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- Why social contagion works so well:

LOOK AT THESE PEOPLE. GLASSY-EYED AUTOMATONS
GOING ABOUT THEIR DAILY UVES, NEVER STOPPING
TO LOOK AROUND AND 72047 TM THE ONLY

CONSCIOUS HUMAN IN A WORLD OF SHEER
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Social Contagion

fashion Harry Potter
striking voting

smoking (£} s
residential Rubik's cube ¥
segregation **! religious beliefs
iPhones and iThings school shootings
obesity (4'[*! leaving lectures

Classes of behavior versus specific behavior :
dieting, horror movies, getting married, invading
countries, ...
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. Mixed méésages: Please copy, but also, don't

s

copy ...

< Cindy Harrell appeared (4" in the (terrifying) music
< Misframing: Appeals onlyitbisieieici aniéxponential
orowth.
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 Framingham heart study: SR TRl 1

Social Contagion
;

Evolving network stories (Christakis and Fowler):

Social Contagion

Background

} <% The spread of quitting smoking ('[! s i

<& The book: Connected: The Surprising Power of References

Lives (&

Controversy:
<& Are your friends making you fat? (4" (Clive

Thomspon, NY Times, September 10, 2009).
& Everything is contagious (Z'—Doubts about the

social plague stir in the human superorganism i
(Dave Johns, Slate, April 8, 2010). 4 el B
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- Social Contagion

Widespread media influence
Word-of-mouth influence

Who influences whom? Very hard to measure...

What kinds of influence response functions are
there?

Are some individuals super influencers?
Highly popularized by Gladwell "% as ‘connectors’

The infectious idea of opinion leaders (Katz and
Lazarsfeld) !
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Because of properties of special individuals?
Or system level properties?
Is the match that lights the fire important?

Yes. But only because we are storytellers:
homo narrativus (£,

We like to think things happened for reasons ...

Reasons for success are usually ascribed to
intrinsic properties (examples next).

Teleological stories of fame are often easy to
generate and believe.

System/group dynamics harder to understand
because most of our stories are built around
individuals.

Always good to examine what is said before and
after the fact ...
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The Mona Lisa

“Becoming Mona Lisa: The Making of a Global
Icon"—David Sassoon

Not the world's greatest painting from the start...
Escalation through theft, vandalism, parody, ...
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' The completely unpredicted fall of Eastern Kyl 1o v
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The dismal predictive powers of editors...

Lo

Journeybeyond yourimagination.
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BLVR: Did the success of Where the Wild Things Are ever
feel like an albatross?

MS: It's a nice book. It's perfectly nice. | can't complain
about it. |remember Herman Melville said, “When | die no
one is going to mention Moby-Dick. They're all going to
talk about my first book, about fxxxing maidens in Tahiti.”
He was right. No mention of Moby-Dick then. Everyone
wanted another Tahitian book, a beach book. But then he
kept writing deeper and deeper and then came Moby-Dick
and people hated it. The only ones who liked it were Mr.
and Mrs. Nathaniel Hawthorne. Moby-Dick didn't get
famous until 1930.

Sendak named his dog Herman.
The essential Colbert interview: Pt. 1[4 and Pt. 2[4,
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Ads based on message content
(e.g., Google and email)

BzzAgent(Z'

References

One of Facebook’s early advertising attempts:
Beacon&'

All of Facebook’s advertising attempts.

The (o]
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

“Ha > 330f 109


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://about.bzzagent.com/
http://en.wikipedia.org/wiki/Facebook_Beacon

-~ Getting others to do things for you
i A very good book: ‘Influence’®! by Robert Cialdini (%"

. Six modes of influence:

1. Reciprocation: The Old Give and Take... and Take;
e.g., Free samples, Hare Krishnas.

2. Commitment and Consistency: Hobgoblins of the
Mind; e.g., Hazing.

3. Social Proof: Truths Are Us;
e.g., Jonestown (),

4. Liking: The Friendly Thief; e.g., Separation into
groups is enough to cause problems.

5. Authority: Directed Deference;
e.g., Milgram's obedience to authority

6. Scarcity: The Rule of the Few; e.g., Prohibition.

R < R
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Social contagion

Cialdini's modes are heuristics that help up us get
through life.

Useful but can be leveraged...

Conspicuous Consumption (Veblen, 1912)
Conspicuous Destruction (Potlatch)
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- Social Contaéibn

I\ | HITPOI WAL THTOUC

Tipping models—Schelling (1971) [#% 23 241

Simulation on checker boards
Idea of thresholds
Polygon-themed online visualization. (Includes

Threshold models—Granovetter (1978)'°!

Herding models—Bikhchandani, Hirschleifer,
Welch (1992) 1% 2

Social learning theory, Informational cascades,...
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~ Social contagion models

Basic idea: individuals adopt a behavior when a
certain fraction of others have adopted

‘Others’ may be everyone in a population, an
individual's close friends, any reference group.

Response can be probabilistic or deterministic.
Individual thresholds can vary

Assumption: order of others’' adoption does not
matter... (unrealistic).

Assumption: level of influence per person is
uniform
(unrealistic).

PoCS | @poesvox
Social Contagion

Social Contagion
Models

Background
Granovetter's mode

Network version

References

1he O]
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

“Ha > 380of 109


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Social Contagion

Inherent, evolution-devised inclination to
coordinate, to conform, to imitate. ["!

Lack of information: impute the worth of a good
or behavior based on degree of adoption (social
proof)

Economics: Network effects or network
externalities

Externalities = Effects on others not directly
involved in a transaction

Examples: telephones, fax machine, Facebook,
operating systems

An individual's utility increases with the adoption
level among peers and the population in general

PoCS | @poesvox
Social Contagion

Social Contagion
Models

Background
Granovetter's mode

Network version

References

1he O]
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

A 39 of 109


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Threshold rn"odels——response functions

1 1
0.8 0.8
0.6 0.6
o
0.4 0.4
0.2 0.2
(o) (0)
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

¢

Example threshold influence response functions:

deterministic and stochastic
¢ = fraction of contacts ‘on’ (e.g., rioting)

Two states: S and I.

¢
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‘Thresholdl mbdéls
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Two states: S and I.

¢ = fraction of contacts ‘on’ (e.g., rioting)
Discrete time update (strong assumption!)
This is a Critical mass model
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Threshold mbdéls
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Threshold models

1 1
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Period doubling arises as map amplitude r is
increased.

Synchronous update assumption is crucial
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| Threshold models—Nutshell

1. Collective uniformity 4 individual uniformity
2. Small individual changes = large global changes

3. The stories/dynamics of complex systems are
conceptually inaccessible for individual-centric
narratives.

4. System stories live in left null space of our
stories—we can't even see them.

5. But we happily impose simplistic,
individual-centric stories—we can't help
ourselves(.
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“A simple model of global cascades on random
networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [°°/

Mean field model — network model
Individuals now have a limited view of the world

“Seed size strongly affects cascades on random
networks” 14l
Gleeson and Cahalane, Phys. Rev. E, 2007.

“Direct, phyiscally motivated derivation of the
contagion condition for spreading processes on
generalized random networks” 'l Dodds, Harris, and
Payne, Phys. Rev. E, 2011

“Influentials, Networks, and Public Opinion
Formation” %/
Watts and Dodds, J. Cons. Res., 2007.
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- Threshold model on a network

Interactions between individuals now represented
by a network.

Network is sparse.

Individual i has &, contacts.

Influence on each link is reciprocal and of unit
weight.

Each individual i has a fixed threshold ¢,.
Individuals repeatedly poll contacts on network.
Synchronous, discrete time updating.

Individual : becomes active when
fraction of active contacts 7+ > ¢,.

g

Individuals remain active when switched (no
recovery = SI model).
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Threshold model on a network

=1
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| Snowballihg

Start with N nodes with a degree distribution P,
Nodes are randomly connected (carefully so)
Aim: Figure out when activation will propagate
Determine a cascade condition

1. If one individual is initially activated, what is the
probability that an activation will spread over a
network?

2. What features of a network determine whether a
cascade will occur or not?
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PoCS | @poesvox

~ Example random network structure:
0

Social Contagion

Q

crit — Sfvuln T

e =3 Social Cont
critical mass =. ' ocsl tomagion

global
vulnerable
component

Qtrig = References
triggering
component
innal =
potential
extent of
spread

Q = entire
network

.m fe)
(KUJNIVERSI‘T'Y |Q|
chit - Qtrig; chit - innal; and Qtlrigv innal C . ﬁ e L
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SnOWba”ing PoCS | @pogesvox

Social Contagion

Social Contagion
Models
Background

Granovetter's mode

Network version

Spreac

An active link is a link connected to an activated
node References

If an infected link leads to at least 1 more infected
link, then activation spreads.

We need to understand which nodes can be
activated when only one of their neigbors
becomes active.

The O
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

A 540f 109


http://www.uvm.edu
http://www.uvm.edu/~pdodds

The most 'gu'llibl.e

We call individuals who can be activated by just
one contact being active vulnerables

The vulnerability condition for node i:
1/k; > ¢,

Which means # contacts &k, < |[1/¢; |

For global cascades on random networks, must
have a global cluster of vulnerables 1°°!

Cluster of vulnerables = critical mass

Network story: 1 node — critical mass —
everyone.
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~ Cascade condition PoCS | @poesvox

Social Contagion

Social Contagion
Models

A randomly chosen link, traversed in a random
direction, leads to a degree k node with
probability o< kP,.
Follows from there being k ways to connect to a References
node with degree k.

Normalization:

S kP, = (8)
k=0

So

P(linked node has degree k) = kB

(k)
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~ Cascade condition P GpDesios

Social Contagion

Social Contagion
Models
Background

Granovetter's model

Network version

Linked node is vulnerable with probability

References

1/k
n / £(¢))d!
[

=0
If linked node is vulnerable, it produces k£ — 1 new

outgoing active links

If linked node is not vulnerable, it produces no
active links.
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- Cascade condition PoCS | @poesvox

Social Contagion

Social Contagion
Models

Expected number of active edges produced by an
active edge:

References

N kP kP
Z LG o

pEEESS failure
= kP

= PRSI SR L
2t
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Cascade condition

So... for random networks with fixed degree
distributions, cacades take off when:

Sy g "B
z;l(k 1) -3 <k>>1.

B, = probability a degree k node is vulnerable.
P,, = probability a node has degree k.
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PoCS | @poesvox

 Cascade condition Ruaks o0 ok

Social Contagion
Models

(1) Simple disease-like spreading succeeds: 3, =

References

= kP,
5-2@:—1)-7"3 =i
i (k)
(2) Giant component exists: 5 =1

N1y, e
1 kz::l(k: 1) <k>>1.

The O
ﬁ UNIVERSITY |9|
3l VERMONT |0

“Ha > 60of 109


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Cascades on random networks

1
0.8 size
O 06 ya
8 Fraction of
i Vulnerables
0.2 No Cascades No
(ascad Possible Cascadgs
0
1 2 3 4 5) 6 7
Low influence z High influence
A

Example networks

Cascades occur
only if size of
max vulnerable
cluster > 0.

System may be
‘robust-yet-
fragile'.
‘lgnorance’
facilitates
spreading.
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PoCS | @poesvox

Cascade window for random networks

Social Contagion

Social Contagion

30 Models

Back

25 //_7
20 no cascades . /

H
prEREE

References

N15 1231455

10 g

cascades

a

influence

6?05 0.1 0.15 0.2 0.25
@ = uniform individual threshold

‘Cascade window’ widens as threshold ¢
decreases.

Lower thresholds enable spreading.
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710 cascades

. ©ae 630f109
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All-to-all versus random networks
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all-to—all networks random networks
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PoCS | @poesvox

Cascade window—summary

Social Contagion

Social Contagion
Models

Background

1. Low (k): No cascades in poorly connected :
netWOI‘kS. References
No global clusters of any kind.

2. High (k): Giant component exists but not enough
vulnerables.
3. Intermediate (k): Global cluster of vulnerables

exists.
Cascades are possible in “Cascade window.”
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 Threshold cohtagion on random networks

Next: Find expected fractional size of spread.
Not obvious even for uniform threshold problem.

Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

Problem beautifully solved for infinite seed case
by Gleeson and Cahalane:

“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. "%

Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. !~
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| Determining expected size of spread:

Randomly turn on a fraction ¢, of nodes at time
t—il)

Capitalize on local branching network structure of
random networks (again)

Now think about what must happen for a specific
node i to become active at time ¢:

t = 0: i is one of the seeds (prob = ¢,)

t = 1: i was not a seed but enough of i's friends
switched on at time ¢ = 0 so that ¢'s threshold is
now exceeded.

t = 2: enough of i's friends and friends-of-friends
switched on at time ¢ = 0 so that ¢'s threshold is
now exceeded.

t = n: enough nodes within n hops of i switched
on at ¢t = 0 and their effects have propagated to
reach i.
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Expected size of spread

PoCS | @poesvox
Social Contagion

g . i X Social Contaglor‘w
@ - active, ¢ = 1/3 Models
Background

'
t-—-o = \\ 1l Gral
= N7

Network version

etter's model

Final size

Spreading success
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References
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3 EXpected size .6f'spread

@ =activeat t=0
O =activeat t=1
@ =activeatt=2
@ -activeat t=3
@ =activeatt=4
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 Expected éize of spread

Calculations are possible if nodes do not become
inactive (strong restriction).

Not just for threshold model—works for a wide
range of contagion processes.

We can analytically determine the entire time
evolution, not just the final size.

We can in fact determine
Pr(node of degree k switching on at time ¢).

Asynchronous updating can be handled too.
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 Expected size of spread ' Mdlis v
Pleasantness:

)

Social Contagion
Models

& Taking off from a single seed story is about gt
| expansion away from a node.
Final size,
< Extent of spreading story is about contraction ata e
nOde' References
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Expected size of.spread

Notation:
¢y, = Pr(a degree k node is active at time ¢).

Notation: By ; = Pr (a degree k node becomes active if
j neighbors are active).

Our starting point: ¢, o = ¢q.
(M)dd (1 — ¢o)F 7 = Pr (j of a degree k node’s
neighbors were seeded at time ¢t = 0).

Probability a degree k node was a seed at¢ = 0 is ¢,
(as above).

Probability a degree k node was notaseedatt=0is
(1= ¢o).
Combining everything, we have:

k

(-9 ()]

Jj=0

¢k,1 :¢0 1*¢0)k 7Bkg
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For general ¢, we need to know the probability an edge
coming into a degree k node at time ¢ is active.

Notation: call this probability 6,.
We already know 6, = ¢,.

Story analogous to ¢ = 1 case. For node i:

k,
¢z’,t+1 = ¢o + (1 —¢g) Z( )

Jj=0

(12898, ..

Average over all nodes to obtain expression for ¢, ;:

oo k ; |
b= ok (20> PSS (’;)ezu e,
k=0

Jj=0

So we need to compute 6,... massive excitement...
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 Expected size of.spread

kP,
(k)

Z?:& piece gives Pr(degree node k activates) of
its neighbors k — 1 incoming neighbors are active.

¢ and (1 — ¢,) terms account for state of node at
time t = 0.

See this all generalizes to give 0, , in terms of 0,...

= R, = Pr (edge connects to a degree k node).
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3 E>‘<pected size .6f'spread

\
'AY

101 = ?9
exogenous
+(1_¢0>ZJZ( )‘93 L0 tiby
£ (k) &
social effects
2, ¢t+1 =
oo k
o +(1—¢0)Zpkz< ) sl Byl
exogenous k59 050

social effects
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- Expected size of spread Pocs | @possiox

Social Contagion

Social Contagion
Models

9t+1 = f/ig
exogenous References
o> k:P k*l ]{f i 1 : ‘
+1—¢) > »@;‘3 (CE it
| G P
social effects
T G(9t§ ¢0)
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Expected size of spread:

Retrieve cascade condition for spreading from a
single seed in limit ¢, — 0.

Depends on map 6, = G(0,; ).

First: if self-starters are present, some activation is
assured:

o0

¢0:Z

[ ] BkO > 0
meaning B, > 0 for at least one value of k£ > 1.

If 6 =0 is a fixed point of G (i.e., G(0; ¢,) = 0) then
spreading occurs if

=2

B
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 Expected size of.spread:

If G(0; ¢y) > 0, spreading must occur because
some nodes turn on for free.

If G has an unstable fixed point at § = 0, then
cascades are also always possible.

Cascade condition is more complicated for ¢, > 0.

If G has a stable fixed point at § = 0, and an
unstable fixed point for some 0 < 4, < 1, then for
0, > 0,, spreading takes off.

Tricky point: G depends on ¢, so as we change
¢o, We also change G.

A version of a critical mass model again.
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General fixed point story:

= G(0y; ¢n)

011

1 = G(0h; dn)

Or

0;

Given 6y (= ¢q), 0, Will be the nearest stable fixed
point, either above or below.

n.b., adjacent fixed points must have opposite
stability types.

Important: Actual form of G depends on ¢,,.

So choice of ¢, dictates both G and starting
point—can't start anywhere for a given G.

0 &

)
0.

1= G(0s; ¢o)

0,
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- Early adopte“rs“—degree distributions

aod o o o
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Py, , versus k
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The multiplier effect: WAl b v
‘ 5 Social Contagion
Social Contagion
Models
Top 10% individuals Background
Granovetter's mode
Cascade size ratio Network version
al 4 - Final size
A B 5 Spreading success
Degree|rgtio Spss ety
0.8 . Sroup:
References
%, 0.6 5]
n 2 ol
02 Average
N S e 4
e individuals G < —
3 T Y
) 0 in
§ T LR e TR
O Influence M, Influence My

Fairly uniform levels of individual influence.
Multiplier effect is mostly below 1.
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; The mUItip“er effect: PoCS | @pogesvox

Social Contagion

Social Contagion

Models
Top 10% individuals Cascade size ratio Backgrouind

Granovetter's mode
Network version
Final size

A B Spreading success
Srour
References

g

(7]

(&)

N

%]

()

e]

ISt

(8]

(D]

©

O Influence na,g

Average
Individuals

Skewed influence distribution example.
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- Special subnetworks can act as triggers

¢ = 1/3 for all nodes
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The power of groups...

TEAMWORK
A FEw HarmiESS FLAKES WORKING TOGETHER CAN
UMLEASH AN AVALANCHE OF DESTRUCTION.

despair.com

“A few harmless
flakes working
together can unleash
an avalanche of
destruction.”
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- Extensions

PoCS | @poesvox
Social Contagion
Social Contagloﬁ
Models
“Threshold Models of Social Influence”&@ o s

Watts and Dodds,
The Oxford Handbook of Analytical
SOC]Ology, ' 475—497, 2009 [28] References

Assumption of sparse interactions is good

Degree distribution is (generally) key to a
network’s function

Still, random networks don't represent all
networks

Major element missing: group structure
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- Group structure—Ramified random
networks

p = intergroup connection probability

q = intragroup connection probability.
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Bipartite networks doabls . 5

Social Contagion

Social Contagion
[contexts] i

Background.

Spread
Groups

References

[individuals |

unipartite
network
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 Context distance Mg o v

Social Contagloﬁ :
2 Models
occupation :

education health care

References

kindergarten
teacher

high school

teacher doctor
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- Generalized affiliation model a0 v

Social Contagion

Social Contagion
Models

Background.

geography occupation age

?LV&{LH\‘; success
0 100 Groups
(TIMMIMMINID ~ meferences

a b c d e
(Blau & Schwartz, Simmel, Breiger)
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- Generalized affiliation model networks
with triadic closure

Connect nodes with probability oc exp—¢
where

a = homophily parameter

and

d = distance between nodes (height of lowest
common ancestor)

7, = intergroup probability of friend-of-friend
connection

T4 = intragroup probability of friend-of-friend
connection
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 Cascade windows for group-based
networks

Social Contagion
Models

Single seed Random set seed Coherent group seed
100, 100,
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Multiplier ef'fect.for group-based networks:

Degree ratio
|

3
Al B °
0.8 Cascade
2 size ratio
g0.6
N 04 i
1 A
02 AEE S ~q
Gain
0 0
R D R LR 4 - clgilbageae | 20
Cascade
/ size ratio < 1!

Multiplier almost always below 1.
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| Assortativity'in group-based networks

0.8

Average .

0.6 Cascade size 0.5

0.4 [ [ J k
e000%°0°,

Degreeldistribution

0.2
M / for initiglly infected node

ole—analll

0

10 15 20
Local influence K

The most connected nodes aren't always the most
‘influential.’

Degree assortativity is the reason.
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- Social contagion

‘Influential vulnerables’ are key to spread.

Early adopters are mostly vulnerables.
Vulnerable nodes important but not necessary.
Groups may greatly facilitate spread.

Seems that cascade condition is a global one.

Most extreme/unexpected cascades occur in
highly connected networks

‘Influentials’ are posterior constructs.
Many potential influentials exist.
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- Social contagion

Focus on the influential vulnerables.

Create entities that can be transmitted
successfully through many individuals rather than
broadcast from one ‘influential.’

Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

Want enough individuals who will adopt and

display.

Displaying can be passive = free (yo-yo's, fashion),

or active = harder to achieve (political messages).

Entities can be novel or designed to combine with
others, e.g. block another one.
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