Data from our man Zipf

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

These slides are brought to you by:

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

Outline

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

References

PoCS | @pocsvox Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian

George Kingsley Zipf:

In brief:

Zipf (1902–1950) was a linguist at Harvard, specializing in Chinese languages.

Unusual passion for statistical analysis of texts.

Studied human behavior much more generally ...

Zipf's masterwork:

"Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA [2]

Bonus field of study: Glottometrics.

 ✓

🙈 Bonus 'word' word: Glossolalia. 🗹

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

Human Behavior/Principle of Least Effort:

PoCS | @pocsvox

Data from our
man Zipf

From the Preface—

Nearly twenty-five years ago it occurred to me that we might gain considerable insight into the mainsprings of human behavior if we viewed it purely as a natural phenomenon like everything else in the universe, ...

Zipf in brief
Zipfian empirics

Yet more Zipfian Empirics

References

And-

... the expressed purpose of this book is to establish The Principle of Least Effort as the primary principle that governs our entire individual and collective behavior ...

The Principle of Least Effort:

PoCS | @pocsvox Data from our man Zipf

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems as estimated by himself."

"... he will strive ... to minimize the total work that he must expend in solving both his immediate problems and his probable future problems."

"[he will strive to] minimize the probable average rate of his work-expenditure..."

Zipf in brief

Zipfian empirics

Yet more Zipfian

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- 🙈 City sizes
- 🚓 # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- 🚓 # marriages vs. distance

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

References

Observed general dependency of 'interactions' between cities A and B on $P_A P_B / D_{AB}$ where P_A and P_B are population size and D_{AB} is distance between A and B. \Rightarrow 'Gravity Law.'

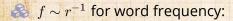
 vocabulary balance: $f \sim r^{-1} \rightarrow r \cdot f \sim \text{constant}$ (f = frequency, r = rank).

TABLE 2-1

Arbitrary Ranks with Frequencies in James Joyce's Ulysses /IIamlan Indani

	(Hanle	y Index)	and the second
Rank (r)	II Frequency (f)	Product of I and II (r × f = C)	IV Theoretical Length of Ulysses $(C imes 10)$
10	2,653	26,530	265,500
20	1,311	26,220	262,200
30	926	27,780	277,800
40	717	28,680	286,800
50	556	27,800	278,800
100	265	26,500	265,000
200	133	26,600	266,000
300	84	25,200	252,000
400	62	24,800	248,000
500	50	25,000	250,000
 1,000	26	26,000	260,000
2,000	12	24,000	240,000
3,000	8	24,000	240,000
4,000	6	24,000	240,000
5,000	5	25,000	250,000
10,000	2	20,000	200,000
20,000	1	20,000	200,000
29,899	1	29,899	298.990

PoCS | @pocsvox Data from our man Zipf


Zipf in brief

Zipfian empirics Yet more Zipfian

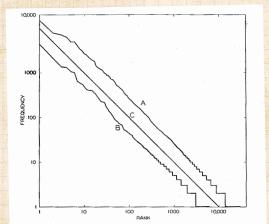


Fig. 2-1. The rank-frequency distribution of words. (A) The James Joyce data; (B) the Eldridge data; (C) ideal curve with slope of negative unity.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

Zipf's basic idea:

Forces of Unification and Diversification:

Easiest for the speaker to use just one word.

Encoding is simple but decoding is hard

Zipf uses the analogy of tools: one tool for all tasks.

Optimal for listener if all pieces of information correspond to different words (or morphemes).

Analogy: a specialized tool for every task.

Decoding is simple but encoding is hard

Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.

No formal theory beyond this... (more later [1])

PoCS | @pocsvox Data from our man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

Number of meanings $m_r \propto f_r^{1/2}$ where r is rank and f_r is frequency.

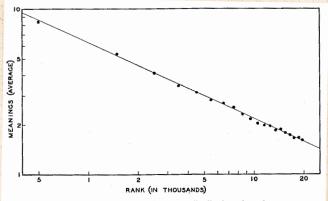


Fig. 2-2. The meaning-frequency distribution of words.

PoCS | @pocsvox Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

Article length in the Encyclopedia Britannica:

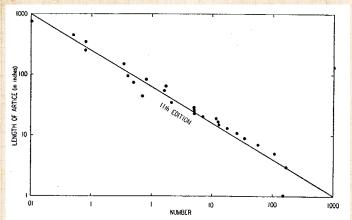


Fig. 5-3. The number of different articles of like length in samples of the 11th edition of the Encyclopaedia Britannica. Lengths in inches.

(?) slope of -3/5 corresponds to $\gamma = 5/3$.

PoCS | @pocsvox Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

Population size of districts:

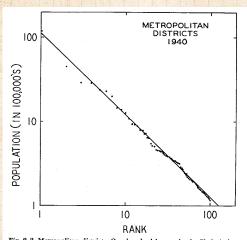


Fig. 9-2. Metropolitan districts. One hundred largest in the U. S. A. in 1940, ranked in the order of decreasing population size.

 $\alpha = 1$ corresponds to $\gamma = 1 + 1/\alpha = 2$.

PoCS | @pocsvox Data from our

Zipf in brief

man Zipf

Zipfian empirics Yet more Zipfian

Number of employees in organizations

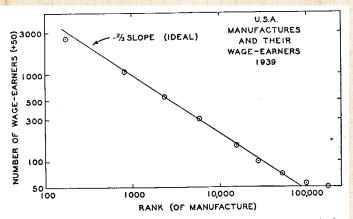


Fig. 9-8. Manufactures and their wage earners in the U.S. A. in 1939, with the manufactures ranked in the order of their decreasing number of wage earners.

PoCS | @pocsvox Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

news items as a function of population P_2 of location in the Chicago Tribune

 \bigcirc D = distance, P_1 = Chicago's population

Solid line = +1 exponent.

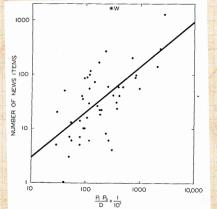
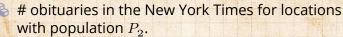


Fig. 9-10. Number of different news items in *The Chicago Tribune* (W is the dateline of Washington, D. C.).

PoCS | @pocsvox

Data from our
man Zipf


Zipf in brief

Zipfian empirics
Yet more Zipfian

 $\bigcirc D$ = distance, P_1 = New York's population

Solid line = +1 exponent.

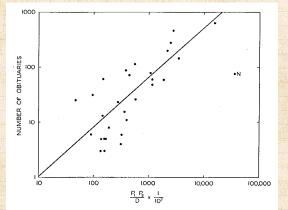


Fig. 9-11. Number of obituaries in *The New York Times* (N represents Newark, New Jersey).

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

Movement of stuff between cities

 $\bigcirc D = \text{distance}, P_1 \text{ and } P_2 = \text{city populations}.$

Solid line = +1 exponent.

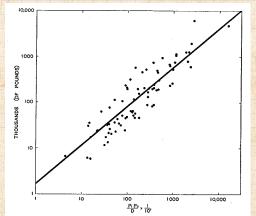


Fig. 9-14. Railway express. The movement by weight (less carload lots) between 13 arbitrary cities in the U. S. A., May 1939.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

Length of trip versus frequency of trip.

Solid line = -1/2 exponent corresponds to $\gamma=2$.

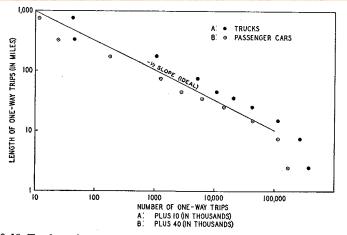


Fig. 9-19. Trucks and passenger cars: the number of one-way trips of like length.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics
Yet more Zipfian

The probability of marriage?

 $\Rightarrow \gamma = 1?$

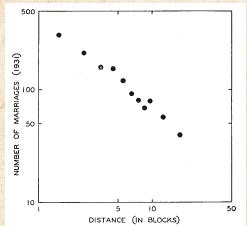


Fig. 9-22. Number of marriage licenses issued to 5,000 pairs of applicants living within Philadelphia in 1931 and separated by varying distances (the data of J. H. S. Bossard).

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

Comment #60 in Math and the City by Strogatz, NYT:

60. May 20, 2009 9:26 am

Link

George Kingsley Zipf was my teacher at Harvard...He had given a class project where we were to see if Chemical Companies when ranked by the number of different chemicles they produced, followed his Law of Least Effort. I missed turning in my assignment due to the accidental death of my father....When I returned from the funeral I was given a message to call Dr. Zipf immediately. I did and when I explained why I was late turning in the data. He said, "Well, your father's gone and I (Zipf) have no pipeline to God. I expect the data will be on my desk tomorrow morning!".....My mother, sister and extended family spread huge books of trade magazines on the kitchen and dining room tables and furiously went to work....We worked until late in the night and finished the project..... I drove to Harvard the next morning and angrily gave the hundreds of 'three by five cards' to Zipf. All he said was, "Thank you." Years later, I wondered whether his'meaness' had really been his way of helping me and my family to take our minds of our grief that day and concentrate on finishing my assignment. In my youth I thought not, but now as I approach 80, I like to think his seemingly hurtful attitude was really an act of kindness,,,,,

TABLE 2-2

The Number-Frequency Relationship, $N\left(f^2-\frac{1}{4}\right)=C$, of (I) some Arbitrary Lower Frequencies of (II) Joyce's Ulysses and (III) four Latin plays of Plautus.

1	Calculated N(f ² - 1/4)					
Frequency (f)	II Ulysses	III Plautus				
1	12,324	4,075				
2	15,410	4,490				
3	19,193	4,280				
4	20,239	4,750				
5	22,424	3,985				
6	22,773	4,504				
7	23,546	4,241				
8	23,651	4,399				
9	24,063	4,366				
10	22,145	4,289				
15	21,576	2,922				
20	27,844	5,996				
30	18,000	3,600				
40	25,600	4,800				
50	22,500	5,000				

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian **Empirics**

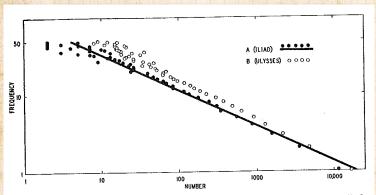


Fig. 2-3. The number-frequency relationship of words. (A) Homer's *Iliad;* (B) James Joyce's *Ulysses*.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief
Zipfian empirics

Yet more Zipfian Empirics

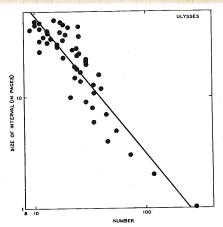


Fig. 2-4. The interval-frequency relationship. The number of different intervals of like size (in pages) between the repetitions of words occurring five times in Joyce's Ulysses.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian **Empirics**

TABLE 2-3

Calculated values of negative slopes, errors, and Y-intercepts of the number, N, of interval sizes, I_{ρ} between the repetition of words in 14 frequencyclasses, f, as fitted to the equation aX + Y = C where $X = \log N$ and Y = $\log I_p$, and where I_f has integral values from 1 through 21 inclusive.

I No. of Analysis	II Frequency of Occur. (f)	III No. of Different Words of like f	Slope of Best Line of Y's (negative) (Y = log I _f)	V Error (root-mean- square)	VI Y-intercept (antilog thereof)
1	5	906	1.21	.151	716
2	6	637	1.20	.169	666
3	10	222	1.27	.106	677
4	12	155	1.24	.111	491
5	15	96	1.15	.096	328
6	16	86	.96	.124	153
7	17	79	1.22	.174	422
8	18	62	1.20	.120	264
9	19	63	1.21	.148	350
10	20	69	1.29	.124	944
11	21	52	1.05	.138	212
12	22	50	1.10	.117	264
13	23	44	1.24	.113	352
14F	24	34	1.01	.158	136
15Z	24	34	1.05	.147	153

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

Empirics

TABLE 2-4

The dispersion of single-page intervals between the f-1 repetitions of all words that occur with ten arbitrarily selected frequencies of occurrence, f, in Joyce's Ulysses (Hanley's Index).

The First 12 Intervals between Repetitions

No. of	1	6-1	Intervals between Repetitions in Order of Appearance												
Sample	Ĺ	, .	1	2	3	4	5	6	7	8	9	10	11	12	
1	6	5	62	55	62	58	52							1-	
2	12	11	7	19	15	16	9	12	18	16	12	15	14	1	
3	16	15	6	10	10	13	18	11	16	11	11	9	11	١,	
4	17	16	4	3	5	6	4	8	5	10	111	9	14	ءَ ا	
5	18	17	9	11	6	5	6	7	1 7	6	10	6	2	1 %	
6	19	18	3	8	5	11	5	6	13	9	6	5	6	8	
7	21	20	3	4	10	5	8	9	3	10	8	11	7	7	
8	22	21	7	5	8	12	5.	ò	5	9	6	7	5	6	
9	23	22	3	5	6	- 4	8	4	3	2	7	3	4	1 4	
10	24	23	3	5	2	1	3	3	3	3	4	5	2	3	

The Intervals from 13 through 23

No. of	1	f = 1	1	nterv	ds bei	ween	Repe	itions	in O	der o	f App	aran	ce
Sample	Ĺ		13	14	15	16	17	18	19	20	21	22	23
3	16	15	6	8	12								1
4	17	16	8	6	1 7	8	ľ			,			ſ
5	18	17	5	6	6	5	4						
6	19	18	2	- 7	10	5	7	4					
7	21	20	6	6	2	1 1	7	8	4	2			
8	22	21	6	6	7	10	7	10	9	5	2		
9	23	22	5	7	3	6	2	7	2	3	1	3	ı
10	24	23	7	3	2	2	0	1	2	2	2	8	

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian **Empirics**

Fig. 2-5. The distribution of intervals between repetitions among the words occurring twenty-four times in James Joyce's *Ulysses*.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief
Zipfian empirics

Yet more Zipfian Empirics

TABLE 3-1

The Frequencies and Average Lengths of Words (A) in terms of the number of phonemes, and (B) in terms of the number of syllables in (A) American newspaper English and in (B) the Latin of Plautus.

(A) AMERICAN NEWSPAPER ENGLISH

(B) LATIN OF PLAUTUS

	(According to R.	C. Eldridge)								
Number of Occur- rences	Number of Words	Average Number of Phonemes	Number of Occur- rences	Number of Words	Average Number of Phonemes	Number of Occur- rences	Number of Words	Average Number of Syllables	Number of Occur- rences	Number of Words	Average Number of Syllables
1 2 3 4 5 6 7 8 9	2976 1079 516 294 212 151 105 84 86 45 40 37	(6.656) (6.151) (6.015) (6.081) (5.589) (5.768) (5.333) (5.654) (5.174) (5.377) (4.825)	31 32 33 34 35 36 37 39 40 41 42 43	6 2 5 3 2 2 4 1 7	(3,903)	1 2 3 4 5 6 7 8 9 10 11	5429 1198 492 299 161 126 87 69 54 43 44 36	(3.23) (2.92) (2.77) (2.05) (2.60) (2.53) (2.39) (2.44) (2.35) (2.32) (2.29) (2.30)	31 32 33 34 35 36 37 38 39 40 41 43	8346357245034	(2.05)
12 13 14 15 16 17 18 19 20 21 22 23 24	25 28 26 17 18 10 15 16 13 11	(5,459) (5,560) (5,00) (4,807) (5,058) (4,166) (6,100) (4,733) (4,687)	45 44 45 46 47 48 49 50 51 52 54 55 56	1 2 5 1 3 3 1 1 1	(3.333)	12 13 14 15 16 17 18 19 20 21 22 23 24	33 31 13 25 21 21 11 15 10 8	(2.30) (2.09) (2.07) (2.40) (2.09) (2.04) (2.18)	44 45 46 47 48 49 50 51 53 54 55 56	1 1 1 2 2 4 1 1 2 2	(1.70)
25 26 27 28 29	6 10 9 6 5	(3.455)	58 60 61-4290	71	(2,666)	25 26 27 28 29 30	11 7 9 12 4 4	(2.00)	58 61 62-514 33,094	71 8,437	(1.40)

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian **Empirics**

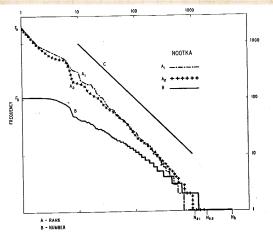


Fig. 3-1. Nootka. The rank-frequency distribution of (A1) "varimorphs," (A2) morphemes, and (B) holophrases.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian **Empirics**

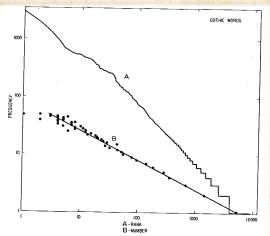


Fig. 3-7. Gothic words. (A) Rank-frequency distribution; (B) numberfrequency distribution.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian **Empirics** References

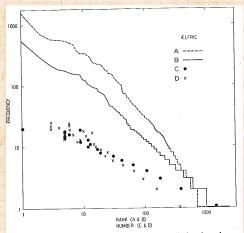


Fig. 3-8. Aelfric's Old English. (A) Rank-frequency distribution of morphemes; (B) rank-frequency distribution of words; (C) number-frequency distribution of morphemes; (D) number-frequency distribution of words.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian Empirics

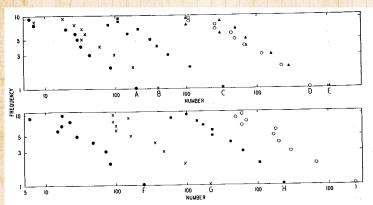


Fig. 3-9. English and German morphemes. The number-frequency distributions of nine different authors.

PoCS | @pocsvox Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian **Empirics**

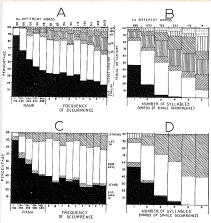


Fig. 3-10. Cultural-chronological strata in English (Eldridge analysis), (A) Chronological strata in words of all occurrences; (B) chronological strata in all words occurring once, according to size in syllables; (C) cultural strata in words of all occurrences; (D) cultural strata in all words occurring once, according to syllables.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

Zipfian empirics (p. 176):

8

Article length in the Encylopedia Brittanica

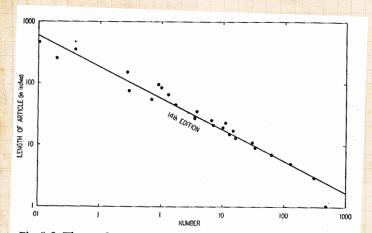


Fig. 5-2. The number of different articles of like length in samples of the 14th edition of the *Encyclopaedia Britannica*. Lengths in inches.

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian Empirics

TABLE 6-1

The X Number of Different Genera of Like Y Number of Different Species of the Flora of Ceylon (After J. C. Willis).

X	No. of Species Y
573	1
176	2
85	3
49	4
36	5
20	6
etc.	

PoCS | @pocsvox Data from our man Zipf

Zipf in brief

Zipfian empirics

Yet more Zipfian **Empirics**

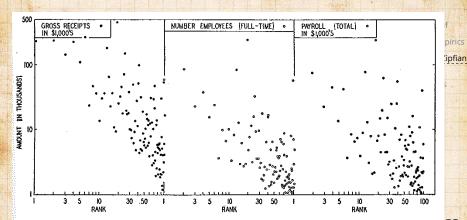


Fig. 9-9. Gross receipts, number of full-time employees, and total payroll of service establishments in the U. S. A. in 1939 when the service establishments are ranked in the order of their decreasing number of members as in Fig. 9-4 supra.

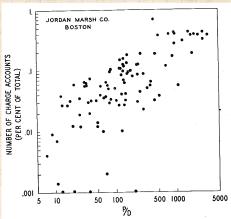


Fig. 9-13. Charge accounts of Jordan Marsh Co., Boston, in 96 cities and towns in Massachusetts, New Hampshire, and Maine, with their percentages of total charge accounts plotted against the communities' values of P/D.

PoCS | @pocsvox Data from our man Zipf

Zipf in brief Zipfian empirics

Yet more Zipfian **Empirics**

🙈 # species per genera:

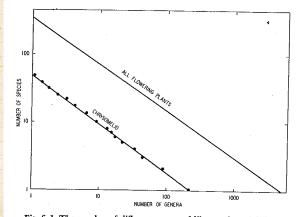


Fig. 6-1. The number of different genera of like number of different species for all flowering plants and for Chrysomelid beetles (from the J. C. Willis data, after reversing the co-ordinates).

 $\alpha = 1$ corresponds to $\gamma = 1 + 1/\alpha = 2$.

PoCS | @pocsvox

Data from our man Zipf

Zipf in brief

Zipfian empirics Yet more Zipfian

Empirics References

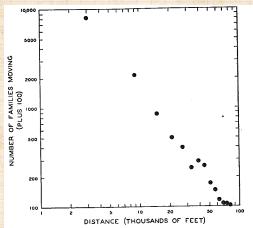


Fig. 9-23. Number of families (plus 100) moving varying distances within or between separated areas in Cleveland during 1933-1935 (adapted from the data of S. A. Stouffer).

PoCS | @pocsvox

Data from our
man Zipf

Zipf in brief
Zipfian empirics

Yet more Zipfian Empirics

References I

PoCS | @pocsvox

Data from our
man Zipf

[1] R. Ferrer-i Cancho and R. V. Solé. Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci, 100:788–791, 2003. pdf Zipfian empirics
Yet more Zipfian

Zipf in brief

References

[2] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort.

Addison-Wesley, Cambridge, MA, 1949.

