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' Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.
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- Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

PoCS | @pogsvox

Scale-free
networks

Scale-free
networks
Main story

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

va 70f57


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=vsj2slIAAAAJ&citation_for_view=vsj2slIAAAAJ:u5HHmVD_uO8C

- Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.
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- Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for ‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

_ Barabasi and Albert,
o Science, 286, 509-511, 1999. I!

Times cited: ~ 23,532 (as of October 8, 2015)

PoCS | @pogsvox

Scale-free
networks

Scale-free
networks
Mai
Mo

Nutshell

References

va 70f57


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/barabasi1999a.pdf
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=vsj2slIAAAAJ&citation_for_view=vsj2slIAAAAJ:u5HHmVD_uO8C

- Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for ‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

Barabasi and Albert,
= Science, 286, 509-511, 1999, I

Times cited: ~ 23,532 (as of October 8, 2015)

Somewhat misleading nomenclature...
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- Scale-free networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)
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Scale-free networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Primary example: hyperlink network of the Web

Much arguing about whether or networks are
‘scale-free’ or not...
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- Some real data (we are feeling brave):

P(k)

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

325,729, (k) = 5.
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- Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

How does the exponent v depend on the
mechanism?
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

How does the exponent v depend on the
mechanism?

Do the mechanism details matter?
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BA model

| &% Barabasi-Albert model = BA model.
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BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
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BA mod”el' |

Barabasi-Albert model = BA model.
Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
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Barabasi-Albert model = BA model.
Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
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| BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.

Step 2:
1. Growth—a new node appears at each time step
£=10,11,2,..

PoCS | @poesvox

Scale-free
networks

Scale-free
networks
Main story

Model details

D 130f 57


http://www.uvm.edu
http://www.uvm.edu/pdodds

| BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.

Step 2:
1. Growth—a new node appears at each time step
£=10,11,2,..
2. Each new node makes m links to nodes already
present.
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- BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,...
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.
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- BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,...
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.
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oo Definition: A, is the attachment kernel for a node
with degree k.
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BA mod.:el' |

Definition: A4, is the attachment kernel for a node
with degree k.

For the original model:
Ak = k

Definition: Pyach(k, t) is the attachment
probability.
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Definition: Pyach(k, t) is the attachment
probability.
For the original model:

k(1)
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Pattach(nOde i, t) T
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:
Definition: Pyach(k, t) is the attachment
probability.
For the original model:

k; (1)
> k()

Jj=1

Pattach(nOde i, t) T

where N(t) = mq + t is # nodes at time ¢
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k, t) is the attachment
probability.
For the original model:

; k; (1) k;(t)
Paach(node 4,t) = ¢ 2 i
TV ki) T kN

where N(t) = mq + t is # nodes at time ¢
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k, t) is the attachment
probability.
For the original model:

; k; (1) k;(t)
Paach(node 4,t) = ¢ 2 i
TV ki) T kN

where N(t) = mq + t is # nodes at time ¢
and N (t) is # degree k nodes at time ¢.
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_ Approximate analysis

When (N + 1)th node is added, the expected

increase in the degree of node i is

E(ki,N+1 _ki,N)

~m

>

ki N

=t
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Approximaté analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k L) ki, N
i G e\ i iy T P R
Assumes probability of being connected to is

small.
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| Approximaté analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k L) ki, N
i G e\ i iy T P R
Assumes probability of being connected to is

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.
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| Approximaté analysis

When (N + 1)th node is added, the expected

increase in the degree of node i is

E<ki,N+1 = ki,N) =m

Assumes probability of being connected to is

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will

be smooth and stable.
Approximate k; 1 —

>

k; n with d

ki N

e

j=1

dt 'lt
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| Approximaté analysis

When (N + 1)th node is added, the expected

increase in the degree of node i is

E<ki,N+1 _ki,N)

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will

be smooth and stable.

Approximate k; 1 — k; y With &k, ;:

d
7]{7:’15 =m

d¢

where t = N(t) — m,.

~m

>

Assumes probability of being connected to is

kz’,N
N(t)
j=1 k;
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Deal with denominator: each added node brings m
new edges.
N(t)

&N ki(t)—2tm

Jj=1
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Deal with denominator: each added node brings m
new edges.

N(1)

SN (e Ot

Jj=1

The node degree equation now simplifies:

d k;(t)
—k; = e Lk B Sl S
de i k()
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new edges.
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The node degree equation now simplifies:
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Deal with denominator: each added node brings m
new edges.
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The node degree equation now simplifies:
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Deal with denominator: each added node brings m

new edges.
N(t)

SN (e Ot

Jj=1

The node degree equation now simplifies:

d i B (t) e = avki(8) il
Ek“ e mz;\’:(? k:j(t) F 2mt 2t kit)

Rearrange and solve:
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Deal with denominator: each added node brings m

new edges.
N(t)

SN (e Ot

Jj=1

The node degree equation now simplifies:

d i k(). ki (8) il
Ek“ e mz;\’:(? k:j(t) F 2mt 2t kit)

Rearrange and solve:
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Deal with denominator: each added node brings m

new edges.
N(t)

SN (e Ot

Jj=1

The node degree equation now simplifies:

d i k(). ki (8) il
Ek“ e mz;\’:(? k:j(t) F 2mt 2t kit)

Rearrange and solve:

dki(t) _dt _ 7
Bilt) [int LI e

Next find ¢, ...
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~ Approximate analysis
Know ith node appears at time
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Know ith node appears at time

; [ i—mg fori>mg,
LStk 10 fori <m,

So for i > m (exclude initial nodes), we must have

1/2
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All node degrees grow as '/
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Approximaté analysis

Know ith node appears at time

; [ i—mg fori>mg,
LStk 10 fori <m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >1t; s

ki (t) :m<

tz‘,start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, o Which flattens out growth curve.
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Know ith node appears at time Scale-free

networks

; [ i—mg fori>mg,
LStk 10 fori <m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >1; tart-

ki (t) :m<

tz‘,start

Nutshell

All node degrees grow as ¢'/2 but later nodes have
larger ¢, o Which flattens out growth curve.

First-mover advantage: Early nodes do best.
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Approximate' analysis

Know ith node appears at time

; [ i—mg fori>mg,
LStk 10 fori <m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >1t; s

ki (t) :m<

tz‘,start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, o Which flattens out growth curve.

First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme (Z.
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Approximaté analysis

Degree of node i is the size of the ith ranked node:
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Approximaté analysis

Degree of node i is the size of the ith ranked node:

1/2
) fort > t; seart-

k; (t) :m(

l; start

From before:

. [ i=—mgy fori>mg
gsart g fori < m,

SO t; start ~ @ Which is the rank.
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Approximaté analysis

Degree of node i is the size of the ith ranked node:

1/2
) fort > t; seart-

k; (t) :m(

l; start

From before:

. [ i=—mgy fori>mg
gsart g fori < m,

SO t; start ~ @ Which is the rank.
We then have:

k; oc¢=L2 2 459,

Our connectiona=1/(y—1)ory=1+1/a then
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T L5 35 J T Ay T |

PoCS | @poesvox

Scale-free
networks

Scale-free
networks
Main stc
Mod

Analysis

Nutshell

References
» =

D 19 of 57


http://www.uvm.edu
http://www.uvm.edu/pdodds

Approximate analysis: Al 1 1
networks

Scale-free
networks

Main st
Model det:

Analysis

m:3 Uni ’mm

ti,start e STtk
k

1;2:5 and 10. i)

References
— .

DA 200f57


http://www.uvm.edu
http://www.uvm.edu/pdodds

i

Degree distribution

<> So what's the degree distribution at time #?

POCS | @poesvox
Scale-free
networks

Scale-free
networks
Main story.
Model details
Analysis
Amore plausible
mechanism

Robustness

Krapivsky & Redner’s
model

Generalized model
Analysis
Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

D~ 210f57


http://www.uvm.edu
http://www.uvm.edu/pdodds

Degree distribution

So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

Pr(t; ctart)dt; seart =

dti,start
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Degree distribution

So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:
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Degree distribution

So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

dti,start

Pr(t; ctart)dt; seart = P

Also use

1/2 2
t m=t
k;(t) =m ( ) —t; start = 7]{:'(75)2'

ti,start
Transform variables—Jacobian:
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.

Range true more generally for events with size
distributions that have power-law tails.
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance

In practice, v < 3 means variance is governed by
upper cutoff.

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Nutshell

References

DA 230f57


http://www.uvm.edu
http://www.uvm.edu/pdodds

Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)
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- Back to that real data:

PoCS | @poesvox

Scale-free
networks
Scale-free
networks
Main story
Model details
i Analysis
1 Analy:
9 : 10° & 10° § lorenlatae
102 L " S Robust
102 \ 10 F ’\\‘ Kr q:‘

\ mode
gt '\! ¥’ ralized model
i’ ol \\. - 102 | k)

10* | K g

\\ x attachment
10° [ i Ba -
10—5 u » { 10 53 Sup! ear attachment
= :‘9 er1< Il
10° Q i < {3 10° o 5 'z ; 10 SO
10 10 10 10 107 108 4105107 570% -~ £103 10’ References
k [

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
510pes (A) Yacror = 23, (B) Yyw = 2.1 and (C) Yyoper = 4. 2
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Web ~ ~ 2.1 for in-degree
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Movie actors v ~2.3
Words (synonyms) =~ 2.8
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Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.
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Q.: How does changing the model affect ~?
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- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?
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- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter?
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- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter? Maybe ...
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Let's look at preferential attachment (PA) a little
more closely.
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Let's look at preferential attachment (PA) a little
more closely.
PA implies arriving nodes have complete
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distribution.
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to
determine the constant of proportionality.
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...

PAis - an outrageous assumption of node
capability.
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Let's look at preferential attachment (PA) a little
more closely.
PA implies arriving nodes have complete

knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...
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 Preferential attachment through
randomness
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Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we
know probability of a random friend having Ntshel
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Qp x kP
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Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.
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- Robustness :

“The "Robust yet Fragile” nature of the

Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497-14502,

2005. 3]
HOT networks versus scale-free networks

Same degree distributions, different
arrangements.

Doyle et al. take a look at the actual Internet.
Excellent project material.
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~ Generalized model

2001: Krapivsky & Redner (KR)!“ explored the
general attachment kernel:

Pr(attach to node i) x A, = k¥

where A, is the attachment kernel and v > 0.

PoCS | @pogsvox

Scale-free
networks

Scale-free
networks

Sublinear attachment
kernels

inear attachment

DA 37 of 57


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Generalized model Al 1 1
networks

Scale-free
networks

2001: Krapivsky & Redner (KR)!“ explored the
general attachment kernel:

Pr(attach to node i) x A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the =
attachment kernel. (N

Nutshell

a

,ol
D)
{e]

DA 37 of 57


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Generalized model

2001: Krapivsky & Redner (KR) “! explored the
general attachment kernel:

Pr(attach to node i) x A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the
attachment kernel.

KR model will be fully studied in CoNKS.
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
dtk L ANV — A6l oy

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
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where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
dtk L ANV — A6l oy

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).

Seed with some initial network

(e.g., a connected pair)

6. Detail: A, =0
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = A

A(t)
where A(t) = 3°° | AR Ny (D).

E.g., for BAmodel, A, =kand A =37 kN, (t).
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A(t)
where A(t) = 3°° | AR Ny (D).
E.g., for BAmodel, A, =kand A =37 kN, (t).
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = A

A(t)
where A(t) = 3°° | AR Ny (D).

E.g., for BAmodel, A, =kand A =37 kN, (t).

For A, = k, we have
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = A

A(t)
where A(t) = 3°° | AR Ny (D).

E.g., for BAmodel, A, =kand A =37 kN, (t).
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = A

A(t)
where A(t) = 3°° | AR Ny (D).

E.g., for BAmodel, A, =kand A =37 kN, (t).

For A, = k, we have

AN i E NG (D) =120

=il

since one edge is being added per unit time.
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = A

A(t)
where A(t) = 3°° | AR Ny (D).
E.g., for BAmodel, A, =kand A =37 kN, (t).
For A, = k, we have

At) = ) K Np(t) =2t
=il
since one edge is being added per unit time.

Detail: we are ignoring initial seed network’s
edges.
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- Generalized model

So now

dnN 1

Ttk st AL N — AN | 0y
becomes

Ve

AP k= LYN, e kb Nk oy

As for BA method, look for steady-state growing
solution:
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So now
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- Generalized model

So now

dnN 1

Ttk it [N = AN 500,
becomes

dN 1

Ttk =5 k= LYN, e kb Nk oy

As for BA method, look for steady-state growing
solution: N, = n.t.

We replace dN,, /dt with dnt/dt = n,,.
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~ Generalized model P | apttaien

bl
So now
i . g o
Ttk b [N = AN 500, i ot
becomes
Ny 4

e k= LYN, e kb Nk oy

As for BA method, look for steady-state growing
solution: N, = n.t. g
We replace dN,, /dt with dnt/dt = n,,. (G
We arrive at a difference equation:
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| ‘Universality?ﬂ

As expected, we have the same result as for the

BA model:

Ny(t)

ny (t)t oc k=3t for large k.
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Universality?
As expected, we have the same result as for the
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BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?

Again, we're asking if the result v = 3 universal (4?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!
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As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around

with the attachment kernel A, ?
Again, we're asking if the result v = 3 universal (47?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!

Keep A, linear in k but tweak details.
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We now have

Alt) = Z A Ny (t)

k’=1
where we only know the asymptotic behavior of
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Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
fo/=i

We now have

Alt) = Z A Ny (t)

k’=1
where we only know the asymptotic behavior of
A,.
We assume that A = ;¢

We'll find p later and make sure that our
assumption is consistent.

As before, also assume N (t) = n,t.
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Time for pure excitement: Find asymptotic
behavior of n, given A, — k as k — oo.

For large k, we find:
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Since 1 depends on A,, details matter...
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Now we need to find p.
Our assumption again: A = ut = Z;";l N (t)Ag
Since N,, = n.t, we have the simplification
(e o]
i Zk:l ny Ay,
Now subsitute in our expression for n,:
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Closed form expression for p.

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Main story

DA 47 of 57


http://www.uvm.edu
http://www.uvm.edu/pdodds

| Universality?

Now we need to find p.

Our assumption again: A = ut = Z;";l N (t)Ag
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Closed form expression for p.
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Now we need to find p.

Our assumption again: A = ut = Z;";l N (t)Ag
Since N,, = n.t, we have the simplification

i Z;il ny Ay,

Now subsitute in our expression for n,:

Closed form expression for p.
We can solve for p in some cases.

Our assumption that A = ut looks to be not too
horrible.
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.
General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
aka Weibull distributions.

Universality: now details of kernel do not matter.
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.
General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
aka Weibull distributions.
Universality: now details of kernel do not matter.

Distribution of degree is universal providing v < 1.
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