Properties of Complex Networks

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distributions
Assortativity
Clustering

Concurrency
Branching ratios

Interconnectedness

Nutshell

References

9 a @ 1 of 40

These slides are brought to you by:

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distributions
Assortativity
Clustering
Motifs

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

☑ On Instagram at pratchett_the_cat 🗹

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions
Assortativity
Clustering
Motifs
Concurrency
Branching ratios

Interconnectedness

Nutshell

References

9 a @ 3 of 40

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios

Network distances

Interconnectedness

Nutshell

References

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

. A problem

Degree distributions
Assortativity

lustering

Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell



A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

← Typical hairball

- ightharpoonup number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] — Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

PoCS | @pocsvox Properties of

Complex

Networks

Properties of Complex

Networks A problem

Concurrency

Interconnectedness Nutshell

Some key aspects of real complex networks:

degree distribution*

assortativity

A homophily

clustering

motifs

modularity

concurrency

🚓 hierarchical scaling

network distances

centrality

efficiency

interconnectedness

robustness

Plus coevolution of network structure and processes on networks.

 Degree distribution is the elephant in the room that we are now all very aware of... PoCS | @pocsvox
Properties of
Complex

Properties of Complex Networks

Networks

A problem

Degree distributions

egree distributions ssortativity

Motifs
Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell

1. degree distribution P_{ν}

A P_{k} is the probability that a randomly selected node has degree k.

& k = node degree = number of connections.

🙈 ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 2

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.
- link cost controls skew.
- hubs may facilitate or impede contagion.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency Interconnectedness

Nutshell

Note:

- Erdős-Rényi random networks are a mathematical construct.
- 'Scale-free' networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

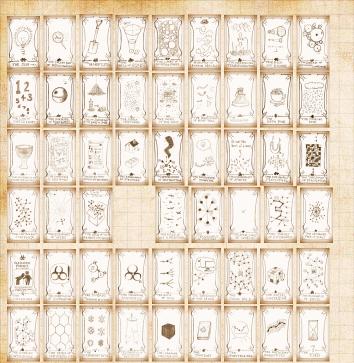
Dograp dictr

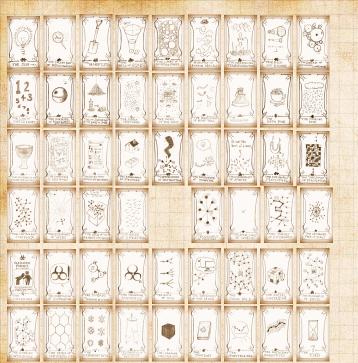
Degree distributions

Clustering Motifs

Concurrency
Branching ratios
Network distances
Interconnectedness

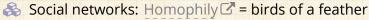
Nutshell





PoCS | @pocsvox Properties of Complex Networks

2. Assortativity/3. Homophily:



e.g., degree is standard property for sorting: measure degree-degree correlations.

Assortative network: [5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.

Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs. Properties of Complex Networks

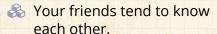
Assortativity

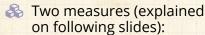
Concurrency

Interconnectedness

Local socialness:

4. Clustering:





1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

2. Newman [6]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

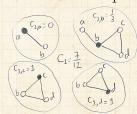
Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Example network:

Calculation of C_1 :



pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1j_2\in\mathcal{N}_i}a_{j_1j_2}}{k_i(k_i-1)/2}$$

where k_i is node i's degree, and \mathcal{N}_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

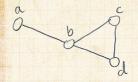
Clustering

Concurrency

Interconnectedness

Triples and triangles

Example network:



Triangles:

Triples:

- Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\text{The definition } C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks A problem

Degree distributions
Assortativity

Clustering
Motifs
Concurrency

Branching ratios Network distances Interconnectedness

Clustering:

Sneaky counting for undirected, unweighted networks:

- & If the path i-j- ℓ exists then $a_{ij}a_{j\ell}=1$.
- \Leftrightarrow We want $i \neq \ell$ for good triples.
- In general, a path of n edges between nodes i_1 and i_n travelling through nodes $i_2, i_3, ... i_{n-1}$ exists $\Leftrightarrow a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1$.

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

$$\# \text{triangles} = \frac{1}{6} \text{Tr} A^3$$

Properties of Complex

Networks

Properties of Complex Networks

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

- For sparse networks, C_1 tends to discount highly connected nodes.
- $\stackrel{\textstyle <}{\&} C_2$ is a useful and often preferred variant
- & In general, $C_1 \neq C_2$.
- \mathcal{L}_1 is a global average of a local ratio.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

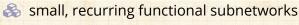
Degree distributions

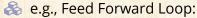
Clustering

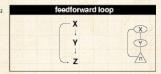
Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

5. motifs:







Shen-Orr, Uri Alon, et al. [7]

PoCS | @pocsvox
Properties of

Properties of Complex Networks

Properties of Complex Networks

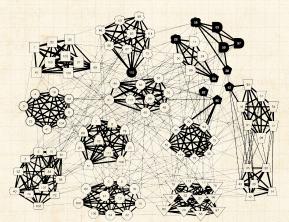
Degree distributions
Assortativity

Motifs Concurrency Branching ratios

Branching ratios Network distances Interconnectedness

Nutshell

6. modularity and structure/community detection:



Clauset et al., 2006 [2]: NCAA football

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Motifs

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

References

9 a № 25 of 40

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

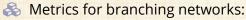
PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

Concurrency Interconnectedness

8. Horton-Strahler ratios:

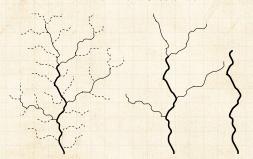


Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

ightharpoonup Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$



PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

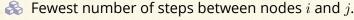
Concurrency

Branching ratios Interconnectedness

Nutshell

9. network distances:

(a) shortest path length d_{ij} :



 \Re (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

Good algorithms exist for calculation.

Weighted links can be accommodated.

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

Degree distributions
Assortativity
Clustering
Motifs

Concurrency
Branching ratios
Network distances

Nutshell

PoCS | @pocsvox Properties of Complex Networks

9. network distances:

- \clubsuit network diameter d_{max} : Maximum shortest path length between any two nodes.
- \Leftrightarrow closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1}/\binom{n}{2}]^{-1}$: Average 'distance' between any two nodes.
- Closeness handles disconnected networks $(d_{i,i}=\infty)$
- $d_{cl} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number

Properties of Complex Networks

Concurrency Network distances

10. centrality:

- Many such measures of a node's 'importance.'
- \Leftrightarrow ex 1: Degree centrality: k_i .
- ex 2: Node i's betweenness = fraction of shortest paths that pass through i.
- ex 3: Edge ℓ's betweenness = fraction of shortest paths that travel along ℓ .
- ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [3])

PoCS | @pocsvox Properties of

Complex Networks

Properties of Complex Networks

Concurrency

Network distances

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.

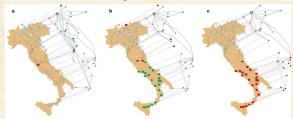


Figure 1 [Modelling a blackout in lady. Illustration of an iterative process of a cascade of failure using real-world after from a power network (focated on the map of lady) and an Internet network (shifted above the map) that were 2000. The networks of the map of the lady and a real power of the lady of

at the next step are marked in green. b. Additional nodes that were disconnected from the Internet communication network gainst component are removed (red nodes above map). As a result the power stations depending on them are removed from the power network (red nodes on map). Again, the nodes that will be disconnected from the giant cluster at the form the giant component of the power network (red nodes on map). Again, the nodes that will be disconnected from the giant component of the power network are removed (red nodes on map) as well as the nodes in the Internet network that depend on them (red nodes above map).

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

egree distributions

lustering lotifs

Concurrency
Branching ratios

Network distances

Interconnectedness

Nutshell

Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- 🙈 Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

PoCS | @pocsvox
Properties of

Properties of Complex Networks

Properties of Complex Networks

Degree distributions
Assortativity
Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Assortativity Motifs

Concurrency

Branching ratios Network distances Interconnectedness

Nutshell

scale-free-networks,

References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Haylin. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025-1028, 2010. pdf

- [2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf
- [3] I. M. Kleinberg. Authoritative sources in a hyperlinked environment.

Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Interconnectedness

References II

[4] M. Kretzschmar and M. Morris.

Measures of concurrency in networks and the spread of infectious disease.

Math. Biosci., 133:165–95, 1996. pdf

- [5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf
- [6] M. E. J. Newman.

 The structure and function of complex networks.

 SIAM Rev., 45(2):167–256, 2003. pdf
- [7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*.

 Nature Genetics, 31:64–68, 2002. pdf

PoCS | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Motifs
Concurrency
Rearching ratios

Branching ratios
Network distances
Interconnectedness

Nutshell

References III

[8] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-442, 1998. pdf 2

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity Motifs

Concurrency

Interconnectedness

Nutshell

