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Scale-free networks

<> Networks with power-law degree distributions
have become known as scale-free networks.

<> Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py, ~ k=7 for‘large' k

<& One of the seminal works in complex networks:
“Emergence of scaling in random

Barabasi and Albert,

e Science, 286, 509-511, 1999, [2
Times cited: ~ 23,5327 (as of October 8, 2015)

&> Somewhat misleading nomenclature...

Scale-free networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Primary example: hyperlink network of the Web

Much arguing about whether or networks are
‘scale-free’ or not...
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

$109eS (A) Yocor = 23 (B) Y = 2.1 209 (G) Yyouer = 4
vae 9of57
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~=25 ~=25 ~=25 ~=25
(k)=18 (k) =2.05333 (k) =1.66667 (k)=1.92
~=25 ~=25 ~=25 ~=25
(k)=16 (k) =1.50667 (k) =1.62667 (k)=18
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The big deal:

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

Nutshe

How does the exponent v depend on the
mechanism?

Do the mechanism details matter?

References
—
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BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.

Step 2:

1. Growth—a new node appears at each time step

t=0,1,2, ..

2. Each new node makes m links to nodes already

present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.

BA model

Definition: A, is the attachment kernel for a node

with degree k.
For the original model:

A, =k

Definition: P,uacn(k, t) is the attachment

probability.
For the original model:

ki (t)

ki (t)

Pattach(nOde i, t) = N(t

Jj=1

)

z:max(t) kN, (t)

=0

where N(t) = mq + t is # nodes at time ¢
and N, (t) is # degree k nodes at time ¢.

Approximate analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(ki,N-H - ki,N) =m

=

ki n

N(t) :
o1k

5(1)

Assumes probability of being connected to is

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will

be smooth and stable.

Approximate k; ., — k; n with Sk, :

d
ki =m

dt

where t = N(t) — my.

D

k, (t)

1
N(t)
=1

k

(1)
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Deal with denominator: each added node brings m networks
new edges.
N(#) Scale-free
Z k.j (t) = 2tm rjeytwf)rks
i=1 Modelde

The node degree equation now simplifies:

) ; 1
gibe =M o =m0
ijl ()
Rearrange and solve: References
|
dk,(t) dt

k() 2t

Next find ¢; ...

va 17of 57
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Approximate analysis

Scale-free
networks

Know ith node appears at time Scale-free

networks

. [ i—mg fori>mg
bstart ™ 0 fori <mg

So for i > my, (exclude initial nodes), we must have

1/2
) fort >t; sear

h@zm(

ti,start

2

All node degrees grow as ¢'/? but later nodes have 7
larger t, sare Which flattens out growth curve.
First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme (',

“vae 180f57
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Approximate analysis
We are already at the Zipf distribution:

Scale-free
networks

Degree of node i is the size of the ith ranked node:  sclefree

networks
Main story
Model detail
Analysis

1/2
) fort > t; gan. e,

Robustnes

h@:m<

ti,start

From before:

. [ i—mg fori>mg
7,start — 0 fori S mg

Nutshe

References
——

SO t; start ~ @ Which is the rank. i
We then have: :

k,oci 2 =,

Our connectiona=1/(y —1)ory =1+ 1/a then
gives

va 190f57

ly=1+1/(1/2) =3

Approximate analysis:

m=3

tz‘,start =

1,2,5, and 10.

Degree distribution

So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

dt start
Pr(t; start)dt; start = 71%
Also use
1/2 2
m=t
k.(t)=m =t = —.
i) (ti,star‘c> STk (1)2
Transform variables—Jacobian:
dti,start _ m>t
dk; k(1)

Degree distribution

Pr(ki)dkz‘ = Pr(tz‘ ,start)dti,start

dti,start

dk,

= Pr(t; sar)dk;

1 m2t
RO

m2

= 2w

o ky2dk, .
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Main story

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)
In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)

Nutshe
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From Barabasi and Albert’s original paper ?':
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
L0pes (A) Yocor = 2.3, (8) Yoy = 21 and (C)

Ypower

va@ 240f57

PoCS | @pocsvox

Examples

Scale-free
networks

Scale-free
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Main story
detail

Analysis

Web ~ =~ 2.1forin-degree
Web ~ =~ 2.45 for out-degree
Movie actors v ~ 2.3
Words (synonyms) ~ =~ 2.8

Nutshe

The Internets is a different business...

References
e

oo
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Things to do and questions

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect v?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter? Maybe ...

Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If Py e (k) o k, we need to
determine the constant of proportionality.

We need to know what everyone's degree is...
PA is .. an outrageous assumption of node
capability.

But a very simple mechanism saves the day...

Preferential attachment through
randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends' friends.
Can also do this at random.
Assuming the existing network is random, we
know probability of a random friend having
degree k is

Q) x kP,
So rich-gets-richer scheme can now be seen to
work in a natural way.

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks

D 260f57

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks

D 280f57

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks

va 290f57


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds

Robustness PoCS | @pocsvox Robustness POCS | @pocsvox

Scale-free Scale-free
networks networks
Albert et al., Nature, 2000:
“Error and attack tolerance of complex Scale-free Scale-free
networks” M networks Not a robust pa pe r: networks

Main story

“The “Robust yet Fragile” nature of the

Standard random networks (Erdés-Rényi)
versus Scale-free networks:

Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005. !

HOT networks versus scale-free networks

Same degree distributions, different
< arrangements.
': Doyle et al. take a look at the actual Internet.
° Excellent project material. 5
» = al
Exponential Scale-free
from Albert et al., 2000 “a¢ 310f57 a > 340f57
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Robustness e Generalized model seseree
networks networks
12 . . Scale-free Scale-free
a networks networks
o} et Plots of network Fooling with the mechanism:
of e s ] diameter as a function 2001: Krapivsky & Redner (KR)“ explored the
Jon® 1 of fraction of nodes general attachment kernel:
S ecooscosnnoaaaas removed
dos o0 o8 Erd8s-Rényi versus Pr(attach to node i) x A, = k¥
o A [e ‘ scale-free networks .
s . where A, is the attachment kernel and v > 0.
e Y A blue symbols = ) )
ol & Lo random removal References KR also looked at changing the details of the
o Attack O Attack p——
g sl oo ] ) attachment kernel.
s RS red symbols = i o
T I targeted removal KR model will be fully studied in CoNKS.
o , N S . . ( D
0.00 0.01 0.02 ‘D.DU 0.01 0.02 (most connected flrst) i 3|
from Albert et al., 2000
“va@ 320f57 D 370f57
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Robustness S Generalized model S
networks networks
Scale-free networks are thus robust to random Scale-free we'll follow KR's approach using rate equations(4. ...

networks networks

failures yet fragile to targeted ones.
All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Here's the set up:

dn 1
Ttk = 7 [Ae1Neoy — AN + 05y
where N, is the number of nodes of degree k.
1. One node with one link is added per unit time.
‘ 2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either: feferences 3. The second term corresponds to degree k nodes
1. Physically larger nodes that may be harder to \ becoming degree k — 1 nodes.
‘target’ 4. Ais the correct normalization (coming up).
2. or subnetworks of smaller, normal-sized nodes. AR 5. Seed with some initial network ( |
d | fyari . h ezt (e.g., a connected pair) | lasita
Need to explore cost of various targeting schemes. 6. Detail: A, =0

va 330f57 a > 380f57
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Scale-free
networks

In general, probability of attaching to a specific
node of degree k at time t is Scalefree

networks

Pr(attach to node i) = A

A(t)
where A(t) = 377 | Ap N, (1)
E.g., for BAmodel, A, = kand A =327 kN, (t).
For A,, = k, we have

e} Reter’en(ss
A(t) =Y K Ny(t) =2t (S

k'=1

since one edge is being added per unit time.
Detail: we are ignoring initial seed network’s
edges. i8]

“aC 40of 57
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So now
dN, 1 Pl
9 Z[Ak—lNk—l_Aka}'i_akl !
becomes
dnN. 1
Ttk =5 [((k—1)Np_y — kNg] + 61

As for BA method, look for steady-state growing
solution: N, = n,.t.

We replace dN,, /dt with dn,t/dt = n,,.
We arrive at a difference equation:

ny = L (= Dng_1f — kngf] + 051

2f
Qe 410f57
. . 7 PoCS | @pocsvox
Universality? Scale-free
networks
As expected, we have the same result as for the Scaledree

BA model: v

N, (t) = n,, ()t o< k=3¢ for large k.

Now: what happens if we start playing around
with the attachment kernel A,?

Again, we're asking if the result v = 3 universal (Z?

KR's natural modification: A, = k¥ with v # 1.
But we'll first explore a more subtle modification ﬁfte’rw;s
of A,, made by Krapivsky/Redner /] ‘
Keep A, linear in k but tweak details.

|dea: Relax from 4, = kto A;, ~kas k — cc.

oo

vae 430f57

Universality?

Recall we used the normalization:
A(t) =Y K Ny (t) = 2t for large ¢.
k’=1
We now have
Alt) =D ANy (1)
k’'=1

where we only know the asymptotic behavior of
Ay,
We assume that A4 = it

We'll find i later and make sure that our
assumption is consistent.

As before, also assume N (t) = nt.

Universality?
For A, = k we had
1
e =35 (k= 1ny_q —kngl + 64
This now becomes

1
ng = m [Ap_1mp 1 — Apng] + k1
= (A +png = Ap_1mp_q + gy

Again two cases:

[ A

k=1my=—F_,
Yt A

k>1my, =ng,_q

Universality?

Time for pure excitement: Find asymptotic
behavior of n, given A, — k as k — oo.

For large k, we find:

k
_ K 1
TkaAfijlleALocl\,
- 7

Since p depends on A4, details matter...

p+ AL
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Universality?

Now we need to find p.

Our assumption again: A = ut = 3°° Ny (t)A,
Since N,, = n,t, we have the simplification

= EZ: ny Ay

Now subsitute in our expression for n;:

Ly= i}/l:[ A0

A

Closed form expression for u.
We can solve for i in some cases.

Our assumption that A = ut looks to be not too
horrible.

Universality?

Consider tunable A; = a and 4, = k for k > 2.
Again, we can find v = p + 1 by finding p.
Closed form expression for u:

= D(k+ 124 p)
F'k+p+1)

M

#mathisfun

14+ v1+8a

pp—1)=2a=p= 5

Since v = p+ 1, we have
0<a<oo=2<y< 0

Craziness...

Sublinear attachment kernels

Rich-get-somewhat-richer:

Ay ~ kY with0 < v < 1.
General finding by Krapivsky and Redner: 4]
~ k—Ve—c1k! v+correction terms

Ny

Stretched exponentials (truncated power laws).
aka Weibull distributions.

Universality: now details of kernel do not matter.
Distribution of degree is universal providing v < 1.
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Sublinear attachment kernels Fots | Gpocsiox

Scale-free
networks

Scale-free
networks

Details:
For1/2<v<1:

(,J v_gl— u)
Nk v

For1/3<v<1/2:

klv u? ,‘12V
Nk 5 e

And for 1/(r+1) < v < 1/r, we have r pieces in

exponential.
“a ¢ 510f57
Superlinear attachment kernels S

networks

Scale-free
networks

Rich-get-much-richer:
Ay ~ kY withv > 1.

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.

For v > 2, all but a finite # of nodes connect to one

node.
va 530f57
N UtShe| | . PoCS | @pocsvox

Scale-free
networks

Overview Key Points for Models of Networks:
Obvious connections with the vast extant field of
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.
Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

Scale-free
networks

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

Still much work to be done, especially with respect
to dynamics... #excitement

va > 550f57
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