

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie

Productions

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms A reasonable deri

References

VERMONT

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources Size-density law Cartograms

A reasonabl Global redis References

Many sources, many sinks

How do we distribute sources?

- 🗞 Focus on 2-d (results generalize to higher dimensions).
- 🗞 Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- & Which lattice is optimal? The hexagonal lattice
- 🗞 Q2: Given population density is uneven, what do we do?
- & We'll follow work by Stephan (1977, 1984)^[4, 5], Gastner and Newman (2006)^[2], Um et al. (2009)^[6], and work cited by them.

PoCS | @pocsvox

Optimal Supply

Networks III

Distributed Sources

References

VERMONT

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources
Size-density law
Cartograms
A reasonable deriva
Global redistribution
Public versus Privat
References

UNIVERSITY VERMONT ୬ ବ. ଦ~ 5 of 47

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources References

1000 Ð ¢

Optimal source allocation

Solidifying the basic problem

- 🗞 Given a region with some population distribution ρ , most likely uneven.
- Given resources to build and maintain *N* facilities.
- \bigotimes Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

VERMONT

Outline

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution **Public versus Private**

References

UNIVERSITY ୬ ର.୦୦ 2 of 47

PoCS | @pocsvox

Optimal Supply Networks III

References

Distributed Sources Size-density law Cartograms A reasonable deriva

"Optimal design of spatial distribution networks" Gastner and Newman,

Phys. Rev. E, 74, 016117, 2006.^[2]

VERMONT

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Cartogram

References

PoCS | @pocsvox

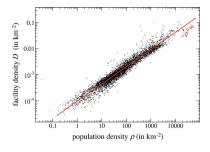
Optimal Supply Networks III

Distributed Sources

References

- Approximately optimal location of 5000 facilities.
- 🚳 Based on 2000 Census data.
- 🗞 Simulated annealing + Voronoi tessellation.

Optimal source allocation



- $\ref{eq:product}$ Optimal facility density $ho_{
 m fac}$ vs. population density ρ_{pop} .
- \clubsuit Fit is $\rho_{\text{fac}} \propto \rho_{\text{pop}}^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power ...

Optimal source allocation

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- 🚳 Why?
- 🗞 Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

Optimal source allocation

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" G. Edward Stephan, Science, **196**, 523–524, 1977.^[4]

- & We first examine Stephan's treatment (1977)^[4, 5]
- 🍰 "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- \lambda Also known as the Homer Simpson principle.

PoCS | @pocsvo>

Optimal Supply

Networks II

Size-density law References

UNIVERSITY

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law

References

Optimal source allocation

- \bigotimes Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- 🗞 Build up a general cost function based on time expended to access and maintain center.
- \Im Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- \clubsuit Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$
- line expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

lity requires regular maintenance

lf burden of mainenance is shared then average

& Replace P by $\rho_{pop}A$ where ρ_{pop} is density.

lmportant assumption: uniform density.

Total average time cost per person:

 \bigotimes Now Minimize with respect to A ...

cost per person is τ/P where P = population.

 $T = \bar{d}/\bar{v} + \tau/(\rho_{\rm pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\rm pop}A). \label{eq:tau}$

(person-hours per day).

 \bigotimes Call this quantity τ .

PoCS | @pocsvox Optimal Supply Networks III

Distributed Size-density law

References

UNIVERSITY •⊃ < へ 13 of 47

Optimal source allocation

Distributed Sources Size-density law Cartograms A reasonable der

UNIVERSITY

PoCS | @pocsvox Optimal Supply Networks III

References

Optimal source allocation

🚳 Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

🚳 Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\rm pop}}\right)^{2/3} \propto \rho_{\rm pop}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

🚳 Groovy ...

Optimal source allocation

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size density law Cartograms A reasonable derivati Global redistribution Public versus Private References

Dec 14 of 47

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

References

An issue:

- Solution A Maintenance (τ) is assumed to be independent of population and area (P and A)
- 🚳 Stephan's online book

"The Division of Territory in Society" is here \mathbb{C} .

- (It used to be here .)
- The Readme I is well worth reading (1995).

UNIVERSITY

PoCS | @pocsvox

Optimal Supply Networks III

Cartograms

Standard world map:

Distributed Sources Size-density law Cercograms A reasonable derivation Global redistribution Public versus Private References

Dec 17 of 47

Cartograms

Cartogram of countries 'rescaled' by population:

Optimal Supply Networks III Distributed Sources Size-density law Cartograms

PoCS | @pocsvox

Global redistribution Public versus Private

र्रे VERMONT थि २९२० 18 of 47

Cartograms

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004)^[1] is based on standard diffusion:

$$\nabla^2 \rho_{\rm pop} - \frac{\partial \rho_{\rm pop}}{\partial t} = 0. \label{eq:pop}$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Solution is constrained by boundary condition of surrounding area having density $\bar{\rho}_{\text{pop}}$.

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private References

Dec 19 of 47

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Carcograms A reasonable derivation Global redistribution Public versus Private References

Cartograms

Energy consumption:

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Catograms A reasonable derivation Global redistribution Public versus Private References

Soc 21 of 47

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private References

Gross domestic product:

Cartograms

Distributed Sources Size-density law Cartograms A reasonable derivation

References

VERMONT

PoCS | @pocsvox

Optimal Supply Networks III

Chiversity Vermont
 S
 O へ で 23 of 47

Cartograms

Cartograms

Cartograms

Spending on healthcare:

Optimal Supply Networks III Distributed Sources

PoCS | @pocsvox

Sources Size-density law Cartograms A reasonable derivatio Global redistribution Public versus Private References

No co 24 of 47

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private References

・ へい へい つくい 25 of 47

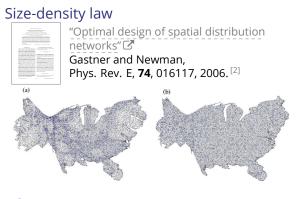
PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cortograms A reasonable derivation Global redistribution Public versus Private References

The preceding sampling of Gastner & Newman's cartograms lives here .

A larger collection can be found at worldmapper.org .

WSRLDMAPPER The market as your we never seen it be



- left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- \clubsuit Facility density is uniform for $\rho_{pop}^{2/3}$ cartogram.

UNIVERSITY

PoCS | @pocsvox

Optimal Supply Networks III

Distributed

Cartograms

References

PoCS | @pocsvox

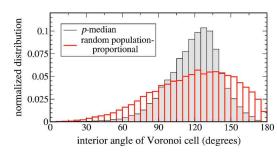
Optimal Supply Networks III

Distributed Sources

Cartograms

References

Size-density law



From Gastner and Newman (2006)^[2]

la Cartogram's Voronoi cells are somewhat hexagonal.

Size-density law

Deriving the optimal source distribution:

- 🚳 Basic idea: Minimize the average distance from a random individual to the nearest facility.^[2]
- & Assume given a fixed population density ρ_{pop} defined on a spatial region Ω .
- Solution Formally, we want to find the locations of nsources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \lim_i ||\vec{x}-\vec{x}_i|| \mathsf{d}\vec{x}}{||\vec{x}-\vec{x}_i|| \mathsf{d}\vec{x}}$$

- lso known as the p-median problem.
- 🗞 Not easy ... in fact this one is an NP-hard problem.^[2]
- Approximate solution originally due to Gusein-Zade^[3].

Size-density law

Approximations:

Size-density law

🗞 The cost function is now

Carrying on:

- \mathfrak{F} For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \mathbb{C} , one per source.
- \mathbb{R} Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say *i*) as

$c_i A(\vec{x})^{1/2}$

where c_i is a shape factor for the *i*th Voronoi cell. Approximate c_i as a constant c_i .

PoCS | @pocsvo>

Optimal Supply

Networks II

Distributed Sources Size-density law

References

UNIVERSITY •⊃ < C → 31 of 47

PoCS | @pocsvox Optimal Supply Networks III

- Distributed Sources A reasonable deriva References
- & We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.

 $F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$

line and the second sec

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

 \clubsuit Within each cell, $A(\vec{x})$ is constant.

 \aleph So ... integral over each of the *n* cells equals 1.

UNIVERSITY

PoCS | @pocsvox Optimal Supply Networks III

References

- Now a Lagrange multiplier story:
- \mathfrak{S} By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathsf{d}\vec{x} \right)^{\underset{\text{Surveys}}{\text{Surveys}}}_{\underset{\text{Comparison of the survey}}{\text{Surveys}}}$$

- 🚳 I Can Haz Calculus of Variations 🖉 ?
- Sompute $\delta G/\delta A$, the functional derivative \mathbb{C} of the functional G(A).
- 🗞 This gives

$$\sum_{n=1}^{\infty} \left[\frac{c}{2} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] {\rm d}\vec{x} \, = 0. \label{eq:pop}$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

わへへ 33 of 47

VERMONT

୬ ର. ତ 28 of 47

PoCS | @pocsvox

A reasonable derivation References

VERMONT

の q へ 30 of 47

Size-density law

Now a Lagrange multiplier story:

🗞 Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\text{pop}}^{-2/3}.$$

 \mathfrak{R} Finally, we indentify $1/A(\vec{x})$ as $\rho_{fac}(\vec{x})$, an approximation of the local source density.

Substituting $\rho_{fac} = 1/A$, we have

$$\rho_{\rm fac}(\vec{x}) = \left(\frac{c}{2\lambda}\rho_{\rm pop}\right)^{2/3}$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources A reasonable deriva References

UNIVERSITY

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms

How do we supply these facilities? How do we best redistribute mail? People?

How do we get beer to the pubs?

Global redistribution networks

One more thing:

🗞 Gastner and Newman model: cost is a function of basic maintenance and travel time:

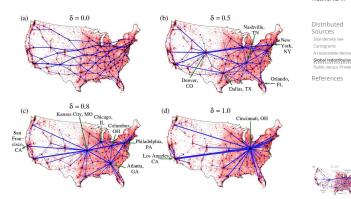
$C_{\text{maint}} + \gamma C_{\text{travel}}$.

listance' 💫 🗞 Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

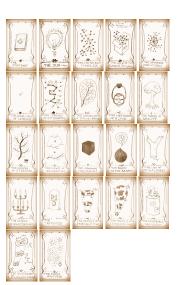
$$(1-\delta)\ell_{ij} + \delta(\#hops)$$

& When $\delta = 1$, only number of hops matters.

Global redistribution networks



From Gastner and Newman (2006)^[2]



Public versus private facilities

Beyond minimizing distances:

- Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- local state of the second that the connection between facility and population density

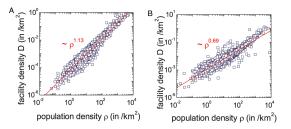
$ho_{\rm fac} \propto ho_{ m pop}^{lpha}$

does not universally hold with $\alpha = 2/3$.

Two idealized limiting classes:

- 1. For-profit, commercial facilities: $\alpha = 1$;
- 2. Pro-social, public facilities: $\alpha = 2/3$.
- 🗞 Um et al. investigate facility locations in the United States and South Korea.

Public versus private facilities: evidence



left plot: ambulatory hospitals in the U.S.

Right plot: public schools in the U.S.

Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop}\simeq 100.$

PoCS | @pocsvox Optimal Supply Networks III

Sources Size-density law Cartograms Global redistribution References

TO THE MOST

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms Public versus Private References

PoCS | @pocsvox

Optimal Supply Networks III

Distributed

Sources Size-density law Cartograms A reasonable deri Public versus Private References

Public versus private facilities: evidence

US facility	α (SE)	R ²	
Ambulatory hospital	1.13(1)	0.93	
Beauty care	1.08(1)	0.86	
Laundry	1.05(1)	0.90	
Automotive repair	0.99(1)	0.92	
Private school	0.95(1)	0.82	
Restaurant	0.93(1)	0.89	
Accommodation	0.89(1)	0.70	Rough transition
Bank	0.88(1)	0.89	
Gas station	0.86(1)	0.94	between public
Death care	0.79(1)	0.80	and private at
* Fire station	0.78(3)	0.93	$\alpha \simeq 0.8$.
* Police station	0.71(6)	0.75	$\alpha \simeq 0.8.$
Public school	0.69(1)	0.87	
SK facility	α (SE)	R ²	Note: * indicates
Bank	1.18(2)	0.96	analysis is at
Parking place	1.13(2)	0.91	state/province
* Primary clinic	1.09(2)	1.00	state/province
* Hospital	0.96(5)	0.97	level; otherwise
* University/college	0.93(9)	0.89	
Market place	0.87(2)	0.90	county level.
* Secondary school	0.77(3)	0.98	
* Primary school	0.77(3)	0.97	
Social welfare org.	0.75(2)	0.84	
* Police station	0.71(5)	0.94	
Government office	0.70(1)	0.93	
* Fire station	0.60(4)	0.93	
* Public health center	0.09(5)	0.19	

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources Size-density law Cartograms A reasonable deriva Public versus Private References

PoCS | @pocsvox

Optimal Supply Networks III

Distributed

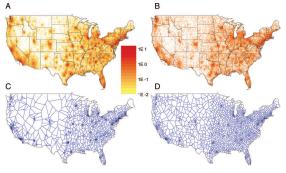
Size-density law Cartograms A reasonable der

Public versus Private

References

Sources

Public versus private facilities: evidence



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

Public versus private facilities: the story

So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- \bigotimes Defns: For the *i*th facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - i $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - A_i = area of *i*th cell (s_i in
- Objective function to maximize for a facility (highly) constructed):

$$v_i = n_i \langle r_i \rangle^\beta$$
 with $0 \leq \beta \leq 1$

- 🚳 Limits:
 - $\beta = 0$: purely commercial.
 - $\beta = 1$: purely social.

VERMONT

Public versus private facilities: the story

🗞 Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

- Solution For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.
- Solution For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.
- 🗞 You can try this too: Insert question from assignment 4 🖸

Optimal Supply Networks III

PoCS | @pocsvox

Sources Size-density law Cartograms A reasonable deriv Public versus Private References

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable deri Global redistribut

References

UNIVERSITY

PoCS | @pocsvox

Optimal Supply Networks III

Distributed

Sources Size-density law Cartograms

References

References I

- [1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf
- [2] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. Phys. Rev. E, 74:016117, 2006. pdf 🕑
- [3] S. M. Gusein-Zade. Bunge's problem in central place theory and its generalizations. Geogr. Anal., 14:246–252, 1982. pdf 🗹
- [4] G. E. Stephan. Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523–524, 1977. pdf 🖸

- [5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf 🖸
- [6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities. Proc. Natl. Acad. Sci., 106:14236-14240, 2009. pdf 🕑

Distributed Sources Size-density law

PoCS | @pocsvox Optimal Supply Networks III

Size-density law Cartograms A reasonable derivati

Public versus Private

References