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- Models

i e bl

Generalized random networks;
Small-world networks;
Generalized affiliation networks;
Scale-free networks;

Statistical generative models (p*).
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<o Getyour own exciting generator here (4.
<= As N , polyhedral die rapidly becomes a ball...
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Random networks

Pure, abstract random networks:
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Random networks

1

abstract random networks

Consider set of all networks with IV labelled nodes
and m edges.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd&s-Rényi random networks or ER
graphs.
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: Random networks—basic features:
<> Number of possible edges:

@ ogmg(
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‘ Random networks—basic features:

Number of possible edges:

ogmg(2

Limit of m = 0: empty graph.

2 e SRR R B
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Random networks—basic features:

Number of possible edges:

2

Ogmg(2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected

graph.

N(N —1)

2
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Number of possible edges:

N%:N@hd)

ogmg(z 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

2%) B2 N?,
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Number of possible edges:

N%:N@hd)

ogmg(z 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ B2N?

Given m edges, there are ((2)) different possible

m

networks.
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Number of possible edges:

N%:N@hd)

ogmg(z 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ B2N?

Given m edges, there are ((2)) different possible

m

networks.
Crazy factorial explosion for 1 <« m « ().
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Number of possible edges:

N%:N@hd)

ogmg(z 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ B2N?

Given m edges, there are ((2)) different possible

m

networks.
Crazy factorial explosion for 1 <« m « ().

Real world: links are usually costly so real
networks are almost always sparse.
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Outline

Pure random networks

How to build theoretically
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Random networks
How to build standard random networks:
&> Given N and m.
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' Random networks

& Given N and m.
& Two probablistic methods

How to build standard random networks:

PoCS | @bocsvox

Random
Networks

Pure random
networks

Definitions

How to build theoretically
Some visual examples |-
Clustering

Degree distributions

Generalized
Random
Networks
Configuration modet
How to build in practice
Motifs

Random friends are
strange

Largest component

References

2
0

v 130f82


http://www.uvm.edu
http://www.uvm.edu/pdodds

Random networks

How to build standard random networks:
Given N and m.

Two probablistic methods (we'll see a third later
on)

RSO 2 v i
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- Random networks

o

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (4) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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- Random networks
- Afew more things:
‘ For method 1, # links is probablistic:
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- Random networks
- Afew more things:
‘ For method 1, # links is probablistic:

1
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Random networks
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~ Random networks
For method 1, # links is probablistic:
N) - p%N(N £
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Random networks

A fan
MEE

11U1 C

- 1B
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:piN(N— 1)

1

For method 1, # links is probablistic:
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- Random networks

A-Eavn

X

For method 1, # links is probablistic:

N) 1

_2(m)
ey
2l 7 1
NPQN(N ):ﬁpi}((]v_

Which is what it should be...

:piN(N— 1)

1) = p(N — 1).
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- Random networks

For method 1, # links is probablistic:
2

1
e NN
5 p2( )

(m) = p(

So the expected or average degree is

2+ 2
N

Which is what it should be...

If we keep (k) constant thenp < 1/N — 0 as
N — oo.

SpaN(N 1) = ZpsN(N 1) = p(N - 1).
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- QOutline |

~ Pure random networks

Some visual examples
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- Random networks: examples

A

Next slides:

Example realizations of random networks
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- Random networks: examples

A

Next slides:
Example realizations of random networks
N =500
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- Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
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- Random networks: examples

Example realizations of random networks
N =500

Vary m, the number of edges from 100 to 1000.

Average degree (k) runs from 0.4 to 4.
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- Random networks: examples

Example realizations of random networks
N =500

Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.

Look at full network plus the largest component.
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- Random networks: examples for N=500
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Random networks: largest components dealin s v
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 Giant compdnent
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QOutline

Pure random networks

Clustering
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~ Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
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Clustering in random networks: PoCS | @possvox
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: !’/

3 x #triangles
b CaBa Rl

#triples
! Recall: C,, = probability that
i two friends of a node are
; also friends.
. \ PE Cl
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|
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- Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: !’
3 x #triangles
20 P dtriples

! Recall: C,, = probability that
i two friends of a node are
also friends.
’l P EC Or: C, = probability that a
2 ,,1) triple is part of a triangle.
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- Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: !’
3 x #triangles
20 P dtriples

! Recall: C,, = probability that
i two friends of a node are
also friends.
L2 Or: C, = probability that a
,,1) triple is part of a triangle.
| For standard random
' networks, we have simply
; that
“» 3 CQ == p.
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- Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of

random networks is that

they locally look like

pure branching networks
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks

No small loops.
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Outline |

Pure random networks

Degree distributions
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node has degree k.
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution ("

Bibp, N) =
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. Limiting form of P(k;p, N):

<> Our degree distribution:
Rlig M fiimipi p) N E
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. Limiting form of P(k;p, N):

Our degree distribution:
- Bl ) = (dlmps — p) =k
| What happens as N — oo?
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Our degree distribution:
Rlig M fiimipi p) N E
What happens as N — oo?

We must end up with the normal distribution
right?
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Our degree distribution:

Bl = (e p (1 —p) "1k

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.
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Our degree distribution:

Bl = (e p (1 —p) "1k

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...
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Poisson basics:

Normalization: we must have

> P(k; () = 1
k=0

PoCS | @pogsvox

Random
Networks

Pure random
networks
Definitions

How to build theoretically

Som

al examples

Clustering

Generalized
Random
Networks

Configuration modetf

build in practice

m friends are

componen

References

v 29 of 82


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Poisson basics:
Normalization: we must have

> Pk (k) =1
k=0
Checking:

oo o) kk
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- Poisson basics:

Normalization: we must have

> P(k; (B) =1
k=0

Checking:

> P =3

k=0 k=0
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- Poisson basics:
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Poisson basics:
Mean degree: we must have

By= 3 kPR (k).
k=0
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- Poisson basics:

Mean degree: we must have

By= 3 kPR (k).
k=0

Checking:
f: kP(k; (k)) = i k%—k.
k=0 k=0
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- Poisson basics:

Mean degree: we must have
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k=0
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Mean degree: we must have
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Poisson basics:

PoCS | @poesvox

Random
Networks
Mean degree: we must have
(k) =S kP(k; (K)). networks |
k=0
Checking: :
= 2£ <I€>k g8 Generalized
EP(k; (k) =) ke (k) andom
’;) ( 7< >) ’;0 k' = Eet\?\/orks
oo k
i (k)
e
& -1
<k> <k>§: <k’>k71 ﬁeferences
== e
e (k—1)!

=0

1S

In CocoNuTs, we find a different, crazier way of doing
this... ©ac 300f82


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.
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- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k)* + (k).
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- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:
(k2) = (B2 + (k):

Variance is then

0 = (k%) = (B)? = (1) + (R) = (B)?

So standard deviation ¢ is equal to

(k).
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Random
Networks

The variance of degree distributions for random

Pure random

Definitions

networks turns out to be very important. netvalis

Using calculation similar to one for finding (k) we
find the second moment to be:

Generalized

(k2) = (k)2 + (k). Networks

Variance is then

0 = (k%) = (B)2 = (B)% + () = (K)? = ().
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~ General random networks

So... standard random networks have a Poisson
degree distribution
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
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- General random networks
| So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model.!”!
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- General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model.!”!

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P, and form links with probability

P(link between i and j) oc w,;w,.
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Random
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So... standard random networks have a Poisson
degree distribution Pure random
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Generalize to arbitrary degree distribution P, Dl
Also known as the configuration model. /1~

Can generalize construction method from ER el
random networks. Random
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Assign each node a weight w from some ot i e
distribution P,, and form links with probability S

P(link between i and j) oc w,;w,.
But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.

Also known as the configuration model.!”!

Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P, and form links with probability
P(link between i and j) oc w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.
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- Random networks: examples

Sk
CAornr

Example realizations of random networks with power
law degree distributions:
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
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- Random networks: examples il i
Networks

Pure random
networks
Definitions

How to build theoretically

Example realizations of random networks with power

law degree distributions:
Generalized
N = 1000 Random
Networks
Pk (0. k_ﬂy for k 2 1. C?nfigurati‘ovnrn(yoééliy
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
P, ockpifork = L
Set P, = 0 (no isolated nodes).
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Random networks: examples il i
Networks

Pure random
networks
Definitions

Example realizations of random networks with power
law degree distributions:

Generalized

N = 1000 Random
Networks
Pk XX k_ﬂy for k 2 1_ C(,);r}\vifigyljjration m‘o"flm

Set P, = 0 (no isolated nodes).
Vary exponent v between 2.10 and 2.91.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P, ockpifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P, ockpifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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Random networks: examples for N=1000 . ™

Networks

Pure random
networks
Definitions

build theo

"~ Generalized
Random
~=2.37 ~ =2.46 Networks
(k) =2.504 (k) =1.856 Confi

uration model

ouild in practice

m friends are

62 (k) =1.386 (k) =1.49
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Random networks: largest components Mgl i

Random
Networks

Pure random
networks
Def

Generalized
Random
y=21 ~=2.19 ¥=2.28 ~=2.37 =246 Networks
=3 =29 y=2 (k) =1.856 i

2.73 =282
=1.862 (k) =1.386
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Outline

Generalized Random Networks

How to build in practice
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Generalized random networks:
<% Arbitrary degree distribution P,

PoCS | @poesvox
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- Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.
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Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.
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- Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.
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- Building ran'do}m networks: Stubs

|dea: start with a soup of unconnected nodes with
stubs (half-edges):

ok g
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- Building ran'do}m networks: Stubs

|dea: start with a soup of unconnected nodes with
stubs (half-edges):

ok g
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- Building random networks: Stubs

Random
Networks

Pure random

|dea: start with a soup of unconnected nodes with o
stubs (half-edges):

C ng
Degree distributions
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Configuration mod
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(not nodes!) and
connect them.
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PoCS | @poesvox

- Building random networks: Stubs

Random
Networks

Pure random

|dea: start with a soup of unconnected nodes with o
stubs (half-edges):

C ng
Degree distributions
Generalized
Y Random
Networks
Configuration mod
t
rgest cor i

_- . " Y\T/+ IIII Randomly select stubs

(not nodes!) and
connect them.
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PoCS | @poesvox

- Building random networks: Stubs

Random
Networks

Pure random

|dea: start with a soup of unconnected nodes with o
stubs (half-edges):

C ng
Degree distributions
Generalized
Y Random
Networks
Configuration mod
t
rgest cor i

_- . " Y\T/+ IIII Randomly select stubs

(not nodes!) and
connect them.
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Building: random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<
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- Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
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- Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a

time.
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
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General random rewiring algorithm
B

i

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.

Node degrees do not change.
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General random rewiring algorithm
B

i

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.
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General random rewiring algorithm
el l2

i

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.
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- Sampling random networks i
| Networks
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i networks
Definitions
Phase 2: Horto e
et : Some visual examples

Clustering

Use rewiring algorithm to remove all self and
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- Sampling ra ndom networks Kialie b v
| Networks

Pure random
networks
Definitions

How to build theoretically

Use rewiring algorithm to remove all self and
repeat loops. Generalzed
Networks

Configuration modef

Randomize network wiring by applying rewiring
algorithm liberally. References
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- Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.

Rule of thumb: # Rewirings ~ 10 x # edges .
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- Random sarhpgling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.
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Random sarhpling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) ™'

Eo ansm s et ontaminid]

9% frequency of occurrence
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- Sampling random networks 450

| Networks

POCS | @bocsvox
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.

Easy to do exactly numerically since k is discrete.

PoCS | @poesvox
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.

Easy to do exactly numerically since k is discrete.

Note: not all P, will always give nodes that can be
wired together.
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Outline

Generalized Random Networks

Motifs
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- Network motifs

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.
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- Network motifs

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.
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- Network motifs

Random
Networks

Pure random

Idea of motifs *! introduced by Shen-Orr, Alon et e
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Generalized
Random

Specific example of Escherichia coli. Networks

Configuration modk

Directed network with 577 interactions (edges) How o bl pracice

Motifs

and 424 operons (nodes).
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- Network motifs

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.
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PoCS | @pogsvox

- Network motifs

Random
Networks

Idea of motifs ®! introduced by Shen-Orr, Alon et bl

al. in 2002. mesn st
Looked at gene expression within full context of :
transcriptional regulation networks. 0
Specific example of Escherichia coli. i
Directed network with 577 interactions (edges) oo npr
and 424 operons (nodes).
Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs

feedforward loop
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output Z —
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Z only turns on in response to sustained activity in

X.
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Network motifs

feedforward loop

crp

araC

|

araBAD

6 8 10 12 14 16 18 20

output Z —

6 8 10 12 14 16 18 20
time

Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
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Network motifs

feedforward loop

crp

araC

|

araBAD

6 8 10 12 14 16 18 20

output Z —

6 8 10 12 14 16 18 20
time

Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.
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Network motifs

single input module (SIM)

Master switch.
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Network motifs P | apttaien

Random
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- Network motifs

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.
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Network motifs

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

For more, see work carried out by Wiggins et al. at

Columbia.
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 Outline

Generalized Random Networks

Random friends are strange
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| ‘T‘he edge-degfée distribution:

The degree distribution P,, is fundamental for our
description of many complex networks
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| ‘T‘he edge-degfée distribution:

The degree distribution P,, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
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' The edge-degree distribution: M 0 v

Random
Networks

The degree distribution P, is fundamental for our
description of many complex networks

Pure random
networks

Again: P, is the degree of randomly chosen node. S

build tt

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Generalized
Random

DA 540f 82


http://www.uvm.edu
http://www.uvm.edu/pdodds

- The edge-degree distribution:

| The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP,

Qk = x> 1./p
Zk/:o k/Pk:/
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The edge-'de'gree distribution:

The degree distribution P, is fundamental for our

description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:

Qi =

kP, kP,

S
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP, kP,

GERELE

Big deal: Rich-get-richer mechanism is built into this
selection process.
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<& Probability of randomly
selecting a node of degree k
by choosing from nodes:
P, =3/7, P, =2/7, P, =1/7,
Py =1/1.
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7, P, =2/7, P, =1/7,
Pa—1v/47

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Q5 =3/16,Q, = 6/16,
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

Pl 3/np olr bl
Pa—1v/47

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs =3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.
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The edge-'de'gree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.
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The edge-'de'gree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

(k+1)Ppiq
Zk/:()(k/ =y 1>Pk’+1

Rk:
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The edge-'de'gree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

nl (k+1)Py. 4 o (k+1)Py. 4
i 3k (k)
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The edge-'delgree distribution:

Random

Networks
For random networks, @, is also the probability Pure random
that a friend (neighbor) of a random node has & i

friends.
Useful variant on Q. begresasbfion

Generalized
Random

R, = probability that a friend of a random node Networks
has k other friends. it Mol praci

nl (k+1)Py. 4 o (k+1)Py. 4
i 3k (k)

Equivalent to friend having degree k + 1.
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The edge-'delgree distribution:

Random

Networks
For random networks, @, is also the probability Pure random
that a friend (neighbor) of a random node has & i

friends.
Useful variant on Q. begres e

Generalized
Random

R, = probability that a friend of a random node Networks
has k other friends.

nl 56 =4 B 2 E bz R‘(
k Zkf:o(k/ Eihi g (k) e

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?
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Given R, is the probability that a friend has k other

friends, then the average number of friends' other Uit 9l
friends is neeworks
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- The edge-degree distribution:
Given R, is the probability that a friend has k other
friends, then the average number of friends' other

friends is

&= o, (k+1)P,_
R ek
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| ‘The edge-degfée distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other

friends is

as o
k=0

1

(k) £

Tl

~
Il

ak

i l<:+1 Pk+1

kE(k+1)P,
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 The edge—'de'gree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ )Ppi1
k=0 k=0 (k)

1 o0
Zk: (k+1)Py;

=
=%;<<k+1>2—<k+1>>m1

(where we have sneakily matched up indices)

PoCS | @poesvox

Random
Networks

Pure random
networks
Definitions

Deg

Generalized
Random
Networks

DA 57 0f 82


http://www.uvm.edu
http://www.uvm.edu/pdodds

- The edge-degree distribution: aalliinh 3¢
Networks

Given R, is the probability that a friend has k other
friends, then the average number of friends' other Uit 9l
friends is neeworks

:ZkRk:Zk(k+ )Ppi1
k=0 k=0 (k)

Generalized

1 29 Random
Z k; k -+ 1 Pk+1 Netwow’ks
et e e
T 20 L{ar:d friends are
e 12— (k+1)) P
(where we have sneakily matched up indices)
1 2 .2 . . .
=) e - 71E using s kD)
(k) 75
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The edge-'de'gree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other

friends is

S kR o S Rk E VP

v];kkaék W

1 o0
5 2

1

(k)

k(k+1)Py
k=1

Y ((k+1)2—(k+1)) Py

K=l

(where we have sneakily matched up indices)

—~
~

o0

=)

(32 — 7)P; (usingj= k+1)
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Note: our result, (k) , = &= ((k?)

| ‘T‘he edge-degfée distribution:

< — (k}), is true for

)
all random networks independent of degree

distribution.

For standard random networks, recall

(k2) = (k)* + (k).
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| ‘The edge-degfée distribution:

Note: our result, (k) = > ((k2) — (k)), is true for

all random networks independent of degree
distribution.

For standard random networks, recall
(k) = (k)2 + (k).

Therefore:
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| ‘The edge-degfée distribution:

Note: our result, (k) = > ((k2) — (k)), is true for

all random networks independent of degree
distribution.

For standard random networks, recall
(k) = (k)2 + (k).

Therefore:
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The edge-'de'gree distribution:

Note: our result, (k) = > ((k2) — (k)), is true for

all random networks independent of degree
distribution.

For standard random networks, recall
(k) = (k)2 + (k).

Therefore:

Again, neatness of results is a special property of
the Poisson distribution.
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- The edge-degree distribution: aalliinh 3¢
Networks

Note: our result, (k) = > ((k2) — (k)), is true for

all random networks independent of degree s s i o

distribution.
For standard random networks, recall

2y — B2 o

Therefore:
e % () + (k) — (B)) = (B) '

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and

(k) + 1 total friends... mi fg
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- The edge-degree distribution:
In fact, R, is rather special for pure random
networks ...

Substituting
_B*
STy
into
(k+1)Ppyy

B ="
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| ‘The edge—'de'grée distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

=L
oo - (k)
into (k1 1)P
ey
o R R ity
. (k)
we have
1 (k+1)
g o D EED

& (e+rin©
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 The edge—'de'grée distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

k
i (k+1)P
Rk; e <k> k+1
we have
g EDEED G
(k) (k+1)! (K (EA-TIR!
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 The edge—'de'gree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

k
i (haype
Rk; e <k> k+1
we have
g EDEED G
(k) (k+1)! (K (EA-TIR!
EE iy
k!
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 The edge—'de'gree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

S
oo i (k)
into (k1 1)P
ey
R
(k)
we have
o (k‘<—]i:—>1) <(I;;><k;;:e<k> = @’ﬁm'e(m
=) !
(k)5
e R
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The edge-'de'gree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

S s
S
into (kL 1)P
ey
R, =—=
(k)
we have
o (’f<‘]:>1) ((1]<;><k336<k> = Lk;;ﬁm'e(m
+1)! !
(k)
o =i
#samesies.
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Two reasons why this matters

PoCS | @pogsvox

Random  +
Networks

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration mode &

How to build in practice
Motifs

Random friends are [
st

Largest component

References

i
9|
(o]

va > 60of 82


http://www.uvm.edu
http://www.uvm.edu/pdodds

|

Two reasons why this matters

Reason #1:

& Average # friends of friends per node is

(ko) = (k) x (k)R
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- Two reasons why this matters | gl
Networks

Reason #1:

=z : g P d
& Average # friends of friends per node is e lhinic
!

(ko) = (k) x (B) g = (K)o (B%) = () = (K%)= (R). ™
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- Two reasons why this matters
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- Two reasons why this matters

Average # friends of friends per node is

(Fa) = (k) x (K = <k>$ ((R2) — (k)) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
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- Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k5) will be big.
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“ Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)
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“ Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you...* ©!
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“ Two reasons why this matters

Average # friends of friends per node is

1

(ko) = (k) x (k) g = (k) 7= ((K?) — (k) = (k?) — (k).

(k)

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1

2

We might guess (k) = (k)((k) — 1) but it's actually
(k(k—1)).

If P, has a large second moment,

then (k5) will be big.

(e.g., in the case of a power-law distribution)

Your friends really are different from you... " ©
See also: class size paradoxes (nod to: Gelman)
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- Two reasons why this matters | reesTainen
Networks

More on peculiarity #3:
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- Two reasons why this matters Pore e
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Networks
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A node’s average # of friends: (k) eilie
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Friend's average # of friends:

Comparison:
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Random

(B g i) noof (i o e
<]€> T <k> <]{3>2 A <]€> <k‘>2 B <k> (1 55 ) Z <k> x uild:in practice

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.
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Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. "

Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, are happy
than you '), more sexual partners than you, ...

The hope: Maybe they have more enemies and
diseases too.

Research possibility: The Frenemy Paradox.
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- Two reasons why this matters
' (Big) Reason #2:

(k)  is key to understanding how well random
networks are connected together.
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(k)  is key to understanding how well random
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e.g., we'd like to know what's the size of the largest
component within a network.
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component?
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- Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.
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- Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.
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- Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.

Note: Component = Cluster
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- Structure of random networks
. Giant component:

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.
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Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.
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A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.
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- Structure of random networks

1l c
]

A giant component exists if when we follow a
random edge, we are likely to hit a node with at

least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.
Giant component condition (or percolation

condition):
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- Structure of random networks gl cd a

Random
Networks

A giant component exists if when we follow a Pureransioe
networks

random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node e
eneralize:
number as we move out from a random node. Random

Networks
All of this is the same as requiring (k) 5 > 1.

Giant component condition (or percolation
condition):

Deg

(k?) — (k)
()

Again, see that the second moment is an essential
part of the story.

(k)r = 2l
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Random
Networks

A giant component exists if when we follow a Pureransioe
networks

random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node e
eneralize:
number as we move out from a random node. Random

Networks
All of this is the same as requiring (k) 5 > 1.

Giant component condition (or percolation
condition):

Deg

(k%) — (k)
(k)
Again, see that the second moment is an essential

part of the story.
Equivalent statement: (k?) > 2(k)

(k)r = 2l
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Spreadihg‘ on Random Networks

For random networks, we know local structure is
pure branching.
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 Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

P~ I~

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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- Global spreading condition

| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
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- Global spreading condition
| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
Define B, as the probability that a node of

degree k is infected by a single infected edge.
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Global spreading condition
We need to find: %!

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.
Define B, as the probability that a node of

degree k is infected by a single infected edge.

= kP
R= .
prob. of

connecting to
a degree k node

PoCS | @poesvox

Random
Networks

Pure random
networks

Definitions

Generalized
Random
Network

oo

DA 69 of 82


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Global spreading condition
| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
Define B, as the probability that a node of

degree k is infected by a single infected edge.
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= — # outgoing
prob. of infected
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- Global spreading condition

| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
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= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node
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- Global spreading condition

| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.
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~ Global spreading condition

| We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z e o (k=1) & By
= (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node
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‘leobal s":p're‘a'di*ng condition

Our global spreading condition is then:

R:kak.(k—1).3k1>1.

Case 1-Rampant spreading:
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Global spreading condition

Our global spreading condition is then:

R:kak.(k—1).3k1>1.

Case 1-Rampant spreading: If B,; =1
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Our global spreading condition is then:

Py

.<k_1>.Bk1>1
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‘leobal spreadlng condition

Case 2—Simple disease-like: If B,,; =8 <1 then

SR kPy
R_I;)<k> (k=1)eB>1.

A fraction (1-3) of edges do not transmit infection.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

SR kPy
R_;;W (k=1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

P,
kf.(k—1).5>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.
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; ‘G‘Iobal sprea"d.i;ng condition

Case 2—Simple disease-like: If B,,; =8 <1 then

SR kPy
R_;;W (k=1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.

Resulting degree distribution P, :

5= i (,i)(l gre

i=k
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. & Recall (k2) = (k)2 + (k).
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Giant component for standard random networks:

& Recall (k%) = (k)2 + (k).
<= Determine condition for giant component:
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Giant component for standard random networks:

Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.
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Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
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Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (£,
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Recall (k%) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition .
We say (k) = 1 marks the critical point of the
system.
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- Giant component
. And how big is the largest component?

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.
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~ Giant component

Al ) 1 o Jl yonent

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.
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~ Giant compdnént

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.
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~ Giant compdnént

Random
Networks
Define S, as the size of the largest component. s s i o
Consider an infinite ER random network with average
degree (k).
Let's find S; with a back-of-the-envelope argument. Generalized

Random

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0
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~ Giant compdnent

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0

Substitute in Poisson distribution...
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Carrying on:

N
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- Giant component

Carrying on:
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- Giant component

We can figure out some limits and details for
Sl == ]_ _— 6_<k>sl‘
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~ Giant component

We can figure out some limits and details for
Sl — ]. {2 €_<k>sl.

First, we can write (k) in terms of S;:

1 1
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- Giant component

We can figure out some limits and details for
Sl — ]. {2 €_<k>sl.

First, we can write (k) in terms of S;:
1 1

As (kY — 0,5, — 0.
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~ Giant compdnént

We can figure out some limits and details for
Sl — ]. {2 €~<k>sl.

First, we can write (k) in terms of S;:
1 1

As (kY — 0,5, — 0.
As (k) — 00, S — 1.
Notice that at (k) = 1, the critical point, S; = 0.
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~ Giant compdnent

We can figure out some limits and details for
Sl — ]. {2 €~<k>sl.

First, we can write (k) in terms of S;:
1 1

As (kY — 0,5, — 0.

As (k) — 00, S — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.
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- Giant component Biaili o v
| Networks

Pure random

We can figure out some limits and details for networks
Sl = ]. = €;<k>sl. ¥

First, we can write (k) in terms of S;:

Generalized
1 1 Random
<k> e Aln % Networks
Sl § e Sl I,L”h—u\[LJH ru—’,"

As (kY — 0,5, — 0.

As (k) — 00, S — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. !
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. Turns out we were lucky...

<= Our dirty trick only works for ER random networks.
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...

Works for ER random networks because

(k) = (k) -

We need a separate probability §” for the chance
that an edge leads to the giant (infinite)
component.
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot
of Generatingfunctionology. "
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

CocoNuTs: We figure out the final size and
complete dynamics.
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Neural reboot (NR):

~ Falling maple leaf
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