System Robustness

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

 ${\it Licensed under the \it Creative \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it A$

PoCS | @pocsvox System Robustness

Robustness

References

Outline

Robustness

HOT theory Narrative causality Random forests **Self-Organized Criticality** COLD theory Network robustness

References

PoCS | @pocsvox

System Robustness

Robustness

夕 Q ← 4 of 40

PoCS | @pocsvox

System Robustness

These slides are brought to you by:

PoCS | @pocsvox System Robustness

少 Q (~ 1 of 40

Robustness

References

Robustness

- Many complex systems are prone to cascading catastrophic failure: exciting!!!
 - Blackouts
 - Disease outbreaks
 - Wildfires
 - Earthquakes
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...

HOT theory Narrative causality Random forests Self-Organized Crit COLD theory

References

少 Q ← 7 of 40

These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

On Instagram at pratchett_the_cat

PoCS | @pocsvox System Robustness

WW S 少 Q (→ 2 of 40

Robustness

少 q (~ 3 of 40

Our emblem of Robust-Yet-Fragile:

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests

少 Q (~ 8 of 40

Robustness

- System robustness may result from
 - 1. Evolutionary processes
 - 2. Engineering/Design
- Idea: Explore systems optimized to perform under uncertain conditions.
- The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- The catchphrase: Robust yet Fragile
- 🚓 The people: Jean Carlson and John Doyle 🗹
- Great abstracts of the world #73: "There aren't any." [7]

PoCS | @pocsvox System Robustness

Robustness

HOT theory

•9 of 40

PoCS | @pocsvox

System Robustness

HOT theory

References

Robustness

Forest fire example: [5]

- \clubsuit Square $N \times N$ grid
- & Sites contain a tree with probability ρ = density
- Sites are empty with probability 1ρ
- \clubsuit Fires start at location (i, j) according to some distribution $P_{i,i}$
- Fires spread from tree to tree (nearest neighbor) only)
- Connected clusters of trees burn completely
- Empty sites block fire
- Best case scenario: Build firebreaks to maximize average # trees left intact given one spark

PoCS | @pocsvox System Robustness

Robustness HOT theory

References

•2 a 0 12 of 40

PoCS | @pocsvox

System Robustness

HOT theory

References

Robustness

Features of HOT systems: [5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental
- A Highly specialized, low entropy configurations
- Power-law distributions appear (of course...)

Robustness

Forest fire example: [5]

- Build a forest by adding one tree at a time
- Test ways of adding one tree
- \clubsuit Average over P_{ij} = spark probability
- A D=1: random addition

Measure average area of forest left untouched

- $\Re f(c)$ = distribution of fire sizes c (= cost)
- \Re Yield = $Y = \rho \langle c \rangle$

• വരം 13 of 40

PoCS | @pocsvox

System Robustness

Robustness

HOT theory

References

Robustness

Robustness

HOT combines things we've seen:

- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- MIWO is good: Mild In, Wild Out
- X has a characteristic size but Y does not

PoCS | @pocsvox System Robustness

少 Q (~ 10 of 40

Robustness HOT theory Narrative causality Random forests

References

Specifics:

$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

- \clubsuit In the original work, $b_y > b_x$
- Distribution has more width in y direction.

•9 α (~ 14 of 40

•9 q (~ 11 of 40

HOT Forests

N = 64

- (a) D = 1
- (b) D = 2
- (c) D = N
- $\text{(d)}\ D=N^2$

 P_{ij} has a Gaussian decay

- Optimized forests do well on average (robustness)
- But rare extreme events occur (fragility)

PoCS | @pocsvox System Robustness

Robustness HOT theory

Random forests
Self-Organized Criticality
COLD theory

References

夕 Q № 15 of 40

Random Forests

D=1: Random forests = Percolation [11]

- Randomly add trees.
- & Below critical density ρ_{c} , no fires take off.
- $\ \, \& \,$ Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.
- Forest is random and featureless.

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

少 Q (→ 20 of 40

HOT Forests

FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D=1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N=64, and (b) for D=2 and $N=2,2^2,\ldots,2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L=\log[\langle f \rangle/(1-\langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

PoCS | @pocsvox System Robustness

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References

HOT forests nutshell:

Highly structured

- $\ \,$ Power law distribution of tree cluster sizes for $\rho > \rho_c$
- $\red {\Bbb A}$ No specialness of ho_c
- Forest states are tolerant
- Uncertainty is okay if well characterized
- $\ \, \& \ \, \ \, \mbox{If P_{ij} is characterized poorly, failure becomes highly likely}$

PoCS | @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticalit
COLD theory
Network robustness
References

少<a>० • 21 of 40

PoCS | @pocsvox

System Robustness

Robustness

•

HOT Forests:

X = 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D=1,2,N, and N^2 with N=64, and (b) for $D=N^2$, and N=64 at equal density increments of 0.1, ranging at $\rho=0.1$ (bottom curve) to $\rho=0.9$ (top curve).

PoCS | @pocsvox System Robustness

Robustness

少 Q (~ 16 of 40

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Reference

少 Q (№ 17 of 40

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

Fig. 1. In Sp-lop Basis 100 comparison of DC, WWW, CF, and FF data (prime) with R modelity follising (etg. $\phi=0.00$, 5.00; $E_{\rm S}$ or -1; $V_{\rm F} = 1/10$, 100.0 respectively) and the SCD FF model $\phi=0.15$, disabled, in Reference lines of $\alpha-2$ (fichated) are included. The constabled on the Horizonto of Respectives ($N^2 \in \mathbb{N}_2$) and the SCD FF model $\phi=0.15$, disabled, $N^2 \in \mathbb{N}_2$ (so the second of the second of the second of the SCD FF model $N^2 \in \mathbb{N}_2$) and $N^2 \in \mathbb{N}_2$ (so the second of the secon

- PLR = probability-lossresource.
- DC = Data Compression.

 $l_i = f(r_i)$ and $\sum r_i \leq R$.

Horror: log. Screaming: "The base! What is the base!? You monsters!"

References

少 q (~ 22 of 40

HOT theory:

The abstract story, using figurative forest fires:

- & Design system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} Pr(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\mathrm{sites}}} x_i = \mathrm{constant}.$

1. Cost: Expected size of fire:

$$C_{ ext{fire}} \propto \sum_{i=1}^{N_{ ext{sites}}} p_i a_i.$$

 a_i = area of $i{\rm th}$ site's region, and p_i = avg. prob. of fire at $i{\rm th}$ site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{\text{firewalls}} \propto \sum_{i=1}^{N_{\text{sites}}} a_i^{1/2} a_i^{-1}.$$

- We are assuming isometry.
- \bigcirc In d dimensions, 1/2 is replaced by (d-1)/d

3. Insert question from assignment 7 ☑ to find:

$$\Pr(a_i) \propto a_i^{-\gamma}.$$

Continuum version:

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) d\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) d\vec{x} = c$$

where c is a constant.

Claim/observation is that typically [4]

$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$

 \mathfrak{F} For spatial systems with barriers: $\beta = d$.

PoCS | @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References

少 Q (~ 23 of 40

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

•9 q (~ 24 of 40

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticalit COLD theory Network robustness References

少 q (~ 25 of 40

SOC theory

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

PoCS | @pocsvox

System Robustness

Robustness

References

Self-Organized Criticality

少 Q (~ 28 of 40

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

"How Nature Works: the Science of Self-Organized Criticality" **3** D by Per Bak (1997). [2]

Avalanches of Sand and Rice ...

"Complexity and Robustness"

Proc. Natl. Acad. Sci., 99, 2538-2545,

少 Q (~ 29 of 40

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

HOT versus SOC

Both produce power laws

2002. [6]

- Optimization versus self-tuning
- HOT systems viable over a wide range of high densities
- SOC systems have one special density

Carlson and Doyle,

- HOT systems produce specialized structures
- SOC systems produce generic structures

少 q (~ 30 of 40

HOT theory—Summary of designed tolerance [6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal configuration	Generic, homogeneous, self-similar	Structured, heterogeneous, self-dissimilar
2	Robustness	Generic	Robust, yet fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for power laws	Critical internal fluctuations	Robust performance
7	Exponent α	Small	Large
8	α vs. dimension d	$\alpha \approx (d-1)/10$	$\alpha \approx 1/d$
9	DDOFs	Small (1)	Large (∞)
10	Increase model resolution	No change	New structures, new sensitivities
11	Response to forcing	Homogeneous	Variable

PoCS | @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

We'll return to this later on:

Robustness

Network robustness.

Albert et al., Nature, 2000:
"Error and attack tolerance of complex networks" [1]

General contagion processes acting on complex networks. [13, 12]

Similar robust-yet-fragile stories ...

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness References

少 Q (~ 36 of 40

PoCS | @pocsvox

System Robustness

HOT theory Narrative causality Random forests Self-Organized Crit COLD theory

References

COLD forests

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations [9]
- Weight cost of larges losses more strongly
- Increases average cluster size of burned trees...
- & ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

PoCS | @pocsvox System Robustness

少 Q (~ 31 of 40

Robustness HOT theory Narrative causality Random forests Self-Organized Criticalit COLD theory Network robustness

References

n forests ganized Criticality neeony k robustness [2] P. Bak.

How Nature Works: the Science of Self-Organized Criticality.

Error and attack tolerance of complex networks.

Springer-Verlag, New York, 1997.

[1] R. Albert, H. Jeong, and A.-L. Barabási.

Nature, 406:378-382, 2000. pdf

[3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality - an explanation of 1/f noise.

Phys. Rev. Lett., 59(4):381–384, 1987. pdf 2

[4] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf

少 Q (~ 37 of 40

PoCS | @pocsvox

System Robustness

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

PoCS | @pocsvox System Robustness

•> < ← 33 of 40

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

References II

References I

[5] J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf

[6] J. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

[7] J. Doyle.
Guaranteed margins for LQG regulators.
IEEE Transactions on Automatic Control,
23:756–757, 1978. pdf ぱ

Random forests Self-Organized Criticality COLD theory Network robustness

References

夕 Q (№ 34 of 40

少 q (~ 38 of 40

References III

- [8] H. J. Jensen. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, UK, 1998.
- [9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.
- [10] D. Sornette.
 <u>Critical Phenomena in Natural Sciences.</u>
 Springer-Verlag, Berlin, 1st edition, 2003.
- [11] D. Stauffer and A. Aharony.
 <u>Introduction to Percolation Theory.</u>
 Taylor & Francis, Washington, D.C., Second edition, 1992.

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

•2 • 39 of 40

References IV

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007. pdf

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.
Science, 296:1302–1305, 2002. pdf ☑

PoCS | @pocsvox System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

References

少 < ← 40 of 40