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A powerful story in the rise of complexity:

| - . Rand Walk:
. & structure arises out of randomness. R

& Exhibit A: Random walks. ' e

,,,,,,,,,,,,, Variable
transformation
Basics
Holtsmark's Distribution ‘4

The essential random walk:
: 4 3 3 References
&5 One spatial dimension.
<= Time and space are discrete

<> Random walker (e.g., a drunk) starts at origin
2i=.0}

o Step attimetise,:

[ +1 with probability 1/2
‘= —1 with probability 1/2
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- A few random random walks:

1 ! ! 1 !
0 1000 2000 3000 4000 5000 6000

~100 1 fi 1 1 ! 1
0 1000 2000 3000 4000 5000 6000
t
200 T T T T T T

1 1 1 1
0 1000 2000 3000 4000 5000 6000
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- Random walks:

1=1 i=1

() = <Zfz> = Z<€z> =1

At any time step, we ‘expect’ our drunkard to be
back at the pub.

Obviously fails for odd number of steps...

But as time goes on, the chance of our drunkard
lurching back to the pub must diminish, right?
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: ;
Var(g;t) — Var E €; Random Walks
he First Return Problem
T Examples
Variable
t t transformation
Basics
= E Val’ (E,L) == E 1 == t Holtsmark's Distribution

,L': 1 7::1 PUPLO
References

* Sum rule = a good reason for using the variance to
measure spread; only works for independent distributions.

A non-trivial scaling law arises out of
additive aggregation or accumulation.
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. Stock Market randomness:
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Also known as the bean machine (4, the quincunx
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- Random walk basics:

Each specific random walk of length ¢ appears
with a chance 1/2¢.

We'll be more interested in how many random
walks end up at the same place.

Define N(i, j,t) as # distinct walks that start at
x =i and end at z = j after ¢ time steps.
Random walk must displace by +(j — i) after ¢
steps.

Insert question from assignment 3 (£
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Take time ¢ = 2n to help ourselves.

Ton, € {0,4+2,44, ..., +2n} Random Walks
T, IS €ven so set z,,, = 2k. R
Using our expression N (i, j, t) with i = 0, j = 2k, yuak L
and ¢t = 2n, we have
SiE 2n Refre‘rjences
Pr(z,, = 2k) (n = k)

For large n, the binomial deliciously approaches
the Normal Distribution of Snoredom:

e =

Pr(z, =z) ~ ¢t |

V27t

Insert question from assignment 3 (£

. !

The whole is different from the parts. #nutritious

See also: Stable Distributions (&' S 150761
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| spreading (more later).
- &% View as Random Additive Growth Mechanism.
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Random Walks

he First Return Problen

¢,..+ = the probability that by time step ¢, a random

Variable
walk has crossed the origin r times. transformation
Think of a coin flip game with ten thousand tosses. """
If you are behind early on, what are the chances References

you will make a comeback?

The most likely number of lead changes is... 0.

InfactiLoiy > Eibei o 4 >

Even crazier: - & 2
The expected time between tied scores = co I

See Feller, Intro to Probability Theory, Volume | 1] g‘ >
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Applied knot theory:

esring vt by o

me | EkandMao, 0
' Nature, 398, 31-32, 1999. “!

!
\r
Passive end Active end

Figure 1 All diagrams are' drawn in the frame of reference of the mirror image of the actual tie.
a, The two ways of beginning a knot, L, and Ls. For knots beginning with L, the tie must begin
inside-out. b, The fourin-hand, denoted by the sequence Ly R L C.T. €, A knot may be represented

by a persws{em random walk on a mangular lattice. The example shown is the four-in-hand, indicated by the
walk 111 ¢
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| ‘A‘pplied khotﬁ theory:

Table 1 Aesthetic tie knots
h y y/h K(h, y) s b Name

Sequence

Four-in-hand LeRoleCo T

ReLoCeRo

LeRoleCoRy

f00I0 NN

0.4 LRI ST

Knots are characterized by half-winding number h, centre number 1y, centre fraction y/h, knots per class K(h, y),
symmetry s, balance b, name and sequence.

h = number of

Si=— Zﬂl x,; Where z = -1
moves

for L aZHd +1 for R.

= %Zi:; |w; +w;_q]
where w = 41
represents winding
direction.

~ = number of
center moves
b
2t
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- Random walks #crazytownbananapants

What is the probability that a random walker in
one dimension returns to the origin for the first
time after ¢ steps?

Will our drunkard always return to the origin?
What about higher dimensions?

1. We will find a power-law size distribution with an
interesting exponent.

2. Some physical structures may result from random
walks.

3. We'll start to see how different scalings relate to
each other.
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|
0N

0 5} 10 15 20
t

A return to origin can only happen when t = 2n.

In example above, returns occur at¢ =38, 10, and
14.

Call Py (5., the probability of first return at ¢ = 2n.

Probability calculation = Counting problem
(combinatorics/statistical mechanics).

Idea: Transform first return problem into an
easier return problem.
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t

Can assume drunkard first lurches to = 1.

Observe walk first returning at ¢ = 16 stays at or above
z =1for1l <t <15 (dashed red line).

Now want walks that can return many times to = = 1.

Py (2n) =
2-2Pr(x, >1,1<t<2n—-1, andz; = z,, ; = 1)

The 1 accounts for z,,, = 2 instead of 0.

The 2 accounts for drunkards that first lurch to z = —1.
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- Counting first returns:

Move to counting numbers of walks.

Return to probability at end.

Again, N (i, j,t) is the # of possible walks between
x =14 and x = j taking t steps.

Consider all paths starting at z = 1 and ending at
xz =1 after t = 2n — 2 steps.

|dea: If we can compute the number of walks that
hit z = 0 at least once, then we can subtract this
from the total number to find the ones that
maintain z > 1.

Call walks that drop below x = 1 excluded walks.

We'll use a method of images to identify these
excluded walks.
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For any path starting at z=1 that hits O, there is a
unique matching path starting at x=—1.

Matching path first mirrors and then tracks after
first reaching 2=0.

# of t-step paths starting and ending at x=1 and
hitting =0 at least once

= # of t-step paths starting at z=—1 and ending at
x=1=N(-1,1,t)

So Nfirst return(2n> = N<17 1,2n— 2) ] N(—l, L,2n— 2)
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Probability of first return:

Normalized number of paths gives probability.
Total number of possible paths = 227,

Ng(2n) ~

V2rn3/2

227173/2

1
Py (2n) = 227an,.(271)

1 22n—3/2
% 22n V2mn3/2

5~
3

10 ase s
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We have P(t) < t3/2, v = 3/2.

Same scaling holds for continuous space/time walks.
P(t) is normalizable.

Recurrence: Random walker always returns to origin

But mean, variance, and all higher moments are
infinite. #totalmadness

Even though walker must return, expect a long wait...

One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Walker in d = 2 dimensions must also return
Walker may not return in d > 3 dimensions

Associated genius: George Polya(d'
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- Random Wallks

In any finite homogeneous space, a random
walker will visit every site with equal probability

Call this probability the Invariant Density of a
dynamical system

Non-trivial Invariant Densities arise in chaotic
systems.

On networks, a random walker visits each node
with frequency « node degree #groovy

Equal probability still present:
walkers traverse edges with equal frequency.
#totallygroovy

PoCS | @poesvox

Power-Law *
Mechanisms, Pt. 1

Random Walks

The First Return Problem

Variable
transformation
Basics

Holtsmark's Distribution
PUPLO

References

Do 300f61


http://www.uvm.edu
http://www.uvm.edu/pdodds

; Scheidegger'NétworkS [9,2]

e

i §

® o
§>/ CLONSUN <X AN

Random directed network on triangular lattice.
Toy model of real networks.

‘Flow’ is southeast or southwest with equal
probability.

i
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| Scheidegger’networks

Creates basins with random walk boundaries.

Observe that subtracting one random walk from
another gives random walk with increments:

0 with probability 1/2

{ +1 with probability 1/4
Cpiss
—1 with probability 1/4

Random walk with probabilistic pauses.

Basin termination = first return random walk
problem.

Basin length ¢ distribution: P(£) o £~3/2
For real river networks, generalize to P(¢) oc £77.
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~ Connections between exponents:

Random Walks

For a basin of length ¢, width o ¢1/2 Bamples

Variabl
BaSin areaa oc /- 61/2 = 23/2 tl“ia;asfoimat\on
Invert: ¢ o a ?/3
dg X d(a2/3) = 2/3@71/3da References

Pr(basin area = a)da

= Pr(basin length = ¢)d/
ox £-3/2de

i (a2/3)*3/2a*1/3da

= a%/3da

= Tda
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~ Connections between exponents:

Both basin area and length obey power law
distributions

Observed for real river networks
Reportedly: 1.3 <7< 15and 1.5 <y <2

Hack’s law [°!;

¢ x al.

For real, large networks h ~ 0.5

Smaller basins possibly h > 1/2 (see: allometry).

Models exist with interesting values of h.
Plan: Redo calc with ~, 7, and h.
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~ Connections between exponents:

Given
focat Pla)oca 7 and Pl)ioc 7Y

dioed(gh) = ha's 'da
Find 7 in terms of v and h.

Pr(basin area = a)da
= Pr(basin length = 7)d/

ox £7d¢
oc(ah) 'Yah 1da
a— 1+ (v=1))da

‘7’:1+h(’}/—1>‘

Excellent example of the Scaling Relations found
between exponents describing power laws for

many systems.
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~ Connections between exponents:

T=2—h

Only one exponent is independent (take h).
Simplifies system description.

Expect Scaling Relations where power laws are
found.

Need only characterize Universality (4" class with

independent exponents.

and

PoCS | @poesvox

Power-Law *
Mechanisms, Pt. 1

Random Walks

he First Return Problem

Variable
transformation
Basics

Holtsmark’s Distribution
PUPLO

References

DA 370f 61


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)

- Other First Returns or First Passage Times:

A very simple model of failure/death: "
x, = entity’s ‘health’ at time ¢

Start with z, > 0.

Entity fails when z hits 0.

Dispersion of suspended sediments in streams.
Long times for clearing.
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- More than randomness
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Can generalize to Fractional Random Walks 7 & ©! Random Walks
Levy flights, Fractional Brownian Motion b
See Montroll and Shlesinger for example: aness At
“On 1/f noise and other distributions with long T RRg
tails.”
Proc. Natl. Acad. Sci., 1982. Saial
In 1-d, standard deviation o scales as

LI
a = 1/2 — diffusive I
a > 1/2 — superdiffusive /

a < 1/2 — subdiffusive
Extensive memory of path now matters...

ovo
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- Variable Trahsformation

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random variable X with known distribution P,
Second random variable Y with y = f(z).

Py (y)dy =

L) f(a)—y Tx(2)02

-1 dy
2 yisw=y x U W o

Often easier to do by
hand...
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Assume relationship between x and y is 1-1.

Power-law relationship between variables:
i=rerEi a0

Look at y large and = small

= c(—a)z ¥ 1dx

] —1
invert: dz = —z%tldy
ca
—1 sy\—latD)/e
dr = — (= d
¥ (6107 (C) y
oy (6
Ch i maE yoltiody
a
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If P,(x) — non-zero constant as z — 0 then
P (ecy -1 as ¢ = oo
If P_(z) — z® as x — 0 then

P () o yeiotienBlo el ih o,
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Given P_(z) = %e’m/’\ and y = cz~ <, then e

References

P(y) x yflfl/()é +0 <y7172/a>

Exponentials arise from randomness (easy)...
More later when we cover robustness.
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Select a random point in the
universe z

Measure the force of gravity
F(Z)

Observe that

Pl B At 2

References
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F is distributed unevenly
Probatzility of being a distance r from a single star
ay =1

P.(r)dr o r2dr
Assume stars are distributed randomly in space
(oops?)
Assume only one star has significant effect at z.
Law of gravity:

Foxr?2

invert:
roc B3

Connect differentials: dr <« dF~% x F-3dF
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 Transformation:

- Using|r « F-1/2|,|dr « F-3/2dF |, and[ P,

Pn(F)dF = P_(r)dr

& P {const x FTH2 PP 2dE

x (F~1/2)% p-3/2dF
— P Adn

= F5/2dF.
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7=5/2
Mean is finite.
Variance = co.
A wild distribution.

Upshot: Random sampling of space usually safe
but can end badly...
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Doctorin’ the Tardis
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[1 Todo: Build Dalek army.
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Extreme‘ Catjrtibn!

Random Walks

The First Return Problem
Examples
£ Variable
PLIPLO = Power law in, power law out transformation
Explain a power law as resulting from another
unexplained power law. .

Yet another homunculus argument....
Don't do this!!! (slap, slap)
MIWO = Mild in, Wild out is the stuff.

In general: We need mechanisms!

“Da v 57 of 61


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Homunculus_argument

References| s apoi

Mechanisms, Pt. 1

Random Walks

= [1] P.S.Dodds and D. H. Rothman.

Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865-4877, 1999. pdf(£ Varab‘e

[2] P.S.Dodds and D. H. Rothman. tranmmato”
Scaling, universality, and geomorphology. Mgo
Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. References
pdftZ

[31 W. Feller.

An Introduction to Probability Theory and Its

Applications, volume .
John Wiley & Sons, New York, third edition, 1968.

[4] T.M. Fink and Y. Mao.
Designing tie knots by random walks.
Nature, 398:31+32, 1999. pdf(4'

D> 59 of 61


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/~pdodds/research/papers/others/1999/dodds1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/dodds2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1999/fink1999a.pdf

References Il

5] J.T.Hack.

[6]

[7]

Studies of longitudinal stream profiles in Virginia
and Maryland.

United States Geological Survey Professional
Paper, 294-B:45-97, 1957. pdf($'

E. W. Montroll and M. F. Shlesinger.

On the wonderful world of random walks,
volume Xl of Studies in statistical mechanics,
chapter 1, pages 1-121.

New-Holland, New York, 1984.

E. W. Montroll and M. W. Shlesinger.

On 1/f noise and other distributions with long
tails.

Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf(&'

PoCS | @pogsvox

Power-Law *
Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples

Variable
transformation
Basics

Holtsmark’s Distribution
PUPLO

References

DA 600f61


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/~pdodds/research/papers/others/1957/hack1957a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1982/montroll1982a.pdf

e R o 1 {2 3 T I R, o <o g SR

References Il gl

Mechanisms, Pt. 1

[8] E.W. Montroll and M. W. Shlesinger.

Maximum entropy formalism, fractals, scaling Random Walks

phenomena, and 1/ f noise: a tale of tails.

J. Stat. Phys., 32:209-230, 1983. Jariebl oo
[9] A.E.Scheidegger.

PUPLO

The algebra of stream-order numbers.
United States Geological Survey Professional
Paper, 525-B:B187-B189, 1967. pdf(Z'

[10] D. Sornette.
Critical Phenomena in Natural Sciences.
Springer-Verlag, Berlin, 1st edition, 2003.

[11] J. S. Weitz and H. B. Fraser.
Explaining mortality rate plateaus.
Proc. Natl. Acad. Sci., 98:15383-15386, 2001.
pdf(Z

References

DA 610f61


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/~pdodds/research/papers/others/1967/scheidegger1967b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2001/weitz2001a.pdf

	Random Walks
	The First Return Problem
	Examples

	Variable transformation
	Basics
	Holtsmark's Distribution
	PLIPLO

	References

