Optimal Supply Networks III: Redistribution

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private

These slides are brought to you by:

PoCS | @pocsvox

Optimal Supply Networks III

Sources Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Outline

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

PoCS | @pocsvox Optimal Supply Networks III

Sources

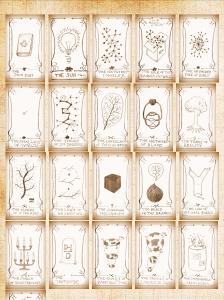
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Public versus Private

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um et al. (2009) [6], and work cited by them.


PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

THE ILLESCALING

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Cartograms

A reasonable derivation

Global redistribution

Public versus Private

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

PoCS | @pocsvox Optimal Supply Networks III

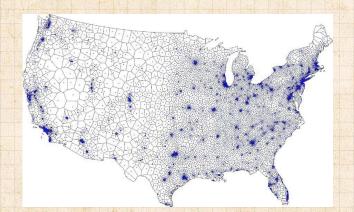
Distributed Sources Size-density law

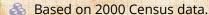
Size-derisity i

A reasonable derivation

Global redistribution Public versus Private

大概是不




"Optimal design of spatial distribution networks"

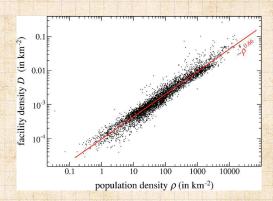
Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

Approximately optimal location of 5000 facilities.

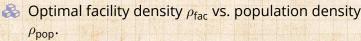
PoCS | @pocsvox
Optimal Supply
Networks III

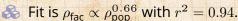
Distributed Sources

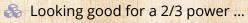
Size-densit


Cartograms

A reasonable derivation Global redistribution Public versus Private




Distributed Sources


Size-density law

A reasonable de

Global redistribution Public versus Private

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

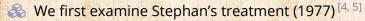
- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private



"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

PoCS | @pocsvox Optimal Supply Networks III

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Consider a region of area A and population P with a single functional center that everyone needs to access every day.

Build up a general cost function based on time expended to access and maintain center.

Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation

Public versus Private
References

PoCS | @pocsvox Optimal Supply Networks III

Next assume facility requires regular maintenance (person-hours per day).

Distributed Sources

& Call this quantity τ .

Size-density law

Cartograms

A reasonable derivation
Global redistribution
Public versus Private

If burden of mainenance is shared then average cost per person is τ/P where P = population.

References

 $\red{Replace} \ P \ ext{by} \
ho_{ ext{pop}} A \ ext{where} \
ho_{ ext{pop}} \ ext{is density}.$

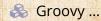
Important assumption: uniform density.

Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

8 Now Minimize with respect to A ...

Differentiating ...


$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3} \propto \rho_{\mathsf{pop}}^{-2/3}$$

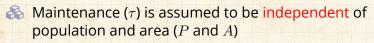
 \clubsuit # facilities per unit area ρ_{fac} :

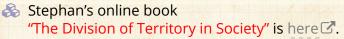
$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources Size-density law

A reasonable derivation


Public versus Private References



PoCS | @pocsvox Optimal Supply Networks III

An issue:

- The Readme
 is well worth reading (1995).

Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private

Standard world map:

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Cartogram of countries 'rescaled' by population:

PoCS | @pocsvox **Optimal Supply** Networks III

Size-density law

Cartograms A reasonable derivation Global redistribution

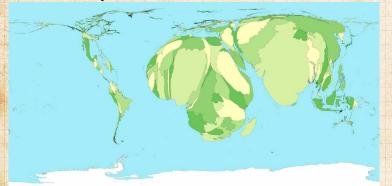
Public versus Private References

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$ is constrained by boundary condition of surrounding area having density $\bar{
 ho}_{pop}$.


PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Public versus Private
Public versus Private

Child mortality:

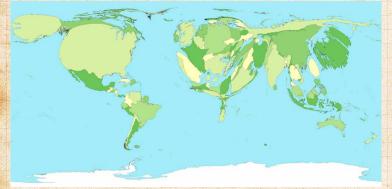
PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private

Energy consumption:

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private

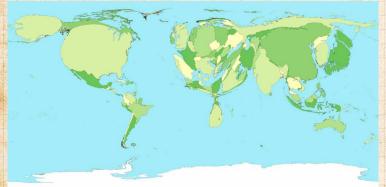
Gross domestic product:

PoCS | @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private

Greenhouse gas emissions:

PoCS | @pocsvox

Optimal Supply Networks III

Size-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Spending on healthcare:

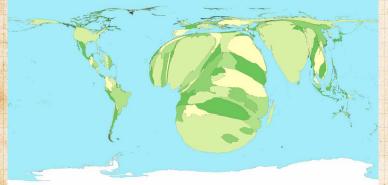
PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms


A reasonable derivation Global redistribution Public versus Private

People living with HIV:

PoCS | @pocsvox

Optimal Supply Networks III

Distributed Sources

Sources Size-density law

Cartograms

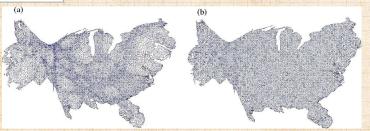
A reasonable derivation Global redistribution Public versus Private

- The preceding sampling of Gastner & Newman's cartograms lives here ☑.
- A larger collection can be found at worldmapper.org ♂.

WSRLDMAPPER The world as you've never seen it before

Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Public versus Private
References



"Optimal design of spatial distribution networks"

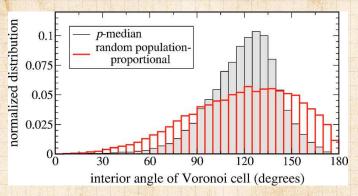
Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

- Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- $\stackrel{\text{@}}{\Leftrightarrow}$ Facility density is uniform for $\rho_{\text{non}}^{2/3}$ cartogram.

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed

Size-density law


Cartograms

Public versus Private

From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

PoCS | @pocsvox **Optimal Supply** Networks III

Size-density law Cartograms

A reasonable derivation Public versus Private

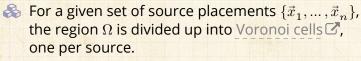
Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

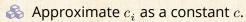
$$F(\{\vec{x}_1,\dots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x})}{\rho_{\mathsf{pop}}(\vec{x})} \, \mathrm{d} \ln ||\vec{x}-\vec{x}_i|| \mathrm{d} \vec{x} \, .$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

PoCS | @pocsvox
Optimal Supply
Networks III


Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Approximations:



Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the *i*th Voronoi cell.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

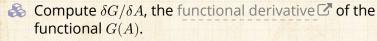
- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \Leftrightarrow Within each cell, $A(\vec{x})$ is constant.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private



Now a Lagrange multiplier story:

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

PoCS | @pocsvox **Optimal Supply** Networks III

Sources

A reasonable derivation

Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- $\red{\$}$ Substituting $ho_{\mathsf{fac}} = 1/A$, we have

$$ho_{\mathsf{fac}}(\vec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Global redistribution networks

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

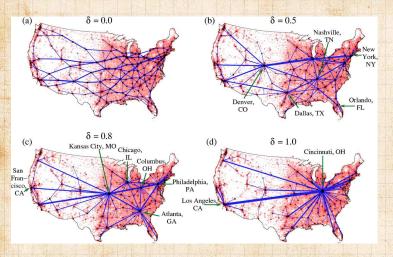
$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

PoCS | @pocsvox
Optimal Supply
Networks III


Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Global redistribution networks

From Gastner and Newman (2006) [2]

PoCS | @pocsvox

Optimal Supply Networks III

Distributed

Size-density law Cartograms

A reasonable derivation

Global redistribution Public versus Private

LOMETRIC BADIES

PoCS | @pocsvox

Optimal Supply Networks III

Sources

Size-density law

Cartograms A reasonable derivation

Global redistribution

Public versus private facilities

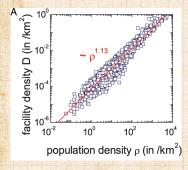
Beyond minimizing distances:

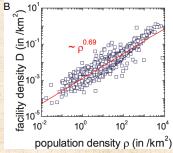
- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [6]
- When the connection between facility and population density

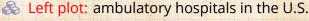
$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.


PoCS | @pocsvox Optimal Supply Networks III


Distributed
Sources
Size-density law
Cartograms
A reasonable derivatio
Global redistribution
Public versus Private


Public versus private facilities: evidence

PoCS | @pocsvox
Optimal Supply
Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivatic
Global redistribution
Public versus Private
References

Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop} \simeq 100$.

Public versus private facilities: evidence

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.04
	1.13(2)	0.91
* Primary clinic	1.09(2)	1.00
* Primary clinic	1.09(2)	1.00
* Primary clinic * Hospital	1.09(2) 0.96(5)	1.00 0.97
* Primary clinic * Hospital * University/college	1.09(2) 0.96(5) 0.93(9)	1.00 0.97 0.89
* Primary clinic * Hospital * University/college Market place	1.09(2) 0.96(5) 0.93(9) 0.87(2)	1.00 0.97 0.89 0.90
* Primary clinic * Hospital * University/college Market place * Secondary school	1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3)	1.00 0.97 0.89 0.90
* Primary clinic * Hospital * University/college Market place * Secondary school * Primary school	1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3)	1.00 0.97 0.89 0.90 0.98 0.97
* Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org.	1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2)	1.00 0.97 0.89 0.90 0.98 0.97
* Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org. * Police station	1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2) 0.71(5)	1.00 0.97 0.89 0.90 0.98 0.97 0.84 0.94

Rough transition between public and private at $\alpha \simeq 0.8$.

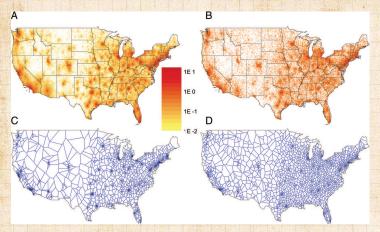
Note: * indicates analysis is at state/province level; otherwise county level.

PoCS | @pocsvox **Optimal Supply**

Networks III

Distributed Sources Size-density law

Cartograms A reasonable derivation


Global redistribution Public versus Private

Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

PoCS | @pocsvox **Optimal Supply** Networks III

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

References

20 a 43 of 47

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the ith facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

Public versus private facilities: the story

PoCS | @pocsvox Optimal Supply Networks III

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

 \Leftrightarrow For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

Social scaling is sublinear. $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

 Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

\$ = 0.5 Nativity | 1/10

References I

[1] M. T. Gastner and M. E. J. Newman.
Diffusion-based method for producing density-equalizing maps.
Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman.
Optimal design of spatial distribution networks.
Phys. Rev. E, 74:016117, 2006. pdf

✓

[3] S. M. Gusein-Zade.

Bunge's problem in central place theory and its generalizations.

Geogr. Anal., 14:246–252, 1982. pdf

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivatio
Global redistribution
Public versus Private

References II

[5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf

PoCS | @pocsvox Optimal Supply Networks III

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

