Mechanisms for Generating Power-Law Size Distributions, Part 1

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Holtsmark's Distribution

These slides are brought to you by:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distribution PLIPLO

These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

☑ On Instagram at pratchett_the_cat ☑

Pocs | @pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distributio PLIRLO

References

20 3 of 61

Outline

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

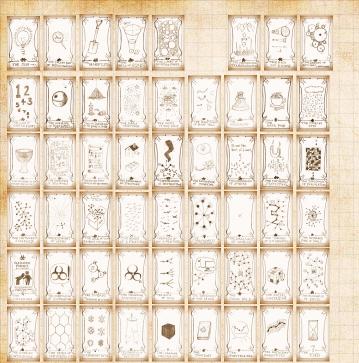
References

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics

PLIPLO



PoCS | @pocsvox

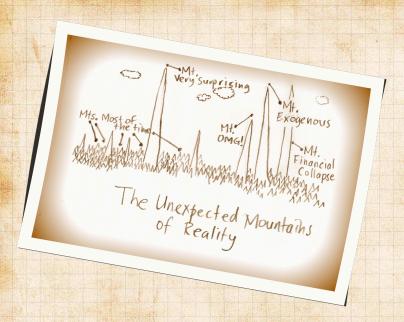
Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PUPLO



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

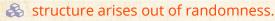
The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distribution
PLIPLO

Mechanisms:

A powerful story in the rise of complexity:



& Exhibit A: Random walks.

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a drunk) starts at origin x = 0.
- \clubsuit Step at time t is ϵ_t :

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability 1/2} \\ -1 & \text{with probability 1/2} \end{array} \right.$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

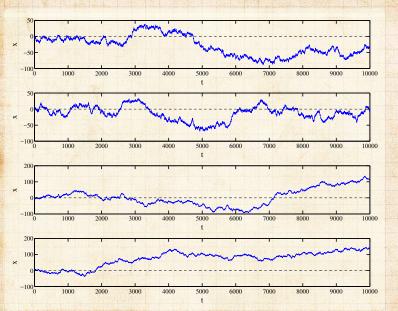
Random Walks

The First Return Proble Examples

Variable transformation

Holtsmark's Distribution PLIPLO

A few random random walks:



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Basics PLIPLO

Random walks:

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Holtsmark's Distribution

Variances sum: ☑*

$$\begin{aligned} & \operatorname{Var}(x_t) = \operatorname{Var}\left(\sum_{i=1}^t \epsilon_i\right) \\ & = \sum_{i=1}^t \operatorname{Var}\left(\epsilon_i\right) = \sum_{i=1}^t 1 = t \end{aligned}$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

$$\sigma = t^{1/2}$$

A non-trivial scaling law arises out of additive aggregation or accumulation.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Holtsmark's Distribution
PLIPLO

Stock Market randomness:

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

Also known as the bean machine , the quincunx (simulation) , and the Galton box.

20 € 12 of 61

Great moments in Televised Random Walks:

Plinko! ☐ from the Price is Right.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

Random walk basics:

Counting random walks:

- with a chance $1/2^t$.
- We'll be more interested in how many random walks end up at the same place.
- Define N(i,j,t) as # distinct walks that start at x = i and end at x = j after t time steps.
- \mathbb{R} Random walk must displace by +(i-i) after t steps.
- Insert question from assignment 3 4

$$N(i,j,t) = {t \choose (t+j-i)/2}$$

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Holtsmark's Distribution PLIPLO

How does $P(x_t)$ behave for large t?

 \clubsuit Take time t=2n to help ourselves.

 $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$

 x_{2n} is even so set $x_{2n} = 2k$.

Using our expression N(i, j, t) with i = 0, j = 2k, and t = 2n, we have

$$\Pr(x_{2n} \equiv 2k) \propto {2n \choose n+k}$$

For large *n*, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\Pr(x_t \equiv x) \simeq \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

Insert question from assignment 3 2

The whole is different from the parts. #nutritious

See also: Stable Distributions

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 1

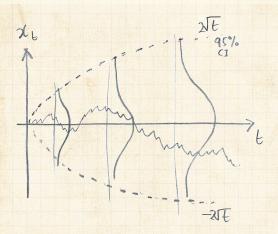
Random Walks

The First Return Proble Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

Universality is also not left-handed:



This is Diffusion ☑: the most essential kind of spreading (more later).

View as Random Additive Growth Mechanism.

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 1

Random Walks

Examples

Variable transformation

Holtsmark's Distribution

References

99 € 16 of 61

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Holtsmark's Distribution

References

Basics

99€ 17 of 61

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

Variable transformation

Basics Holtsmark's Distribution PUPLO

Random walks are even weirder than you might think...

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.
- & In fact: $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$
- Even crazier: The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I [3]

Pocs | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Probler Examples

Variable transformation Basics Holtsmark's Distribution

Applied knot theory:

"Designing tie knots by random walks"
Fink and Mao,
Nature, **398**, 31–32, 1999. [4]

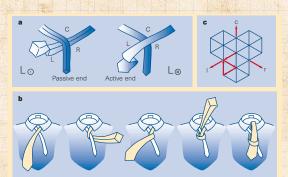


Figure 1 All diagrams are drawn in the frame of reference of the mirror image of the actual tie.

a. The two ways of beginning a knot, L₀ and L₀ For khots beginning with L₀, the tie must begin inside-out. B₁ The four-in-hand, denoted by the sequence Lᵢ R₀ L₀ C₀, T. c, A knot may be represented by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the walk 1116.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Proble Examples

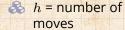
Variable transformation

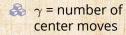
Basics
Holtsmark's Distribution
PLIPLO

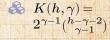
Applied knot theory:

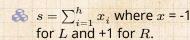
Table 1 Aesthetic tie knots							
h	γ	γ/h	K(h, γ)	S	b	Name	Sequence
3	1	0.33	1	0	0		L _o R _⊗ C _o T
4	1	0.25	1	-1	1	Four-in-hand	$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
5	2	0.40	2	-1	0	Pratt knot	$L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
6	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
7	2	0.29	6	-1	1		$L_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
7	3	0.43	4	0	1		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
8	2	0.25	8	0	2		$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
8	3	0.38	12	– 1	0	Windsor	$L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$
9	3	0.33	24	0	0		$L_{\circ}R_{\otimes}C_{\circ}L_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
9	4	0.44	8	- 1	2		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$

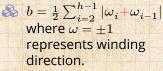
Knots are characterized by half-winding number h, centre number γ , centre fraction γ/h , knots per class $K(h, \gamma)$, symmetry s, balance b, name and sequence.











PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Probl Examples

Variable transformation Basics Holtsmark's Distribution

Random walks #crazytownbananapants

The problem of first return:

What is the probability that a random walker in one dimension returns to the origin for the first time after *t* steps?

Will our drunkard always return to the origin?

What about higher dimensions?

Reasons for caring:

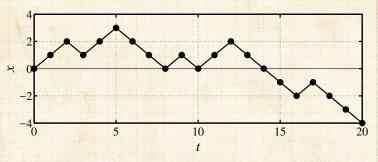
- 1. We will find a power-law size distribution with an interesting exponent.
- 2. Some physical structures may result from random walks.
- 3. We'll start to see how different scalings relate to each other.

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

For random walks in 1-d:



- In example above, returns occur at t = 8, 10, and 14.
- \Leftrightarrow Call $P_{fr(2n)}$ the probability of first return at t=2n.
- Probability calculation = Counting problem (combinatorics/statistical mechanics).
- ldea: Transform first return problem into an easier return problem.

PoCS | @pocsvox

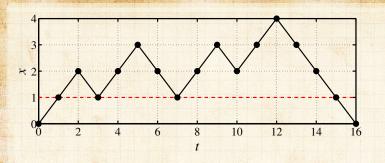
Power-Law

Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation Basics

PLIPLO



- & Can assume drunkard first lurches to x = 1.
- Observe walk first returning at t=16 stays at or above x=1 for $1 \le t \le 15$ (dashed red line).
- Now want walks that can return many times to x = 1.
- $\begin{array}{ll} & P_{\rm fr}(2n) = \\ & 2 \cdot \frac{1}{2} Pr(x_t \geq 1, 1 \leq t \leq 2n-1, \text{ and } x_1 = x_{2n-1} = 1) \end{array}$
- Arr The $rac{1}{2}$ accounts for $x_{2n}=2$ instead of 0.
- \clubsuit The 2 accounts for drunkards that first lurch to x = -1.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

References

9 a @ 25 of 61

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n 2 steps.
- Note: If we can compute the number of walks that hit x=0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.
- $\ensuremath{\&}$ Call walks that drop below x=1 excluded walks.
- We'll use a method of images to identify these excluded walks.

Pocs | @pocsvox

Power-Law

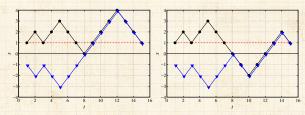
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution

Examples of excluded walks:



Key observation for excluded walks:

- For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- Matching path first mirrors and then tracks after first reaching x=0.
- # of t-step paths starting and ending at x=1 and hitting x=0 at least once = # of t-step paths starting at x=-1 and ending at x=1=N(-1,1,t)
- $\$ \ \, \text{So} \, \, N_{\text{first return}}(2n) = N(1,1,2n-2) N(-1,1,2n-2) \\$

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation Basics Holtsmark's Distribution

Probability of first return:

Insert question from assignment 3 2:

$$N_{
m fr}(2n) \sim rac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}.$$

Normalized number of paths gives probability.

3 Total number of possible paths = 2^{2n} .

$$\begin{split} P_{\mathrm{fr}}(2n) &= \frac{1}{2^{2n}} N_{\mathrm{fr}}(2n) \\ &\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}} \\ &= \frac{1}{\sqrt{2\pi}} (2n)^{-3/2} \propto t^{-3/2}. \end{split}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable

transformation Basics Holtsmark's Distribution

PLIPLO

- \clubsuit We have $P(t) \propto t^{-3/2}, \ \gamma = 3/2.$
- Same scaling holds for continuous space/time walks.
- P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. #totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions 2:

- Walker in d=2 dimensions must also return
- & Walker may not return in $d \ge 3$ dimensions
- 🚓 Associated genius: George Pólya 🗹

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

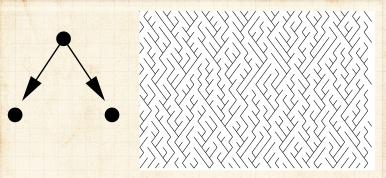
- $\ref{Solution}$ On networks, a random walker visits each node with frequency \propto node degree #groovy
- Equal probability still present: walkers traverse edges with equal frequency. #totallygroovy

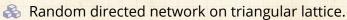
Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

Scheidegger Networks [9, 2]





Toy model of real networks.

'Flow' is southeast or southwest with equal probability.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics

PLIPLO

Scheidegger networks

Creates basins with random walk boundaries.

Observe that subtracting one random walk from another gives random walk with increments:

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- $\ref{Basin length }\ell$ distribution: $P(\ell)\propto \ell^{-3/2}$
- \clubsuit For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks Examples

Variable transformation Holtsmark's Distribution PLIPLO

- $\raise 5$ For a basin of length ℓ , width $\propto \ell^{1/2}$
- $\red {\mathbb B}$ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- \Leftrightarrow Invert: $\ell \propto a^{2/3}$
- $\Leftrightarrow d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- Pr(basin area = a)da= Pr(basin length = ℓ)d ℓ $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2} a^{-1/3} da$ = $a^{-4/3} da$ = $a^{-\tau} da$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

References

PLIPLO

Both basin area and length obey power law distributions

Observed for real river networks

 \clubsuit Reportedly: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Generalize relationship between area and length:

A Hack's law [5]:

$$\ell \propto a^h$$
.

- \clubsuit For real, large networks $h \simeq 0.5$
- Smaller basins possibly h > 1/2 (see: allometry).
- Models exist with interesting values of h.
- \clubsuit Plan: Redo calc with γ , τ , and h.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

$$\ell \propto a^h, \ P(a) \propto a^{-\tau}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$

- \Leftrightarrow Find τ in terms of γ and h.

$$\tau = 1 + h(\gamma - 1)$$

Excellent example of the Scaling Relations found between exponents describing power laws for many systems. PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution

With more detailed description of network structure, $\tau = 1 + h(\gamma - 1)$ simplifies to: [1]

$$\tau = 2 - h$$

and

$$\gamma = 1/h$$

- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize Universality C class with independent exponents.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

transformation
Basics
Holtsmark's Distribution

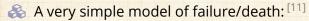
Variable

PLIPLO

Other First Returns or First Passage Times:

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Failure:



 \clubsuit Start with $x_0 > 0$.

The First Return Problem
Examples

Variable
transformation

Random Walks

ransformation
Basics
Holtsmark's Distribution

References

Streams

Dispersion of suspended sediments in streams.

& Long times for clearing.

More than randomness

Can generalize to Fractional Random Walks [7, 8, 6]

Levy flights, Fractional Brownian Motion

See Montroll and Shlesinger for example: [6] "On 1/f noise and other distributions with long tails."

Proc. Natl. Acad. Sci., 1982.

In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\alpha}$

 $\alpha = 1/2$ — diffusive

 $\alpha > 1/2$ — superdiffusive

 $\alpha < 1/2$ — subdiffusive

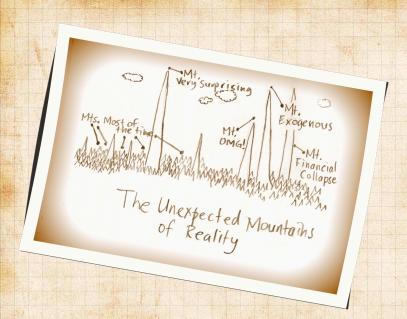
Extensive memory of path now matters...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks Examples

Variable transformation Holtsmark's Distribution PLIPLO

20 Q Q 39 of 61



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

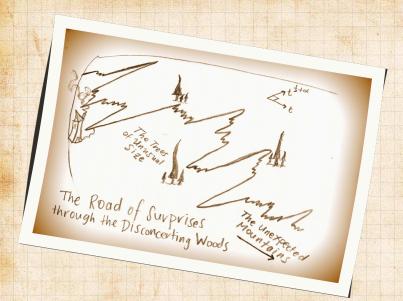
Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution

References

9 a ○ 40 of 61



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable

transformation Basics

Holtsmark's Distribution

References

9 a ○ 41 of 61

Variable Transformation

Understand power laws as arising from

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- $\red{ }$ Random variable X with known distribution P_x
- \Leftrightarrow Second random variable Y with y = f(x).
- $\begin{array}{ll} & P_Y(y) \mathrm{d} y = \\ & \sum_{x \mid f(x) = y} P_X(x) \mathrm{d} x \\ = & \\ & \sum_{y \mid f(x) = y} P_X(f^{-1}(y)) \frac{\mathrm{d} y}{\mid f'(f^{-1}(y)) \mid} \end{array}$
- Often easier to do by hand...

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distribution PLIPLO

General Example

 \triangle Assume relationship between x and y is 1-1.

Power-law relationship between variables: $y = cx^{-\alpha}, \alpha > 0$

& Look at y large and x small

$$dy = d(cx^{-\alpha})$$

$$= c(-\alpha)x^{-\alpha - 1} \mathsf{d}x$$

invert:
$$dx = \frac{-1}{c\alpha}x^{\alpha+1}dy$$

$$\mathrm{d}x = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} \mathrm{d}y$$

$$\mathrm{d}x = \frac{-c^{1/\alpha}}{\alpha} y^{-1-1/\alpha} \mathrm{d}y$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation Basics

Holtsmark's Distribution PLIPLO

Now make transformation:

$$P_y(y)\mathsf{d} y = P_x(x)\mathsf{d} x$$

$$P_y(y) \mathrm{d} y = P_x \, \overbrace{\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)}^{(x)} \, \underbrace{\frac{\mathrm{d} x}{c^{1/\alpha}} y^{-1-1/\alpha} \mathrm{d} y}^{\mathrm{d} x}$$

If $P_x(x) \to$ non-zero constant as $x \to 0$ then

$$P_x(y) \propto y^{-1-1/\alpha}$$
 as $y \to \infty$.

$$P_y(y) \propto y^{-1-1/\alpha-\beta/\alpha}$$
 as $y \to \infty$.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

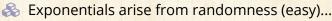
Basics Holtsmark's Distribution

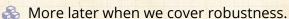
Example

Exponential distribution

Given
$$P_x(x)=\frac{1}{\lambda}e^{-x/\lambda}$$
 and $y=cx^{-\alpha}$, then

$$P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$$





PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distribution

Gravity

- Select a random point in the universe \vec{x}
- Measure the force of gravity $F(\vec{x})$
- Solution Observe that $P_F(F) \sim F^{-5/2}$.

PoCS | @pocsvox

Power-Law

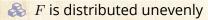
Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distribution PLIPLO

Matter is concentrated in stars: [10]



Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d}r \propto r^2 \mathrm{d}r$$

Assume stars are distributed randomly in space (oops?)

& Assume only one star has significant effect at \vec{x} .

Law of gravity:

$$F \propto r^{-2}$$

invert:

$$r \propto F^{-\frac{1}{2}}$$

 \Leftrightarrow Connect differentials: $dr \propto dF^{-\frac{1}{2}} \propto F^{-\frac{3}{2}} dF$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

Transformation:

Using
$$r \propto F^{-1/2}$$
 , $\mathrm{d} r \propto F^{-3/2} \mathrm{d} F$, and $P_r(r) \propto r^2$

$$P_F(F)\mathrm{d}F = P_r(r)\mathrm{d}r$$

$$\propto P_r({\rm const} \times F^{-1/2})F^{-3/2}{\rm d}F$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

$$=F^{-1-3/2}dF$$

$$= F^{-5/2} \mathrm{d}F.$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Proble

Variable

transformation

Basics
Holtsmark's Distribution

Gravity:

$$P_F(F) = F^{-5/2} \mathrm{d} F$$

$$\gamma = 5/2$$

- Mean is finite.
- & Variance = ∞ .
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

Doctorin' the Tardis

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

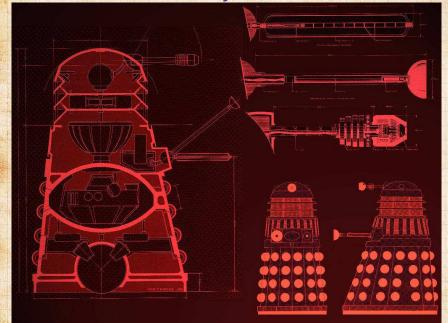
Random Walks

The First Return Problem
Examples

Variable transformation

Basics Holtsmark's Distribution

☐ Todo: Build Dalek army.



Extreme Caution!

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- Don't do this!!! (slap, slap)
- MIWO = Mild in, Wild out is the stuff.
- In general: We need mechanisms!

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References I

[1] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865–4877, 1999. pdf

[2] P. S. Dodds and D. H. Rothman. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci., 28:571–610, 2000. pdf

[3] W. Feller.

An Introduction to Probability Theory and Its

Applications, volume I.

John Wiley & Sons, New York, third edition, 1968.

[4] T. M. Fink and Y. Mao.

Designing tie knots by random walks.

Nature, 398:31–32, 1999. pdf 🗷

Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics

References

PLIPLO

References II

[5] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf ☑

- [6] E. W. Montroll and M. F. Shlesinger.
 On the wonderful world of random walks,
 volume XI of Studies in statistical mechanics,
 chapter 1, pages 1–121.
 New-Holland, New York, 1984.
- [7] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long tails.

Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics

References

PLIPLO

9 a € 60 of 61

References III

- [8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.
- [9] A. E. Scheidegger. The algebra of stream-order numbers. United States Geological Survey Professional Paper, 525-B:B187-B189, 1967. pdf
- [10] D. Sornette.

 <u>Critical Phenomena in Natural Sciences.</u>

 <u>Springer-Verlag, Berlin, 1st edition, 2003.</u>
- [11] J. S. Weitz and H. B. Fraser.

 Explaining mortality rate plateaus.

 Proc. Natl. Acad. Sci., 98:15383–15386, 2001.

 pdf 2

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

