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Mechanisms:

A powerful story in the rise of complexity:
structure arises out of randomness.
Exhibit A: Random walks. &'

The essential random walk:

One spatial dimension.
Time and space are discrete

Random walker (e.g., a drunk) starts at origin
x=0.
Step at time tis €,:

[ +1 with probability 1/2
€= —1 with probability 1/2

A few random random walks:

L s s s s s s s s
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

s s s s
1000 2000 3000 4000 5000 6000 7000

Random walks:

Displacement after ¢ steps:

t
Itig €;

Expected displacement:

(z4) = <Zfz> = ) (e;) =0

i=1

At any time step, we ‘expect’ our drunkard to be
back at the pub.

Obviously fails for odd number of steps...

But as time goes on, the chance of our drunkard
lurching back to the pub must diminish, right?
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Variances sum: @™

Var(z,) = Var (zf: Ei)

=1
t t

=) Var(e,) =) 1=t
=1 =1

* Sum rule = a good reason for using the variance to
measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

A non-trivial scaling law arises out of
additive aggregation or accumulation.

Random walk basics:

Counting random walks:
Each specific random walk of length ¢ appears
with a chance 1/2¢.

We'll be more interested in how many random
walks end up at the same place.

Define N (i, j,t) as # distinct walks that start at
z =14 and end at z = j after ¢ time steps.

Random walk must displace by +(j — i) after ¢
steps.

Insert question from assignment 3 ('

How does P(z,) behave for large t?
Take time ¢t = 2n to help ourselves.
To, € {0,+£2, 44, ..., £2n}
Zo,, IS even so set z,, = 2k.
Using our expression N (i, j, t) withi =0, j = 2k,
and ¢t = 2n, we have
2n )

Pr(z,,, = 2k) <n Tk

For large n, the binomial deliciously approaches
the Normal Distribution of Snoredom:

1 2

eiuz%
v 2mt

Insert question from assignment 3 £

The whole is different from the parts. #nutritious
See also: Stable Distributions (£

Pr(z, =x) ~
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Universality(Z'is also not left-handed:

& This is Diffusion (4" the most essential kind of
spreading (more later).

& View as Random Additive Growth Mechanism.
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Random walks are even weirder than you might
think...

& &,., =the probability that by time step ¢, a random
walk has crossed the origin r times.

&% Think of a coin flip game with ten thousand tosses.

& Ifyou are behind early on, what are the chances
you will make a comeback?

& The most likely number of lead changes is... 0.
& Infact: &, > &, > &, >

& Even crazier:
The expected time between tied scores = oo

See Feller, Intro to Probability Theory, Volume | %]

Applied knot theory:

“Designing tie knots by random walks" %'

Fink and Mao,
Nature, 398, 31-32, 1999, 4]

a
C [}
R s R
L
Le I e >~

Passive end Active end

5659

Figure 1 Al diagrams are drawn in the frame of reference of the mirror image of the actual tie,
a, The two ways of beginning a knot, L and L. For knots beginning with L., the tie must begin
inside-out. b, The fourin-hand, denoted by the sequence Ly R, Ly CoT. €, A knot may be represented
by a persistent random walk on a triangular latiice. The example shown is the fourin-hand, indicated by the
walk

Applied knot theory:

Table 1 tie knots

h y y/h Kih, v) s b Name Sequence

3 1 0.33 1 0 0 LoReCo T

4 1 0.25 1 -1 1 Four-in-hand LeRolsCo T

5 2 0.40 2 -1 0 Pratt knot LoCeRoleCo T

6 2 033 4 0 0 HalfWindsor  LyRoCuloRaCoT

7 2 0.29 6 =i 1 LoRoLoCoRoloCoT

7 3 043 4 0 1 LCsRoColoReCoT

8 2 0.25 8 0 2 LoRoLsCoRoLoRaCoT

8 3 038 12 =il 0 Windsor LsCoRoLoCoRoloCoT

9 3 033 24 0 0 LoRoColoRoColoReCoT
9 4 0.44 ) =il 2 L CaRoColoCaRolaCoT

Knots are characterized by half-winding number h, centre number v, centre fraction y/h, knots per class K(h, ),
symmetry s, balance b, name and sequence.

& h =number of

h -
& os=> i+, where z =-1
moves

for L and +1 for R.

h—1
& b=1 oo Wi twi_q]

& ~ =number of
center moves

where w = +1
& K(h,vy)= represents winding
2’7*1(’”:{:’;2) direction.
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Random walks #crazytownbananapants

The problem of first return:

What is the probability that a random walker in
one dimension returns to the origin for the first
time after ¢ steps?

Will our drunkard always return to the origin?
What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an
interesting exponent.

2. Some physical structures may result from random
walks.

3. We'll start to see how different scalings relate to
each other.

For random walks in 1-d:

4 . . .
2. B
x 4 L 4
_2- o
~ 5 10 15 20

A return to origin can only happen when ¢t = 2n.

In example above, returns occur att = 8, 10, and
14.

Call Py 5, the probability of first return at ¢ = 2n.
Probability calculation = Counting problem
(combinatorics/statistical mechanics).

Idea: Transform first return problem into an
easier return problem.

4 T T T T T ol T
3. B
xX 2 1
]._ I S L Ll T & 4
0 2 4 6 8 10 12 14 16
t

Can assume drunkard first lurchesto z = 1.

Observe walk first returning at t = 16 stays at or above
x =1for1 <t <15 (dashed red line).

Now want walks that can return many times to z = 1.

Pfr<2n) =
2-3Pr(z,>1,1<t<2n-—1,andz; =x,, ; =1)

The } accounts for z,,, = 2 instead of 0.

The 2 accounts for drunkards that first lurch to z = —1.
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Counting first returns:

Examples of excluded walks:

Probability of first return:

Insert question from assignment 3 (':
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Approach:

Random Walks

Move to counting numbers of walks.
Return to probability at end. varisble
Again, N (i, j,t) is the # of possible walks between

z =1iand z = j taking t steps.
Consider all paths starting at = = 1 and ending at e

z =1 after t = 2n — 2 steps.

Idea: If we can compute the number of walks that
hit = 0 at least once, then we can subtract this

Holtsmark's Distribu

from the total number to find the ones that =3
maintain z > 1. | |
Call walks that drop below z = 1 excluded walks. § D)
We'll use a method of images to identify these .
excluded walks. nvu Bl
va 260f61
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Key observation for excluded walks: feferences
For any path starting at z=1 that hits O, there is a
unique matching path starting at z=—1.
Matching path first mirrors and then tracks after s
=

first reaching 2=0. ‘
# of t-step paths starting and ending at z=1 and ; g
hitting =0 at least once i
= # of ¢-step paths starting at z=—1 and ending at
z=1=N(-1,1,t)

SO Nfistreturn(2n) = N(1,1,2n—2) — N(—1,1,2n—2)

Do 27of 61
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. Rand Walk
Find
227173/2
Nfr(2”) ~— Variable
mn3/2 transformation
Normalized number of paths gives probability.

References

Total number of possible paths = 227,

1
Pfr(2n) = 227anr(2”)

1 922n—3/2
= o V2mn3/2

(2n)3/2 o t3/2,

¥~
3
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We have P(t) oc t73/2, ~ = 3/2.

Same scaling holds for continuous space/time walks.
P(t) is normalizable.

Recurrence: Random walker always returns to origin

But mean, variance, and all higher moments are

infinite. #totalmadness

Even though walker must return, expect a long wait...

One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions (2"

Walker in d = 2 dimensions must also return
Walker may not return in d > 3 dimensions

Associated genius: George Polya (4

Random walks

On finite spaces:
In any finite homogeneous space, a random
walker will visit every site with equal probability

Call this probability the Invariant Density of a
dynamical system

Non-trivial Invariant Densities arise in chaotic
systems.

On networks:
On networks, a random walker visits each node

with frequency o< node degree #groovy

Equal probability still present:
walkers traverse edges with equal frequency.

#totallygroovy

Scheidegger Networks %

§>/ RONE <\{ AN

Random directed network on triangular lattice.
Toy model of real networks.

‘Flow’ is southeast or southwest with equal
probability.

/

/\//
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Creates basins with random walk boundaries. Random Welks

Observe that subtracting one random walk from

Variable

another gives random walk with increments: tanstormation
+1 with probability 1/4 o
€ = 0 with probability 1/2 References
—1 with probability 1/4

Random walk with probabilistic pauses.

Basin termination = first return random walk
problem.

Basin length ¢ distribution: P(¢) o £~3/2
For real river networks, generalize to P(¢) o< £77.

a 330f61

PoCS | @pocsvox

Connections between exponents:

Power-Law
Mechanisms, Pt. 1

Random Walks
For a basin of length ¢, width oc £1/2 Vw”:b‘e ‘
Basin area a oc £ - £1/2 = ¢3/2 transformation
Invert: ¢ o< a2/3 oo
dl d(a2/3) = 2/3a*1/3da References

Pr(basin area = a)da

= Pr(basin length = ¢)d¢
ox £73/2d¢

x (a2/3)—3/2a—1/3da
=a*3da

=a "da A %&%@

DA 340f61
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Both basin area and length obey power law Random Walks
distributions coger
Observed for real river networks Varable
Reportedly: 1.3 <7< 15and 1.5 <y <2 R

PLIPLO
References

Generalize relationship between area and length:

Hack's law [°1:

0o al.

For real, large networks h ~ 0.5

Smaller basins possibly i > 1/2 (see: allometry). 3 "
o . N\
Models exist with interesting values of h. : %@%ﬁ%@%

Plan: Redo calc with v, 7, and h.

a 350f61
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Connections between exponents:
& Given

Local, Pla) ca™™, and P(£) oc £

& df < d(a™) = ha"'da
&> Find 7 in terms of v and h.

&> Pr(basin area = a)da
= Pr(basin length = ¢)d¢
o £vde
o (a®)™a"1da
— o-(I+h (v-1)dg

T=14+h(y—1)

<> Excellent example of the Scaling Relations found
between exponents describing power laws for
many systems.

Connections between exponents:

With more detailed description of network
structure, 7 = 1 + h(y — 1) simplifies to: "]

<% Only one exponent is independent (take h).
<& Simplifies system description.

<% Expect Scaling Relations where power laws are
found.

<> Need only characterize Universality (4" class with

independent exponents.

and

Other First Returns or First Passage Times:

Failure:

& Avery simple model of failure/death: ['"!
& z, = entity’s ‘health’ at time ¢

& Start with 2z > 0.

<% Entity fails when z hits 0.

Streams
<% Dispersion of suspended sediments in streams.
&> Long times for clearing.
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More than randomness

<& Can generalize to Fractional Random Walks [+ 8]
<> Levy flights, Fractional Brownian Motion

<> See Montroll and Shlesinger for example: !
“On 1/ f noise and other distributions with long

Proc. Natl. Acad. Sci.,
In 1-d, standard deviation o scales as

a = 1/2 — diffusive
a > 1/2 — superdiffusive
a < 1/2 — subdiffusive

<> Extensive memory of path now matters...

Wy iy
1,/‘ m A/l” M’%,‘j,'
41, |
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Variable Transformation

Understand power laws as arising from
1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

&% Random variable X with known distribution P,
&% Second random variable Y with y = f(z).

& Py (y)dy =

2 0l f(w)—y Px (@)

—1 dy
2oty P WD ity

&> Often easier to do by
hand...

General Example

&> Assume relationship between z and y is 1-1.

<% Power-law relationship between variables:
y=cr ¢ a>0

&> Look at y large and x small

&
dy =d(cz™®)

=c(—a)z™* Idx
. 1 a0
invert: dz = —z>*ldy
cx

_ a1/
dz = ¢ y~1-1/edy
«

Now make transformation:

—1/a 1/
P,(y)dy = P, ((E) ) Ca y ttedy

[

& If P,(z) — non-zero constant as = — 0 then
P (y)ocy 'Y/ as y— oco.
& If P,(z) — 2P as x — 0 then

Py(y) y Ve Ble g5y oo,
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Example

Exponential distribution

Given P, (z) = Le~®/* and y = ca~, then

P(y) x y—l—l/d +0 (y—1—2/a)

<> Exponentials arise from randomness (easy)...
<& More later when we cover robustness.

Gravity

<> Select a random point in the
universe #

<> Measure the force of gravity
F(Z)

& Observe that
Pp(F) ~ F73/2,

Matter is concentrated in stars: ['%
& [ is distributed unevenly

& Probatzility of being a distance r from a single star
atz =0:
P.(r)dr oc r2dr
< Assume stars are distributed randomly in space
(oops?)
&% Assume only one star has significant effect at z.
<> Law of gravity:

Foxr2

& invert:
roc F=%

&% Connect differentials: dr o« dF—% « F~3dF
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Transformation:

dr o« F~3/2dF ‘, and|P.(r) o r?

Pp(F)dF = P, (r)dr

Using|r oc F-1/2

’

x P, (const x F~1/2)F=3/2dF
x (F~1/2)® p=3/2dF
=F1%/2dF

= F5/2dF.

Gravity:

Pp(F) = F5%dF

v=5/2
Mean is finite.
Variance = cc.
A wild distribution.

Upshot: Random sampling of space usually safe
but can end badly...

[0 Todo: Build Dalek army.
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Extreme Caution!

PLIPLO = Power law in, power law out

Explain a power law as resulting from another
unexplained power law.

Yet another homunculus argument(...

Don't do this!!! (slap, slap)

MIWO = Mild in, Wild out is the stuff.

In general: We need mechanisms!
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