Lognormals and friends

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

 ${\it Licensed under the \it Creative \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it A$

PoCS | @pocsvox Lognormals and

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

Outline

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

PoCS | @pocsvox

Lognormals and friends

Lognormals

少 Q (~ 4 of 26

PoCS | @pocsvox

Lognormals and friends

Empirical Confusability Random Multiplicative Growth Model

References

These slides are brought to you by:

PoCS | @pocsvox Lognormals and friends

少 q (~ 1 of 26

PoCS

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

Alternative distributions

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution 🗗

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \mathrm{exp}\left(-\frac{(\mathrm{ln}x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions

$$P(x) \mathrm{d} x \, = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} \mathrm{d} x$$

CCDF = stretched exponential \square .

3. Gamma distributions ☑, and more.

ჟად 7 of 26

PoCS | @pocsvox

Lognormals and friends

Empirical Confusabilit Random Multiplicativ Growth Model Random Growth with Variable Lifespan

References

These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

On Instagram at pratchett the cat

PoCS | @pocsvox Lognormals and friends

•2 of 26

PoCS

WW S

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

少 Q (~ 3 of 26

The lognormal distribution:

lognormals

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \mathrm{exp}\left(-\frac{(\mathrm{ln}x - \mu)^2}{2\sigma^2}\right)$$

- \Re lnx is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

ჟq № 8 of 26

lognormals

& Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{\rm lognormal} = e^{\mu + \frac{1}{2}\sigma^2}, \qquad {\rm median}_{\rm lognormal} = e^{\mu},$$

$$\sigma_{\text{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$$

All moments of lognormals are finite.

Lognormals Empirical Confusability Random Multiplicative Growth Model

References

少∢ॡ 9 of 26

Confusion

What's happening:

$$\begin{split} & \ln\!P(x) = \ln\left\{\frac{1}{x\sqrt{2\pi}\sigma}\!\exp\left(-\frac{(\ln\!x - \mu)^2}{2\sigma^2}\right)\right\} \\ & = -\!\ln\!x - \!\ln\!\sqrt{2\pi}\sigma - \frac{(\ln\!x - \mu)^2}{2\sigma^2} \end{split}$$

Growth Model Random Growth with Variable Lifespan

PoCS | @pocsvox

Lognormals and friends

References

$$=-\frac{1}{2\sigma^2}({\rm ln}x)^2+\left(\frac{\mu}{\sigma^2}-1\right){\rm ln}x-{\rm ln}\sqrt{2\pi}\sigma-\frac{\mu^2}{2\sigma^2}.$$

If the first term is relatively small,

$$\boxed{ \ln\! P(x) \sim - \left(1 - \frac{\mu}{\sigma^2}\right) \ln\! x + \mathrm{const.} } \Rrightarrow \boxed{ \gamma = 1 - \frac{\mu}{\sigma^2} }$$

少 Q (~ 12 of 26

PoCS | @pocsvox

Lognormals and friends

Empirical Confusabilit

References

Derivation from a normal distribution Take *Y* as distributed normally:

8

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

PoCS | @pocsvox Lognormals and friends

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

Confusion

 \Re If $\mu < 0$, $\gamma > 1$ which is totally cool.

 \Re If $\mu > 0$, $\gamma < 1$, not so much.

 \Re If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$:

$$\begin{split} &-\frac{1}{2\sigma^2}(\text{ln}x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2}-1\right)\text{ln}x\\ \Rightarrow &\log_{10}x \lesssim 0.05\times 2(\sigma^2-\mu)\text{log}_{10}e \simeq 0.05(\sigma^2-\mu) \end{split}$$

⇒ If you find a -1 exponent, you may have a lognormal distribution...

୬९୯ 13 of 26

Set Y = lnX:

power laws

8

$$\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$$

8

$$\Rightarrow P(x) \mathrm{d}x = \frac{1}{x\sqrt{2\pi}\sigma} \mathrm{exp}\left(-\frac{(\ln\!x - \mu)^2}{2\sigma^2}\right) \mathrm{d}x$$

Confusion between lognormals and pure

少 Q (~ 10 of 26

PoCS | @pocsvox

Generating lognormals:

PoCS | @pocsvox Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Lognormals and friends

Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

Near agreement over four orders

of magnitude!

Random multiplicative growth:

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- $\Longrightarrow x_n$ is lognormally distributed

少○ 15 of 26

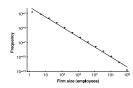
\Re For lognormal (blue), $\mu = 0$ and $\sigma = 10$.

 $\red{solution}$ For power law (red), $\gamma = 1$ and c = 0.03.

少∢<a>∿ 11 of 26

Lognormals or power laws?

- Sibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).



Freq $\propto (\text{size})^{-\gamma}$

One piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. [1].

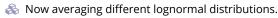
PoCS | @pocsvox The second tweak Lognormals and

Ages of firms/people/... may not be the same

- Allow the number of updates for each size x_i to
- \Re Example: $P(t)dt = ae^{-at}dt$ where t = age.
- & Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln\!x - \mu)^2}{2t}\right) \mathrm{d}t$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)



PoCS | @pocsvox

Lognormals and

Lognormals

Random Growth with Variable Lifespan

References

•20 of 26

PoCS | @pocsvox

Lognormals and friends

References

An explanation

- Axtel cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq 2$
- \Re The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1) = rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- \mathbb{A} Each x_i cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\langle x_i \rangle)$$

•9 α № 16 of 26

w 8

Lognormals

Lognormals

References

Averaging lognormals

$$P(x) = \int_{t-0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln\frac{x}{m})^2}{2t}\right) \mathrm{d}t$$

- Insert fabulous calculation (team is spared).
- Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln\frac{x}{m})^2}}$$

PoCS | @pocsvox

Lognormals and friends

Lognormals

Some math later...

Insert question from assignment 7 2

Find
$$P(x) \sim x^{-\gamma}$$

$$N = \frac{(\gamma-2)}{(\gamma-1)} \left[\frac{(c/N)^{\gamma-1}-1}{(c/N)^{\gamma-1}-(c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N\ll 1$$
 and $\gamma>2$ $N=\frac{(\gamma-2)}{(\gamma-1)}\left[\frac{-1}{-(c/N)}\right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

PoCS | @pocsvox Lognormals and friends

少 Q (~ 17 of 26

PoCS

W |

Lognormals Random Multiplicative Growth Model

The second tweak

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln\frac{x}{m})^2}}$$

 \Re Depends on sign of $\ln \frac{x}{m}$, i.e., whether $\frac{x}{m} > 1$ or $\frac{x}{m} < 1$.

$$P(x) \propto \left\{ \begin{array}{ll} x^{-1+\sqrt{2\lambda}} & \text{if } \frac{x}{m} < 1 \\ x^{-1-\sqrt{2\lambda}} & \text{if } \frac{x}{m} > 1 \end{array} \right.$$

- & 'Break' in scaling (not uncommon)
- Double-Pareto distribution
- First noticed by Montroll and Shlesinger [7, 8]
- & Later: Huberman and Adamic [3, 4]: Number of pages per website

•9 q (~ 22 of 26

•9 q (~ 18 of 26

Summary of these exciting developments:

PoCS | @pocsvox Lognormals and

References III

PoCS | @pocsvox Lognormals and

Lognormals

References

Lognormals Random Growth with Variable Lifespan

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209-230, 1983.

•9 q (> 26 of 26

Lognormals and power laws can be awfully similar

Random Multiplicative Growth leads to lognormal distributions

- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...

少 Q (~ 23 of 26

References I

[1] R. Axtell. Zipf distribution of U.S. firm sizes. Science, 293(5536):1818-1820, 2001. pdf

[2] R. Gibrat. Les inégalités économiques.

Librairie du Recueil Sirey, Paris, France, 1931.

- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. Quarterly Journal of Economic Commerce, 1:5-12, 2000.

PoCS | @pocsvox Lognormals and friends

Lognormals

References

少 Q (~ 24 of 26

References II

[5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. Phys. Rev. E, 60(2):1299-1303, 1999. pdf

[6] M. Mitzenmacher.

A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1:226-251, 2003. pdf

[7] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long tails.

Proc. Natl. Acad. Sci., 79:3380-3383, 1982. pdf

Lognormals

References

∮0 q (~ 25 of 26