Fundamentals

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2017

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

 ${\it Licensed under the \it Creative \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it 3.0 \it License. \it Commons \it Attribution-NonCommercial-Share \it Alike \it A$

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling

Outline

Data **Emergence**

Nutshell References

Modeling

Statistical Mechanics

Self-Organization

Nutshell

2010 🖸

References

PoCS | @pocsvox

Fundamentals

Emergence

Modeling Statistical Mechanics

Nutshell

References

Self-Organization

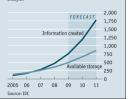
Data

2 9 0 4 of 58

These slides are brought to you by:

Sealie & Lambie **Productions**

PoCS | @pocsvox Fundamentals


少 Q (~ 1 of 58

PoCS

W |8|

Emergence Self-Organization Modeling Statistical Mechanics Nutshell References

Exponential growth: \sim 60% per year.

Data, Data, Everywhere—the Economist, Feb 25, Big Data Science:

🚳 2013: year traffic on Internet estimate to reach 2/3 Zettabytes $(1ZB = 10^3EB = 10^6PB =$ 109TB)

🙈 Large Hadron Collider: 40 TB/second.

2016—Large Synoptic Survey Telescope: 140 TB every 5 days.

♣ Facebook: ~ 250 billion photos (mid 2013)

 Twitter: ∼ 500 billion tweets (mid 2013)

Data

Emergence Self-Organization Modeling Statistical Mechanics Nutshell References

•9 Q (№ 2 of 58

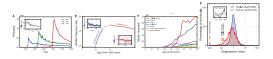
These slides are also brought to you by:

Special Guest Executive Producer: Pratchett

On Instagram at pratchett_the_cat

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling Nutshell

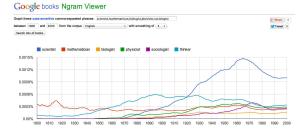


No really, that's a lot of data

Unit	Size	What it means
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5M A typical pop song is about 4MB
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-20
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amour to around 5PB. Google processes around 1PB every hour
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB
Yottabyte (YB)	1,000ZB; 280 bytes	Currently too big to imagine

Big Data—Culturomics:

"Quantitative analysis of culture using millions of digitized books" by Michel et al., Science, 2011 [6]


♦ http://www.culturomics.org/ and Google Books ngram viewer

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling Nutshell

References

The Newness of being a Scientist (1833 on):

PoCS | @pocsvox

Data Emergence Self-Organization Modeling Statistical Mechanics Nutshell References

"Scientists are the people who ask a question about a phenomenon and proceed to systematically go about answering the question themselves. They are by nature curious, creative and well organized."

•9 α № 16 of 58

PoCS | @pocsvox

Fundamentals

Emergence

Modeling

Statistical

Mechanics Nutshell

References

Self-Organization

Barney Rubble:

"Characterizing the Google Books corpus: Strong limits to inferences of socio-cultural and linguistic evolution"

Pechenick, Danforth, and Dodds, PLoS ONE, **10**, e0137041, 2015. [7]

•9 q (~ 10 of 58

W 8

Basic Science \simeq Describe + Explain:

Lord Kelvin (possibly):

🙈 "lf you cannot measure it, you cannot improve it."

Bonus:

"X-rays will prove to be a hoax."

"There is nothing new to be discovered in physics now, All that remains is more and more precise measurement."

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling Statistical Mechanics

References

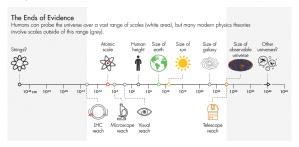
PoCS | @pocsvox Fundamentals

Data

Emergence

Modeling

Nutshell


(W) [8]

•9 q (~ 15 of 58

Self-Organization

Limits of testability and happiness in Science:

From A Fight for the soul of Science I in Quanta Magazine (2016/02):

The Wikipedia on Emergence (2006):

"In philosophy, systems theory and the sciences, emergence refers to the way complex systems and patterns arise out of a multiplicity of relatively simple interactions. ... emergence is central to the physics of complex systems and yet very controversial."

Wikipedia, 2016:

Emergence:

In philosophy, systems theory, science, and art, emergence is a process whereby larger entities arise through interactions among smaller or simpler entities such that the larger entities exhibit properties the smaller/simpler entities do not exhibit.

The philosopher G. H. Lewes first used the word explicity in 1875.

Emergence:

Tornadoes, financial collapses, human emotion aren't found in water molecules, dollar bills, or carbon atoms.

Examples:

- ♣ Fundamental particles ⇒ Life, the Universe, and Everything
- Genes ⇒ Organisms
- \aleph Neurons etc. \Rightarrow Brain \Rightarrow Thoughts
- Religion, Collective behaviour
- \triangle People \Rightarrow The Web
- People ⇒ Language, and rules of language
- $? \Rightarrow time; ? \Rightarrow gravity; ? \Rightarrow reality.$

"The whole is more than the sum of its parts" -Aristotle

PoCS | @pocsvox Fundamentals

Data Emergence

Self-Organization Modeling Statistical Mechanics

Nutshell

W | 8

•9 q (~ 23 of 58

Emergence:

Friedrich Havek (Economist/Philospher/Nobelist):

- Markets, legal systems, political systems are emergent and not designed.
- 'Taxis' = made order (by God, Sovereign, Government, ...)
- & 'Cosmos' = grown order
- Archetypal limits of hierarchical and decentralized structures.
- A Hierarchies arise once problems are solved. [4]
- Decentralized structures help solve problems.
- Dewey Decimal System versus tagging.

PoCS | @pocsvox Fundamentals

Data Emergence

Self-Organization Modeling

Nutshell References

少 q (~ 24 of 58

PoCS | @pocsvox

Fundamentals

Emergence

Modeling

Statistical

References

•> q (~ 25 of 58

PoCS | @pocsvox

Fundamentals

Data

Emergence

Modeling

Nutshell

Self-Organization

Self-Organization

The emergence of taste:

Molecules ⇒ Ingredients ⇒ Taste

the New York Times, January 28, 2007.

nytimes.com ☑

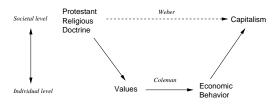
PoCS | @pocsvox Fundamentals

Data

Emergence Self-Organization

Modeling Statistical Mechanics

Nutshell References



•27 of 58

Emergence:

James Coleman ☑ in Foundations of Social Theory:

Understand macrophenomena arises from microbehavior which in turn depends on macrophenomena. [3]

Thomas Schelling (Economist/Nobelist):

More on Coleman here .

Emergence:

Reductionism

Reductionism and food:

- Pollan: "even the simplest food is a hopelessly complex thing to study, a virtual wilderness of chemical compounds, many of which exist in complex and dynamic relation to one another..."
- 🚓 "So ... break the thing down into its component parts and study those one by one, even if that means ignoring complex interactions and contexts, as well as the fact that the whole may be more than, or just different from, the sum of its parts. This is what we mean by reductionist science."

PoCS | @pocsvox Fundamentals

Emergence

Self-Organization Modeling Statistical Mechanics

Nutshell References

• 9 q С№ 28 of 58

PoCS | @pocsvox Fundamentals

Data

Emergence

Self-Organization Modeling

Statistical Mechanics

Nutshell

Reductionism

- 🚓 "people don't eat nutrients, they eat foods, and foods can behave very differently than the nutrients they contain."
- Studies suggest diets high in fruits and vegetables help prevent cancer.
- & So... find the nutrients responsible and eat more of them
- But "in the case of beta carotene ingested as a supplement, scientists have discovered that it actually increases the risk of certain cancers. Oops."

"Micromotives and Macrobehavior" [

- Segregation [8, 11]
- Wearing hockey helmets [9]
- Seating choices

Vi Hart and Nicky Case's Polygonthemed visualization 🗗:

•9 q (~ 26 of 58

•9 q (→ 29 of 58

Reductionism

Thyme's known antioxidants:

4-Terpineol, alanine, anethole, apigenin, ascorbic acid, beta carotene, caffeic acid, camphene, carvacrol, chlorogenic acid, chrysoeriol, eriodictyol, eugenol, ferulic acid, gallic acid, gamma-terpinene isochlorogenic acid, isoeugenol, isothymonin, kaempferol, labiatic acid, lauric acid, linalyl acetate, luteolin, methionine, myrcene, myristic acid, naringenin, oleanolic acid, p-coumoric acid, p-hydroxy-benzoic acid, palmitic acid, rosmarinic acid, selenium, tannin, thymol, tryptophan, ursolic acid, vanillic acid.

•9 q (~ 30 of 58

PoCS | @pocsvox Fundamentals

Data

Emergence

Modeling

Nutshell

References

Self-Organization

"The Universe is made of stories, not of atoms."

- From "The Speed of Darkness" (1968) by Muriel Rukeyser 2
- Quoted by Metatron in Supernatural, Meta Fiction, S9E18.

Data

Emergence Self-Organization Modeling Statistical Mechanics

Nutshell

References

少 q (~ 33 of 58

Reductionism

"It would be great to know how this all works, but in the meantime we can enjoy thyme in the knowledge that it probably doesn't do any harm (since people have been eating it forever) and that it may actually do some good (since people have been eating it forever) and that even if it does nothing, we like the way it tastes."

Gulf between theory and practice (see baseball and bumblebees).

Emergence Self-Organization Modeling Statistical Nutshell

References

少 q (~ 31 of 58

(Sir Terry) Pratchett's ☑ Narrativium ☑:

- A "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."
- "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

PoCS | @pocsvox

Emergence

Self-Organization

Modeling Statistical Mechanics Nutshell References

• ୨ ବ ଦ 34 of 58

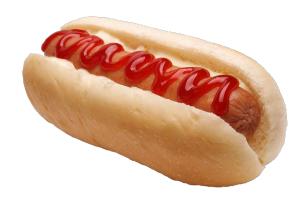
PoCS | @pocsvox

Fundamentals

Data

Emergence

Modeling


Statistical Mechanics

Nutshell

References

Self-Organization

This is a Collateralized Debt Obligation:

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling Nutshell

•9 q (~ 32 of 58

Emergence:

Higher complexity:

- Many system scales (or levels) that interact with each other.
- Potentially much harder to explain/understand.

Even mathematics: [5]

Gödel's Theorem ☑: we can't prove every theorem that's true ...

Suggests a strong form of emergence: Some phenomena cannot be analytically deduced from elementary aspects of a system.

少 Q (~ 35 of 58

Emergence:

Roughly speaking, there are two types of emergence:

I. Weak emergence:

System-level phenomena is different from that of its constituent parts yet can be connected theoretically.

II. Strong emergence:

System-level phenomena fundamentally cannot be deduced from how parts interact.

Emergence:

- Reductionist techniques can explain weak emergence.
- Magic explains strong emergence. [2]
- But: maybe magic should be interpreted as an inscrutable yet real mechanism that cannot ever be simply described.
- 备 Gulp.

PoCS | @pocsvox Fundamentals

Emergence Self-Organization

Data

Modeling Statistical Mechanics

Nutshell References

THE DISTRIBUTE

◆) Q (~ 36 of 58

PoCS | @pocsvox

Fundamentals

Emergence

Modeling

Statistical

References

少 Q (~ 37 of 58

PoCS | @pocsvox

Fundamentals

Data

Emergence

Modeling

Nutshell

Self-Organization

Self-Organization

Definitions

"Self-organization is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source." (also: Self-assembly)

Examples:

- & Molecules/Atoms liking each other \rightarrow Gases, liquids, and solids.
- & Spin alignment \rightarrow Magnetization.
- Protein folding.
- Imitation → Herding, flocking, mobs, ...

Fundamental question: how likely is 'complexification'?

PoCS | @pocsvox

Fundamentals

Data

Emergence

Modeling

Statistical Mechanics

Nutshell

References

Self-Organization

◆) < (~ 40 of 58

Tools and techniques:

- Differential equations, difference equations, linear algebra, stochastic models.
- Statistical techniques for comparisons and descriptions.
- Methods from statistical mechanics and computer science.
- Machine learning (but beware the black box).
- Computer modeling, everything from
 - Artisanal toy models
- to kitchen sink models.

Key advance (more soon):

- Representation of complex interaction patterns as complex networks.
- The driver: Massive amounts of Data

PoCS | @pocsvox

Data Emergence

Self-Organization
Modeling

Statistical Mechanics

Nutshell References

少 Q (~ 41 of 58

PoCS | @pocsvox

Fundamentals

Data

Emergence

Modeling

Nutshell

Self-Organization

Rather silly but great example of real science:

"How Cats Lap: Water Uptake by *Felis catus*" Reis et al., *Science*, 2010.

Amusing interview here

◆) < (~ 42 of 58

Limits of Science | Radiolab

Listen to Steve Strogatz, Hod Lipson, and Michael Schmidt (Cornell) in the last piece (11:16) on Radiolab's show 'Limits' (April 5, 2010).

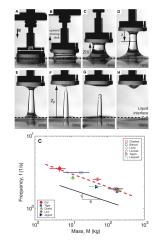
El Bibliomata/flickr)

Dr. Steve Strogatz wonders if we've reached the limits of human scientific understanding, and should soon turn the reins of research over to robots. Cold, calculating robots. Then, Dr. Hod Lipson and Michael Schmidt walk us through the workings of a revolutionary computer program that they developed—a program that can deduce mathematical relationships in nature, through simple observation. The catch? As Dr. Gurol Suel explains, the program gives answers to complex biological questions that we humans have yet to ask, or even to understand.

TAGS: mind bending

Pair with some slow tv

Bonus: Mike Schmidt's talk on Eureqa at UVM's 2011 TEDx event "Big Data, Big Stories."



少∢(~ 39 of 58

Another great, great moment in scaling:

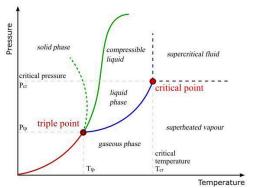
 $f\sim M^{-1/6}$

The balance of inertia and gravity yields a prediction for the lapping frequency of other felines. Assuming isometry within the Felidae family (i.e., that lapping height H scales linearly with ongouse width R and animal mass M scales as R²), the finding that Fr² is of order one translates to the prediction fr. R² 22. M²⁻¹⁸. Isometry or marginally positive allomety among the Felidae has been demonstrated for skull (20, 21) and limb bones (22). Although variability by function can lead to departures from isometry in interspecific scalings (23), reproted variations within the Felidae (22, 24) only minimally affect the predicted scaling fr. M²⁻¹⁸. We tested this -10 power-law dependence by measuring the lapping frequency for eight species of felines, from videos acquired at the Zoo New England or available on You Tube (16). The lapping frequency was observed to decrease with animal mass as 3 – 4 d. M²⁻¹⁸ 24. M² (in S. M. Ming) (Fig. 4.), close to the predicted M²⁻¹⁸. This close agreement suggests that the domestic car's inertia- and gravity-controlled lapping mechanism is conserved among felines.

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization

Modeling


Nutshell References

•9 q (~ 43 of 58

Phase diagrams

Qualitatively distinct macro states.

Phase diagrams

PoCS | @pocsvox

Fundamentals

Emergence

Modeling

Statistical Mechanics

References

Nutshell

Self-Organization

Data

•2 a ○ 48 of 58

PoCS | @pocsvox Fundamentals

Emergence Self-Organization

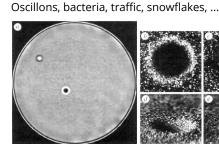
Modeling Statistical Mechanics Nutshell References

•೧ q (~ 49 of 58

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling

Statistical Mechanics Nutshell

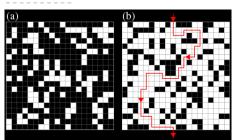

PoCS | @pocsvox Fundamentals

Emergence Self-Organization Modeling

Statistical Mechanics References

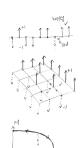
W |

少 q (~ 46 of 58



Umbanhowar et al., Nature, 1996 [12]

Statistical Mechanics is "a science of collective behavior."


Simple rules give rise to collective phenomena.

Percolation:

Snared from Michael Gastner's page on percolation [no longer online]

The Ising Model ☑ of a ferromagnet:

- Each atom is assumed to have a local spin that can be up or down: $S_i = \pm 1$.
- 🗞 Spins are assumed to be arranged on a lattice.
- In isolation, spins like to align with each other.
- Increasing temperature breaks these alignments.
- The drosophila of statistical mechanics.
- 🗞 Criticality: Power-law distributions at critical points.

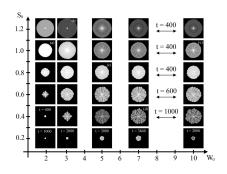
Example 2-d Ising model simulation:

http://dtjohnson.net/projects/ising ☑

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling


Statistical Mechanics Nutshell References


(W) [8]

少 Q (~ 47 of 58

Phase diagrams

Phase diagrams

 W_0 = initial wetness, S_0 = initial nutrient supply http://math.arizona.edu/~lega/HydroBact.html

Ising model

Analytic issues:

- 1-d: simple (Ising & Lenz, 1925)
- 2-d: hard (Onsager, 1944)
- 3-d: extremely hard...
- 4-d and up: simple.

Statistics

Historical surprise:

- Origins of Statistical Mechanics are in the studies of people... (Maxwell and co.)
- Now physicists are using their techniques to study everything else including people...
- See Philip Ball's "Critical Mass" [1]

- evolutionary, algorithm-rich systems.
- will continue to rise in importance.

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling

Statistical Mechanics Nutshell References

•9 q (~ 51 of 58

PoCS | @pocsvox

Fundamentals

Emergence

Modeling

Statistical

Mechanics

References

少 Q (~ 52 of 58

Data

Emergence

Modeling

Statistical Mechanics

References

Nutshell

Self-Organization

Self-Organization

Nutshell

- The central concepts Complexity and Emergence are reasonably well defined.
- There is no general theory of Complex Systems.
- But the problems exist... Complex (Adaptive) Systems abound...
- dynamical systems, statistical mechanics, and other quantitative areas means not everything is special and different.
- & Framing from the Manifesto: Science's focus is moving to Complex Systems because it finally can.
- We use whatever tools we need.
- Science ≃ Describe + Explain.

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization Modeling

Statistical Mechanics Nutshell

√ 9 0 0 54 of 58

References I

[1] P. Ball.

Critical Mass: How One Thing Leads to Another. Farra, Straus, and Giroux, New York, 2004.

[2] M. A. Bedau. Weak emergence.

> In J. Tomberlin, editor, Philosophical Perspectives: Mind, Causation, and World, volume 11, pages 375–399. Blackwell, Malden, MA, 1997. pdf ☑

[3] J. S. Coleman. Foundations of Social Theory. Belknap Press, Cambridge, MA, 1994.

PoCS | @pocsvox Fundamentals

Emergence Self-Organization Modeling

Statistical Mechanics Nutshell References

• ୨୦ ବେ 55 of 58

PoCS | @pocsvox References II Fundamentals

[4] P. S. Dodds, D. J. Watts, and C. F. Sabel. Information exchange and the robustness of organizational networks.

Proc. Natl. Acad. Sci., 100(21):12516-12521, 2003. pdf 🗹

[5] R. Foote.

Mathematics and complex systems. Science, 318:410-412, 2007. pdf

[6] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman. Quantitative analysis of culture using millions of digitized books.

Science Magazine, 331:176–182, 2011. pdf ☑

PoCS | @pocsvox Fundamentals

Data Emergence Self-Organization

Modeling Statistical Mechanics

Nutshell References

•9 α (~ 56 of 58

Beyond Statistical Mechanics:

- Analytic approaches have their limits, especially in
- Algorithmic methods and simulation techniques

•9 q (~ 53 of 58

References III

[7] E. A. Pechenick, C. M. Danforth, and P. S. Dodds. Characterizing the google books corpus: Strong limits to inferences of socio-cultural and linguistic evolution.

PLoS ONE, 10:e0137041, 2015. pdf

[9] T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities.

J. Conflict Resolut., 17:381–428, 1973. pdf

PoCS | @pocsvox Fundamentals

Data
Emergence
Self-Organization
Modeling
Statistical
Mechanics
Nutshell
References

少 q (~ 57 of 58

References IV

[10] T. C. Schelling.

Micromotives and Macrobehavior.

Norton, New York, 1978.

[11] T. C. Schelling.

Some fun, thirty-five years ago.

In L. Tesfatsion and K. L. Judd, editors, <u>Handbook</u>
of Computational Economics, volume 2, pages
1639–1644. Elsevier, 2006. pdf

[12] P. B. Umbanhowar, F. Melo, and H. L. Swinney. Localized excitations in a vertically vibrated granular layer.

Nature, 382:793–6, 1996. pdf ✓

PoCS | @pocsvox Fundamentals

Data
Emergence
Self-Organization
Modeling
Statistical
Mechanics
Nutshell
References

◆) < (~ 58 of 58