = � −1� −1 + �� 1
 Again two cases:� = 1 ∶�1 = �� + �1 ; � > 1 ∶� = � −1 � −1� + � .
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Universality?

 Time for pure excitement: Find asymptotic
behavior of � given � → � as � → ∞.

 For large �, we find:� = �� ∏=1 11 + �� ∝ �−�−1
 Since � depends on � , details matter...
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 Time for pure excitement: Find asymptotic
behavior of � given � → � as � → ∞.

 For large �, we find:� = �� ∏=1 11 + �� ∝ �−�−1
 Since � depends on � , details matter...

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
46 of 57

Universality?

 Time for pure excitement: Find asymptotic
behavior of � given � → � as � → ∞.

 For large �, we find:� = �� ∏=1 11 + �� ∝ �−�−1
 Since � depends on � , details matter...

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Analysis

A more plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

.
.
.
.
.

.
47 of 57

Universality?

 Now we need to find �.
 Our assumption again: � = �� = ∑∞=1 � (�)�
 Since � = � �, we have the simplification� = ∑∞=1 � �
 Now subsitute in our expression for � :

 Closed form expression for �.
 We can solve for � in some cases.
 Our assumption that � = �� looks to be not too

horrible.
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Universality?
 Consider tunable �1 = � and � = � for � ≥ 2.
 Again, we can find � = � + 1 by finding �.
 Closed form expression for �:�� = ∞∑=2 Γ(� + 1)Γ(2 + �)Γ(� + � + 1)

#mathisfun
 �(� − 1) = 2� ⇒ � = 1 + √1 + 8�2 .
 Since � = � + 1, we have0 ≤ � < ∞ ⇒ 2 ≤ � < ∞
 Craziness...
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Sublinear attachment kernels

 Rich-get-somewhat-richer:� ∼ �� with 0 < � < 1.
 General finding by Krapivsky and Redner: [4]� ∼ �−��−�1 1−�+correction terms.
 Stretched exponentials (truncated power laws).
 aka Weibull distributions.
 Universality: now details of kernel do not matter.
 Distribution of degree is universal providing � < 1.
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Sublinear attachment kernels

Details:
 For 1/2 < � < 1:� ∼ �−��−�( 1−�−21−�1−� )
 For 1/3 < � < 1/2:� ∼ �−��−� 1−�1−� + �22 1−2�1−2�
 And for 1/(� + 1) < � < 1/�, we have � pieces in

exponential.
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Superlinear attachment kernels

 Rich-get-much-richer:� ∼ �� with � > 1.
 Now a winner-take-all mechanism.
 One single node ends up being connected to

almost all other nodes.
 For � > 2, all but a finite # of nodes connect to one

node.
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Nutshell:

Overview Key Points for Models of Networks:
 Obvious connections with the vast extant field of

graph theory.
 But focus on dynamics is more of a

physics/stat-mech/comp-sci flavor.
 Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story ⇒ Macro features

 Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

 Still much work to be done, especially with respect
to dynamics... #excitement
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Neural reboot (NR):

Turning the corner:

https://www.youtube.com/v/axrTxEVQqN4?rel=0
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