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These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

 On Instagram at pratchett_the_cat
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Models

Some important models:
1. Generalized random networks;
2. Small-world networks;
3. Generalized affiliation networks;
4. Scale-free networks;
5. Statistical generative models (�∗).
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Random network generator for � = 3:

 Get your own exciting generator here.
 As � ↗, polyhedral die rapidly becomes a ball...

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2017-08UVM-300/docs/2011-02-26random-network-generator.png
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Random networks

Pure, abstract random networks:
 Consider set of all networks with � labelled nodes

and � edges.
 Standard random network =

one randomly chosen network from this set.
 To be clear: each network is equally probable.
 Sometimes equiprobability is a good assumption,

but it is always an assumption.
 Known as Erdős-Rényi random networks or ER

graphs.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Random networks—basic features:
 Number of possible edges:0 ≤ � ≤ (�2 ) = �(� − 1)2
 Limit of � = 0: empty graph.
 Limit of � = (�2 ): complete or fully-connected

graph.
 Number of possible networks with � labelled

nodes: 2(�2 ) ∼ � ln22 �2 .
 Given � edges, there are ((�2 )� ) different possible

networks.
 Crazy factorial explosion for 1 ≪ � ≪ (�2 ).
 Real world: links are usually costly so real

networks are almost always sparse.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Random networks

How to build standard random networks:
 Given � and �.
 Two probablistic methods (we’ll see a third later

on)

1. Connect each of the (�2 ) pairs with appropriate
probability �.
 Useful for theoretical work.

2. Take � nodes and add exactly � links by selecting
edges without replacement.
 Algorithm: Randomly choose a pair of nodes ք andօ, ք ≠ օ, and connect if unconnected; repeat until

all � edges are allocated.
 Best for adding relatively small numbers of links

(most cases).
 1 and 2 are effectively equivalent for large � .

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Random networks
A few more things:
 For method 1, # links is probablistic:⟨�⟩ = �(�2 ) = �12�(� − 1)
 So the expected or average degree is⟨Ԛ⟩ = 2 ⟨�⟩�= 2� �12�(� − 1) = ✁2

✚✚� �1
✁2✚✚�(� − 1) = �(� − 1).

 Which is what it should be...
 If we keep ⟨Ԛ⟩ constant then � ∝ 1/� → 0 as� → ∞.
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Random networks: examples

Next slides:
Example realizations of random networks
 � = 500
 Vary �, the number of edges from 100 to 1000.
 Average degree ⟨Ԛ⟩ runs from 0.4 to 4.
 Look at full network plus the largest component.
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Random networks: examples for �=500

� = 100⟨Ր⟩ = 0.4

� = 260⟨Ր⟩ = 1.04

� = 200⟨Ր⟩ = 0.8

� = 280⟨Ր⟩ = 1.12

� = 230⟨Ր⟩ = 0.92

� = 300⟨Ր⟩ = 1.2

� = 240⟨Ր⟩ = 0.96

� = 500⟨Ր⟩ = 2

� = 250⟨Ր⟩ = 1

� = 1000⟨Ր⟩ = 4
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Random networks: largest components

� = 100⟨Ր⟩ = 0.4

� = 260⟨Ր⟩ = 1.04

� = 200⟨Ր⟩ = 0.8

� = 280⟨Ր⟩ = 1.12

� = 230⟨Ր⟩ = 0.92

� = 300⟨Ր⟩ = 1.2

� = 240⟨Ր⟩ = 0.96

� = 500⟨Ր⟩ = 2

� = 250⟨Ր⟩ = 1

� = 1000⟨Ր⟩ = 4
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Random networks: examples for �=500

� = 250⟨Ր⟩ = 1
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� = 250⟨Ր⟩ = 1

� = 250⟨Ր⟩ = 1
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Random networks: largest components
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Giant component
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Clustering in random networks:
 For construction method 1, what is the clustering

coefficient for a finite network?
 Consider triangle/triple clustering coefficient: [7]�2 = 3 × #triangles

#triples
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Clustering in random networks:
 For construction method 1, what is the clustering

coefficient for a finite network?
 Consider triangle/triple clustering coefficient: [7]�2 = 3 × #triangles

#triples

 Recall: �2 = probability that
two friends of a node are
also friends.

 Or: �2 = probability that a
triple is part of a triangle.

 For standard random
networks, we have simply
that �2 = �.
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Clustering in random networks:

 So for large random
networks (� → ∞),
clustering drops to zero.

 Key structural feature of
random networks is that
they locally look like
pure branching networks

 No small loops.
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Degree distribution:
 Recall ԅՐ = probability that a randomly selected

node has degree Ԛ.
 Consider method 1 for constructing random

networks: each possible link is realized with
probability �.

 Now consider one node: there are ‘� − 1 choose Ԛ’
ways the node can be connected to Ԛ of the other� − 1 nodes.

 Each connection occurs with probability �, each
non-connection with probability (1 − �).

 Therefore have a binomial distribution:ԅ(Ԛ; �, �) = (� − 1Ԛ )�Ր(1 − �)�−1−Ր.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Binomial_distribution
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 Now consider one node: there are ‘� − 1 choose Ԛ’
ways the node can be connected to Ԛ of the other� − 1 nodes.

 Each connection occurs with probability �, each
non-connection with probability (1 − �).

 Therefore have a binomial distribution:ԅ(Ԛ; �, �) = (� − 1Ԛ )�Ր(1 − �)�−1−Ր.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Binomial_distribution
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Limiting form of ԅ(Ԛ; �, �):
 Our degree distribution:ԅ(Ԛ; �, �) = (�−1Ր )�Ր(1 − �)�−1−Ր.
 What happens as � → ∞?
 We must end up with the normal distribution

right?
 If � is fixed, then we would end up with a Gaussian

with average degree ⟨Ԛ⟩ ≃ �� → ∞.
 But we want to keep ⟨Ԛ⟩ fixed...
 So examine limit of ԅ(Ԛ; �, �) when � → 0 and� → ∞ with ⟨Ԛ⟩ = �(� − 1) = constant.ԅ(Ԛ; �, �) ≃ ⟨Ԛ⟩ՐԚ! (1 − ⟨Ԛ⟩� − 1)�−1−Ր → ⟨Ԛ⟩ՐԚ! �−⟨Ր⟩
 This is a Poisson distribution with mean ⟨Ԛ⟩.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Poisson_distribution
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Poisson basics:

ԅ(Ԛ; �) = �ՐԚ! �−�  � > 0
 Ԛ = 0, 1, 2, 3, …
 Classic use: probability

that an event occurs Ԛ
times in a given time
period, given an
average rate of
occurrence.

 e.g.:
phone calls/minute,
horse-kick deaths.

 ‘Law of small numbers’

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Poisson basics:

 Normalization: we must have∞∑Ր=0 ԅ(Ԛ; ⟨Ԛ⟩) = 1
 Checking: ∞∑Ր=0 ԅ(Ԛ; ⟨Ԛ⟩) = ∞∑Ր=0 ⟨Ԛ⟩ՐԚ! �−⟨Ր⟩

= �−⟨Ր⟩ ∞∑Ր=0 ⟨Ԛ⟩ՐԚ!= �−⟨Ր⟩�⟨Ր⟩ = 1฀

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Poisson basics:
 Mean degree: we must have⟨ֆ⟩ = ∞∑Ր=0 ֆձ(ֆ; ⟨ֆ⟩).
 Checking: ∞∑Ր=0 ֆձ(ֆ; ⟨ֆ⟩) = ∞∑Ր=0 ֆ⟨ֆ⟩Րֆ! �−⟨Ր⟩

= �−⟨Ր⟩ ∞∑Ր=1 ⟨ֆ⟩Ր(ֆ − 1)!= ⟨ֆ⟩�−⟨Ր⟩ ∞∑Ր=1 ⟨ֆ⟩Ր−1(ֆ − 1)!= ⟨ֆ⟩�−⟨Ր⟩ ∞∑Վ=0 ⟨ֆ⟩Վք! = ⟨ֆ⟩�−⟨Ր⟩�⟨Ր⟩ = ⟨ֆ⟩฀
 In CocoNuTs, we find a different, crazier way of doing

this...
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http://www.uvm.edu/pdodds
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Poisson basics:
 Mean degree: we must have⟨ֆ⟩ = ∞∑Ր=0 ֆձ(ֆ; ⟨ֆ⟩).
 Checking: ∞∑Ր=0 ֆձ(ֆ; ⟨ֆ⟩) = ∞∑Ր=0 ֆ⟨ֆ⟩Րֆ! �−⟨Ր⟩

= �−⟨Ր⟩ ∞∑Ր=1 ⟨ֆ⟩Ր(ֆ − 1)!= ⟨ֆ⟩�−⟨Ր⟩ ∞∑Ր=1 ⟨ֆ⟩Ր−1(ֆ − 1)!= ⟨ֆ⟩�−⟨Ր⟩ ∞∑Վ=0 ⟨ֆ⟩Վք! = ⟨ֆ⟩�−⟨Ր⟩�⟨Ր⟩ = ⟨ֆ⟩฀
 In CocoNuTs, we find a different, crazier way of doing

this...
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Poisson basics:

 The variance of degree distributions for random
networks turns out to be very important.

 Using calculation similar to one for finding ⟨Ԛ⟩ we
find the second moment to be:⟨Ԛ2⟩ = ⟨Ԛ⟩2 + ⟨Ԛ⟩.

 Variance is then�2 = ⟨Ԛ2⟩ − ⟨Ԛ⟩2 = ⟨Ԛ⟩2 + ⟨Ԛ⟩ − ⟨Ԛ⟩2 = ⟨Ԛ⟩.
 So standard deviation � is equal to √⟨Ԛ⟩.
 Note: This is a special property of Poisson

distribution and can trip us up...
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Neural reboot (NR):

Unrelated: Feline elevation
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General random networks
 So... standard random networks have a Poisson

degree distribution
 Generalize to arbitrary degree distribution ԅՐ.
 Also known as the configuration model. [7]

 Can generalize construction method from ER
random networks.

 Assign each node a weight � from some
distribution ԅ� and form links with probabilityԅ(link between Ԙ and ԙ) ∝ �Վ�Տ.

 But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing

nodes with fixed degrees.
2. Examining mechanisms that lead to networks with

certain degree distributions.
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Random networks: examples

Coming up:
Example realizations of random networks with power
law degree distributions:
 � = 1000.
 ԅՐ ∝ Ԛ−� for Ԛ ≥ 1.
 Set ԅ0 = 0 (no isolated nodes).
 Vary exponent ᅭ between 2.10 and 2.91.
 Again, look at full network plus the largest

component.
 Apart from degree distribution, wiring is random.
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Random networks: examples for �=1000

� = 2.1⟨Ր⟩ = 3.448

� = 2.55⟨Ր⟩ = 1.712

� = 2.19⟨Ր⟩ = 2.986

� = 2.64⟨Ր⟩ = 1.6

� = 2.28⟨Ր⟩ = 2.306

� = 2.73⟨Ր⟩ = 1.862

� = 2.37⟨Ր⟩ = 2.504

� = 2.82⟨Ր⟩ = 1.386

� = 2.46⟨Ր⟩ = 1.856

� = 2.91⟨Ր⟩ = 1.49
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Random networks: largest components
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Outline

Pure random networks
Definitions
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Models

Generalized random networks:
 Arbitrary degree distribution ԅՐ.
 Create (unconnected) nodes with degrees

sampled from ԅՐ.
 Wire nodes together randomly.
 Create ensemble to test deviations from

randomness.
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Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
40 of 82

Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
40 of 82

Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
40 of 82

Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
40 of 82

Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
41 of 82

Building random networks: First rewiring

Phase 2:
 Now find any (A) self-loops and (B) repeat edges

and randomly rewire them.

(A) (B)
 Being careful: we can’t change the degree of any

node, so we can’t simply move links around.
 Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm
1

1

i
3

i
4

i
2

e
2

e
i

 Randomly choose two edges.
(Or choose problem edge and
a random edge)

 Check to make sure edges are
disjoint.

 Rewire one end of each edge.

 Node degrees do not change.

 Works if �1 is a self-loop or
repeated edge.

 Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks

Phase 2:
 Use rewiring algorithm to remove all self and

repeat loops.

Phase 3:
 Randomize network wiring by applying rewiring

algorithm liberally.
 Rule of thumb: # Rewirings ≃ 10 × # edges [5].
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Random sampling

 Problem with only joining up stubs is failure to
randomly sample from all possible networks.

 Example from Milo et al. (2003) [5]:
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Random sampling

 Problem with only joining up stubs is failure to
randomly sample from all possible networks.

 Example from Milo et al. (2003) [5]:
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Sampling random networks

 What if we have ԅՐ instead of �Ր?
 Must now create nodes before start of the

construction algorithm.
 Generate � nodes by sampling from degree

distribution ԅՐ.
 Easy to do exactly numerically since Ԛ is discrete.
 Note: not all ԅՐ will always give nodes that can be

wired together.
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Outline
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Network motifs

 Idea of motifs [8] introduced by Shen-Orr, Alon et
al. in 2002.

 Looked at gene expression within full context of
transcriptional regulation networks.

 Specific example of Escherichia coli.
 Directed network with 577 interactions (edges)

and 424 operons (nodes).
 Used network randomization to produce

ensemble of alternate networks with same degree
frequency �Ր.

 Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs

feedforward loop
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 � only turns on in response to sustained activity in�.
 Turning off � rapidly turns off �.
 Analogy to elevator doors.
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Network motifs

single input module (SIM)
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 Master switch.
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Network motifs

dense overlapping regulons (DOR)
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Network motifs

 Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

 For more, see work carried out by Wiggins et al. at
Columbia.
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The edge-degree distribution:
 The degree distribution ձՐ is fundamental for our

description of many complex networks

 Again: ձՐ is the degree of randomly chosen node.

 A second very important distribution arises from
choosing randomly on edges rather than on nodes.

 Define ղՐ to be the probability the node at a random
end of a randomly chosen edge has degree ֆ.

 Now choosing nodes based on their degree (i.e., size):ղՐ ∝ ֆձՐ
 Normalized form:ղՐ = ֆձՐ∑∞Ր′=0 ֆ′ձՐ′ = ֆձՐ⟨ֆ⟩ .
 Big deal: Rich-get-richer mechanism is built into this

selection process.
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 Probability of randomly
selecting a node of degree ֆ
by choosing from nodes:ձ1 = 3/7, ձ2 = 2/7, ձ3 = 1/7,ձ6 = 1/7.

 Probability of landing on a
node of degree ֆ after
randomly selecting an edge
and then randomly choosing
one direction to travel:ղ1 = 3/16, ղ2 = 4/16,ղ3 = 3/16, ղ6 = 6/16.

 Probability of finding #
outgoing edges = ֆ after
randomly selecting an edge
and then randomly choosing
one direction to travel:ճ0 = 3/16 ճ1 = 4/16,ճ2 = 3/16, ճ5 = 6/16.
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The edge-degree distribution:

 For random networks, ԆՐ is also the probability
that a friend (neighbor) of a random node has Ԛ
friends.

 Useful variant on ԆՐ:ԇՐ = probability that a friend of a random node
has Ԛ other friends.

 ԇՐ = (Ԛ + 1)ԅՐ+1∑Ր′=0(Ԛ′ + 1)ԅՐ′+1 = (Ԛ + 1)ԅՐ+1⟨Ԛ⟩
 Equivalent to friend having degree Ԛ + 1.
 Natural question: what’s the expected number of

other friends that one friend has?
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The edge-degree distribution:
 Given ճՐ is the probability that a friend has ֆ other

friends, then the average number of friends’ other
friends is ⟨ֆ⟩� = ∞∑Ր=0 ֆճՐ = ∞∑Ր=0 ֆ(ֆ + 1)ձՐ+1⟨ֆ⟩= 1⟨ֆ⟩ ∞∑Ր=1 ֆ(ֆ + 1)ձՐ+1= 1⟨ֆ⟩ ∞∑Ր=1 ((ֆ + 1)2 − (ֆ + 1)) ձՐ+1
(where we have sneakily matched up indices)= 1⟨ֆ⟩ ∞∑Տ=0(օ2 − օ)ձՏ (using j = k+1)

= 1⟨ֆ⟩ (⟨ֆ2⟩ − ⟨ֆ⟩)
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The edge-degree distribution:
 Note: our result, ⟨Ԛ⟩� = 1⟨Ր⟩ (⟨Ԛ2⟩ − ⟨Ԛ⟩), is true for

all random networks, independent of degree
distribution.

 For standard random networks, recall⟨Ԛ2⟩ = ⟨Ԛ⟩2 + ⟨Ԛ⟩.
 Therefore:⟨Ԛ⟩� = 1⟨Ԛ⟩ (⟨Ԛ⟩2 + ⟨Ԛ⟩ − ⟨Ԛ⟩) = ⟨Ԛ⟩
 Again, neatness of results is a special property of

the Poisson distribution.
 So friends on average have ⟨Ԛ⟩ other friends, and⟨Ԛ⟩ + 1 total friends...
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The edge-degree distribution:
 In fact, ԇՐ is rather special for pure random

networks …
 Substituting ԅՐ = ⟨Ԛ⟩ՐԚ! �−⟨Ր⟩

into ԇՐ = (Ԛ + 1)ԅՐ+1⟨Ԛ⟩
we haveԇՐ = (Ԛ + 1)⟨Ԛ⟩ ⟨Ԛ⟩(Ր+1)(Ԛ + 1)! �−⟨Ր⟩ = ✘✘✘✘(Ԛ + 1)

✚✚⟨Ԛ⟩ ⟨Ԛ⟩(Ր+✁1)
✘✘✘✘(Ԛ + 1)Ԛ!�−⟨Ր⟩

= ⟨Ԛ⟩ՐԚ! �−⟨Ր⟩ ≡ ԅՐ.
 #samesies.
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Two reasons why this matters
Reason #1:
 Average # friends of friends per node is⟨ֆ2⟩ = ⟨ֆ⟩ × ⟨ֆ⟩� = ⟨ֆ⟩ 1⟨ֆ⟩ (⟨ֆ2⟩ − ⟨ֆ⟩) = ⟨ֆ2⟩ − ⟨ֆ⟩.
 Key: Average depends on the 1st and 2nd moments ofձՐ and not just the 1st moment.

 Three peculiarities:

1. We might guess ⟨ֆ2⟩ = ⟨ֆ⟩(⟨ֆ⟩ − 1) but it’s actually⟨ֆ(ֆ − 1)⟩.
2. If ձՐ has a large second moment,

then ⟨ֆ2⟩ will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... [4, 6]
4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

More on peculiarity #3:
 A node’s average # of friends: ⟨Ԛ⟩
 Friend’s average # of friends: ⟨Ր2⟩⟨Ր⟩
 Comparison:⟨Ԛ2⟩⟨Ԛ⟩ = ⟨Ԛ⟩⟨Ԛ2⟩⟨Ԛ⟩2 = ⟨Ԛ⟩�2 + ⟨Ԛ⟩2⟨Ԛ⟩2 = ⟨Ԛ⟩ (1 + �2⟨Ԛ⟩2 ) ≥ ⟨Ԛ⟩
 So only if everyone has the same degree

(variance= �2 = 0) can a node be the same as its
friends.

 Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probabilityH, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4603 | DOI: 10.1038/srep04603 3

“Generalized friendship paradox in
complex networks: The case of scientific
collaboration”
Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. [3]

Your friends really are monsters #winners:1

 Go on, hurt me: Friends have more coauthors,
citations, and publications.

 Other horrific studies: your connections on
Twitter have more followers than you, are happy
than you [1], more sexual partners than you, …

 The hope: Maybe they have more enemies and
diseases too.

 Research possibility: The Frenemy Paradox.

1Some press here [MIT Tech Review].

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/eom2014a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/eom2014a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/eom2014a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/eom2014a.pdf
https://www.washingtonpost.com/news/style-blog/wp/2014/01/14/study-your-friends-really-are-happier-more-popular-than-you/
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probabilityH, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0
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“Generalized friendship paradox in
complex networks: The case of scientific
collaboration”
Eom and Jo,
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Your friends really are monsters #winners:1

 Go on, hurt me: Friends have more coauthors,
citations, and publications.

 Other horrific studies: your connections on
Twitter have more followers than you, are happy
than you [1], more sexual partners than you, …

 The hope: Maybe they have more enemies and
diseases too.

 Research possibility: The Frenemy Paradox.

1Some press here [MIT Tech Review].
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Related disappointment:

 Nodes see their friends’
color choices.

 Which color is more
popular?1

 Again: thinking in edge
space changes everything.

1https://www.washingtonpost.com/graphics/business/
wonkblog/majority-illusion/

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://www.washingtonpost.com/graphics/business/wonkblog/majority-illusion/
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Two reasons why this matters
(Big) Reason #2:
 ⟨Ԛ⟩� is key to understanding how well random

networks are connected together.
 e.g., we’d like to know what’s the size of the largest

component within a network.
 As � → ∞, does our network have a giant

component?
 Defn: Component = connected subnetwork of

nodes such that ∃ path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

 Defn: Giant component = component that
comprises a non-zero fraction of a network as� → ∞.

 Note: Component = Cluster

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Structure of random networks
Giant component:
 A giant component exists if when we follow a

random edge, we are likely to hit a node with at
least 1 other outgoing edge.

 Equivalently, expect exponential growth in node
number as we move out from a random node.

 All of this is the same as requiring ⟨Ԛ⟩� > 1.
 Giant component condition (or percolation

condition): ⟨Ԛ⟩� = ⟨Ԛ2⟩ − ⟨Ԛ⟩⟨Ԛ⟩ > 1
 Again, see that the second moment is an essential

part of the story.
 Equivalent statement: ⟨Ԛ2⟩ > 2⟨Ԛ⟩
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 Giant component condition (or percolation

condition): ⟨Ԛ⟩� = ⟨Ԛ2⟩ − ⟨Ԛ⟩⟨Ԛ⟩ > 1
 Again, see that the second moment is an essential

part of the story.
 Equivalent statement: ⟨Ԛ2⟩ > 2⟨Ԛ⟩

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Spreading on Random Networks

 For random networks, we know local structure is
pure branching.

 Successful spreading is ∴ contingent on single
edges infecting nodes.

 Focus on binary case with edges and nodes either
infected or not.

 First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
69 of 82

Global spreading condition
 We need to find: [2]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define �Ր1 as the probability that a node of

degree Ԛ is infected by a single infected edge.


R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩⏟
prob. of
connecting to
a degree ֆ node

� (Ԛ − 1)⏟
# outgoing
infected
edges

� �Ր1⏟
Prob. of
infection

+ ∞∑Ր=0 ⏞ԚԅՐ⟨Ԛ⟩ � 0⏟
# outgoing
infected
edges

� (1 − �Ր1)⏟⏟⏟⏟⏟
Prob. of
no infection

http://www.uvm.edu
http://www.uvm.edu/pdodds


PoCS|@pocsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
70 of 82

Global spreading condition

 Our global spreading condition is then:

R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩ � (Ԛ − 1) � �Ր1 > 1.
 Case 1–Rampant spreading: If �Ր1 = 1 then

R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩ � (Ԛ − 1) = ⟨Ԛ(Ԛ − 1)⟩⟨Ԛ⟩ > 1.
 Good: This is just our giant component condition

again.
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Global spreading condition

 Case 2—Simple disease-like: If �Ր1 = ᅬ < 1 then

R = ∞∑Ր=0 ԚԅՐ⟨Ԛ⟩ � (Ԛ − 1) � ᅬ > 1.
 A fraction (1-ᅬ) of edges do not transmit infection.
 Analogous phase transition to giant component

case but critical value of ⟨Ԛ⟩ is increased.
 Aka bond percolation.

 Resulting degree distribution ̃ԅՐ:̃ԅՐ = ᅬՐ ∞∑Վ=Ր (ԘԚ)(1 − ᅬ)Վ−ՐԅՎ.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Percolation_theory
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Global spreading condition
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Giant component for standard random networks:
 Recall ⟨Ԛ2⟩ = ⟨Ԛ⟩2 + ⟨Ԛ⟩.
 Determine condition for giant component:⟨Ԛ⟩� = ⟨Ԛ2⟩ − ⟨Ԛ⟩⟨Ԛ⟩ = ⟨Ԛ⟩2 + ⟨Ԛ⟩ − ⟨Ԛ⟩⟨Ԛ⟩ = ⟨Ԛ⟩
 Therefore when ⟨Ԛ⟩ > 1, standard random

networks have a giant component.
 When ⟨Ԛ⟩ < 1, all components are finite.
 Fine example of a continuous phase transition.
 We say ⟨Ԛ⟩ = 1 marks the critical point of the

system.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Phase_transition
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Random networks with skewed ԅֆ:
 e.g, if ԅՐ = �Ԛ−� with 2 < ᅭ < 3, Ԛ ≥ 1, then⟨Ԛ2⟩ = � ∞∑Ր=1 Ԛ2Ԛ−�

∼ ∫∞�=1 �2−�d�∝ �3−�∣∞�=1 = ∞ (≫ ⟨Ԛ⟩).
 So giant component always exists for these kinds

of networks.
 Cutoff scaling is Ԛ−3: if ᅭ > 3 then we have to look

harder at ⟨Ԛ⟩�.
 How about ԅՐ = ᅮՐՐ0?

http://www.uvm.edu
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Giant component
And how big is the largest component?

 Define մ1 as the size of the largest component.

 Consider an infinite ER random network with average
degree ⟨ֆ⟩.

 Let’s find մ1 with a back-of-the-envelope argument.

 Define � as the probability that a randomly chosen
node does not belong to the largest component.

 Simple connection: � = 1 − մ1.
 Dirty trick: If a randomly chosen node is not part of the

largest component, then none of its neighbors are.

 So � = ∞∑Ր=0 ձՐ�Ր
 Substitute in Poisson distribution...

http://www.uvm.edu
http://www.uvm.edu/pdodds
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degree ⟨ֆ⟩.

 Let’s find մ1 with a back-of-the-envelope argument.

 Define � as the probability that a randomly chosen
node does not belong to the largest component.

 Simple connection: � = 1 − մ1.
 Dirty trick: If a randomly chosen node is not part of the

largest component, then none of its neighbors are.

 So � = ∞∑Ր=0 ձՐ�Ր
 Substitute in Poisson distribution...
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Giant component

 Carrying on:ᅮ = ∞∑Ր=0 ԅՐᅮՐ = ∞∑Ր=0 ⟨Ԛ⟩ՐԚ! �−⟨Ր⟩ᅮՐ
= �−⟨Ր⟩ ∞∑Ր=0 (⟨Ԛ⟩ᅮ)ՐԚ!= �−⟨Ր⟩�⟨Ր⟩� = �−⟨Ր⟩(1−�).

 Now substitute in ᅮ = 1 − Ԉ1 and rearrange to
obtain: Ԉ1 = 1 − �−⟨Ր⟩�1 .
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Giant component

 We can figure out some limits and details forԈ1 = 1 − �−⟨Ր⟩�1 .
 First, we can write ⟨Ԛ⟩ in terms of Ԉ1:⟨Ԛ⟩ = 1Ԉ1 ln 11 − Ԉ1 .
 As ⟨Ԛ⟩ → 0, Ԉ1 → 0.
 As ⟨Ԛ⟩ → ∞, Ԉ1 → 1.
 Notice that at ⟨Ԛ⟩ = 1, the critical point, Ԉ1 = 0.
 Only solvable for Ԉ1 > 0 when ⟨Ԛ⟩ > 1.
 Really a transcritical bifurcation. [9]
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Giant component
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Turns out we were lucky...
 Our dirty trick only works for ER random networks.
 The problem: We assumed that neighbors have

the same probability ᅮ of belonging to the largest
component.

 But we know our friends are different from us...
 Works for ER random networks because⟨Ԛ⟩ = ⟨Ԛ⟩�.
 We need a separate probability ᅮ′ for the chance

that an edge leads to the giant (infinite)
component.

 We can sort many things out with sensible
probabilistic arguments...

 More detailed investigations will profit from a spot
of Generatingfunctionology. [10]

 CocoNuTs: We figure out the final size and
complete dynamics.
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Neural reboot (NR):

Falling maple leaf
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