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People thinking about people:
How are social networks structured?
 How do we define and measure connections?

 Methods/issues of self-report and remote sensing.

What about the dynamics of social networks?

 How do social networks/movements begin & evolve?

 How does collective problem solving work?

 How does information move through social networks?

 Which rules give the best ‘game of society?’

Sociotechnical phenomena and algorithms:

 What can people and computers do together? (google)

 Use Play + Crunch to solve problems. Which problems?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Search

A small slice of the pie:
 Q. Can people pass messages between distant

individuals using only their existing social
connections?

 A. Apparently yes...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Milgram’s social search experiment (1960s)

http://www.stanleymilgram.com

 Target person =
Boston stockbroker.

 296 senders from Boston
and Omaha.

 20% of senders reached
target.

 chain length ≃ 6.5.

Popular terms:
 The Small World

Phenomenon;
 “Six Degrees of Separation.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.stanleymilgram.com
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Six Degrees of Kevin Bacon:

 It’s a game:
“Kevin Bacon is the Center of the
Universe”

 The Oracle of Bacon

Six Degrees of Paul Erdös:

 Academic papers.
 Erdös Number
 Erdös Number Project

 So naturally we must have the Erdös-Bacon
Number ...

 One computational Story Lab team member has
EBN < ∞.

 Natalie Hershlag’s (Portman’s) EBN# = 5 + 2 = 7.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
http://oracleofbacon.org
http://bit.ly/19puO29
http://www.oakland.edu/enp/
http://bit.ly/16TyyLf
http://bit.ly/16TyyLf
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Good Will Hunting:

 Boardwork by Dan Kleitman,
EBN# = 1 + 2 = 3.

 See Kleitman’s sidebar in
Mark Saul’s Movie Review
(Notices of the AMS, Vol. 45,
1998.)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Daniel_Kleitman
http://www.ams.org/notices/199804/review-saul.pdf
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 Many people are within three degrees from a
random person ...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://arstechnica.com/information-technology/2013/07/you-may-already-be-a-winner-in-nsas-three-degrees-surveillance-sweepstakes/
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The problem

Lengths of successful chains:

1 2 3 4 5 6 7 8 9 10 11 12
0

3

6

9

12

15

18

L

n(
L
)

From Travers and
Milgram (1969) in
Sociometry: [12]
“An Experimental
Study of the Small
World Problem.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The problem

Two features characterize a social ‘Small World’:
1. Short paths exist, (= Geometric piece)

and
2. People are good at finding them. (= Algorithmic

piece)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Search
Milgram’s small world experiment with email:

chains were far less likely than those in in-

complete chains to send messages to hubs

(1.6 versus 8.2%) (table S6). We also find no

evidence of message “funneling” (3, 9)

through a single acquaintance of the target:

At most 5% of messages passed through a

single acquaintance of any target, and 95% of

all chains were completed through individu-

als who delivered at most three messages. We

conclude that social search appears to be

largely an egalitarian exercise, not one whose

success depends on a small minority of ex-

ceptional individuals.

Although the average participation rate

(about 37%) was high relative to those report-

ed in most e-mail–based surveys (26), the

compounding effects of attrition over multi-

ple links resulted in exponential attenuation

of chains as a function of their length and

therefore an extremely low chain completion

rate (384 of 24,163 chains reached their

targets). Chains may have terminated (i)

randomly, because of individual apathy or

disinclination to participate (3, 27 ); (ii) pref-

erentially at longer chain lengths, corre-

sponding to the claim that chains get “lost” or

are otherwise unable to reach their targets (13);

or (iii) preferentially at short chain lengths,

because, for example, individuals nearer the

target are more likely to continue the chain.

Our findings support the random-failure

hypothesis for two reasons. First, with the

exception of the first step (which is special

because senders register rather than receive

a message from an acquaintance), the attri-

tion rate remains almost constant for all

chain lengths at which we have a sufficient-

ly large N; hence small confidence intervals

(Fig. 1A). Second, senders who did not

forward their messages after one week were

asked why they had not participated. Less

than 0.3% of those contacted claimed that

they could not think of an appropriate re-

cipient, suggesting that lack of interest or

incentive, not difficulty, was the main rea-

son for chain termination.

To estimate the reachability of all targets,

we first aggregate the 384 completed chains

across targets (Fig. 1B), finding the average

chain length to be �L� � 4.05. However,

this number is misleading because it repre-

sents an average only over the completed

chains, and shorter chains are more likely to

be completed. An “ideal” frequency distribu-

tion of chain lengths n�(L) (i.e., the chain

lengths that would be observed in the hypo-

thetical limit of zero attrition) may be esti-

mated by accounting for observed attrition as

follows: n��L) � n(L) /� i�0
L�1(1�ri) (Fig.

1C, bars), where n(L) is the observed number

of chains completed after L steps (Fig. 1B)

and r
L

is the maximum-likelihood attrition

rate from step L to step L � 1 (Fig. 1A,

circles). Using the observed values of r
L
, we

have reconstructed the most likely ideal dis-

tribution n�(L) (Fig. 1C, bars) under our as-

sumption of random attrition. Because the tail

of the distribution is poorly specified (owing

to the small number of observed chains at

large, L), we measure its median L* rather

than its mean. We find L* � 7, and this can

be thought of as the typical ideal chain length

for a hypothetical average individual. By re-

peating the above procedure for chains that

started and ended in the same country (L* �

5) or in different countries (L* � 7), we can

disentangle to some extent the different un-

derlying distributions of chains, yielding an

estimated range of typical chain lengths 5 �

L* � 7, depending on the geographical sep-

aration of source and target.

Although the range of L* and the variation

in attrition rates across targets do not appear

great, the compounding effects of attrition

over the length of a message chain can nev-

ertheless generate large differences in mes-

sage completion rates. For example, a

decrease of 15% in attrition rates, when

compounded over the same ideal distribution

with L* � 6, can generate an 800% increase

in completion rate. The same attrition rates

[e.g., r0 � 0.75, r
L

� 0.63 (L � 1)], when

applied over chains with L* � 5 and 7,

respectively, can lead to completion rates that

vary by up to a factor of three.

Taken together, this evidence suggests a

mixed picture of search in global social net-

works. On the one hand, all targets may in

fact be reachable from random initial senders

in only a few steps, with surprisingly little

variation across targets in different countries

and professions. On the other hand, small

differences in either participation rates or the

underlying chain lengths can have a dramatic

impact on the apparent reachability of differ-

ent targets. Target 5 (a professor at a promi-

nent U.S. university) stands out in this re-

spect. Because 85% of senders were college

educated and more than half were American,

participants may have anticipated little diffi-

culty in reaching him, thus accounting for his

chains’ attrition rate (54%) being much lower

than that of any other target (60 to 68%).

Target 5 received a notable 44% of all

completed chains, yet this result is consis-

tent with his “true” reachability being little

different from that of other targets; his

allocated senders may simply have been

more confident of success.

Our results therefore suggest that if indi-

viduals searching for remote targets do not

have sufficient incentives to proceed, the

small-world hypothesis will not appear to

hold (13), but that even a slight increase in

incentives can render social searches success-

Table 2. Reason for choosing next recipient. All quantities are percentages. Location, recipient is
geographically closer; Travel, recipient has traveled to target’s region; Family, recipient’s family originates
from target’s region; Work, recipient has occupation similar to target; Education, recipient has similar
educational background to target; Friends, recipient has many friends; Cooperative, recipient is considered
likely to continue the chain; Other, includes recipient as the target.

L N Location Travel Family Work Education Friends Cooperative Other

1 19,718 33 16 11 16 3 9 9 3
2 7,414 40 11 11 19 4 6 7 2
3 2,834 37 8 10 26 6 6 4 3
4 1,014 33 6 7 31 8 5 5 5
5 349 27 3 6 38 12 6 3 5
6 117 21 3 5 42 15 4 5 5
7 37 16 3 3 46 19 8 5 0

Fig. 1. Distributions of message chain lengths.
(A) Average per-step attrition rates (circles)
and 95% confidence interval (triangles). (B)
Histogram representing the number of chains
that are completed in L steps (�L� � 4.01).
(C) “Ideal” histogram of chain lengths recov-
ered from (B) by accounting for message attri-
tion (A). Bars represent the ideal histogram
recovered with average values of r [circles in
(A)] for the histogram in (B); lines represent a decomposition of the complete data into chains that
start in the same country as the target (circles) and those that start in a different country
(triangles).

R E P O R T S

8 AUGUST 2003 VOL 301 SCIENCE www.sciencemag.org828

“An Experimental study of Search in Global
Social Networks”
Dodds, Muhamad, and Watts,
Science, 301, 827–829, 2003. [6]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/dodds2003b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/dodds2003b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/dodds2003b.pdf


PoCS|@pocsvox

Small-world
networks

Small-world
networks
Experiments

Theory

Generalized affiliation
networks

Nutshell

References

.
.
.
.
.

.
15 of 68

Social search—the Columbia experiment

 60,000+ participants in 166 countries
 18 targets in 13 countries including

 a professor at an Ivy League university,
 an archival inspector in Estonia,
 a technology consultant in India,
 a policeman in Australia,

and
 a veterinarian in the Norwegian army.

 24,000+ chains

We were lucky and contagious (more later):
“Using E-Mail to Count Connections”, Sarah Milstein,
New York Times, Circuits Section (December, 2001)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2001/12/20/technology/circuits/20STUD.html
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All targets:
Table S1

Target City Country Occupation Gender N Nc (%) r  (r0) <L>

1 Novosibirsk Russia PhD student F 8234 20(0.24) 64 (76) 4.05

2 New York USA Writer F 6044 31 (0.51) 65 (73) 3.61

3 Bandung Indonesia Unemployed M 8151 0 66 (76) n/a

4 New York USA Journalist F 5690 44 (0.77) 60 (72) 3.9

5 Ithaca USA Professor M 5855 168 (2.87) 54 (71) 3.84

6 Melbourne Australia Travel Consultant F 5597 20 (0.36) 60 (71) 5.2

7 Bardufoss Norway Army veterinarian M 4343 16 (0.37) 63 (76) 4.25

8 Perth Australia Police Officer M 4485 4 (0.09) 64 (75) 4.5

9 Omaha USA Life Insurance

Agent

F 4562 2 (0.04) 66 (79) 4.5

10 Welwyn Garden City UK Retired M 6593 1 (0.02) 68 (74) 4

11 Paris France Librarian F 4198 3 (0.07) 65 (75) 5

12 Tallinn Estonia Archival Inspector M 4530 8 (0.18) 63(79) 4

13 Munich Germany Journalist M 4350 32 (0.74) 62 (74) 4.66

14 Split Croatia Student M 6629 0 63 (77) n/a

15 Gurgaon India Technology

Consultant

M 4510 12 (0.27) 67 (78) 3.67

16 Managua Nicaragua Computer analyst M 6547 2 (0.03) 68 (78) 5.5

17 Katikati New Zealand Potter M 4091 12 (0.3) 62 (74) 4.33

18 Elderton USA Lutheran Pastor M 4438 9 (0.21) 68 (76) 4.33

Totals 98,847 384 (0.4) 63 (75) 4.05

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

 Milgram’s participation rate was roughly 75%
 Email version: Approximately 37% participation

rate.
 Probability of a chain of length 10 getting through:.3�10 ≃ 5 × ��−5
 ⇒ 384 completed chains (1.6% of all chains).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

 Motivation/Incentives/Perception matter.
 If target seems reachable⇒ participation more likely.
 Small changes in attrition rates⇒ large changes in completion rates
 e.g., ↘ 15% in attrition rate⇒ ↗ 800% in completion rate

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

Comparing successful to unsuccessful chains:
 Successful chains used relatively weaker ties:
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Social search—the Columbia experiment

Successful chains disproportionately used:
 Weak ties, Granovetter [7]

 Professional ties (34% vs. 13%)
 Ties originating at work/college
 Target’s work (65% vs. 40%)

…and disproportionately avoided
 hubs (8% vs. 1%) (+ no evidence of funnels)
 family/friendship ties (60% vs. 83%)

Geography → Work

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

Senders of successful messages showed
little absolute dependency on
 age, gender
 country of residence
 income
 religion
 relationship to recipient

Range of completion rates for subpopulations:
30% to 40%

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

Mildly bad for continuing chain:
choosing recipients because “they have lots of friends”
or because they will “likely continue the chain.”

Why:
 Specificity important
 Successful links used relevant information.

(e.g. connecting to someone who shares same
profession as target.)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social search—the Columbia experiment

Basic results:
 ⟨�⟩ = 4.�5 for all completed chains
 �∗ = Estimated ‘true’ median chain length (zero

attrition)
 Intra-country chains: �∗ = 5
 Inter-country chains: �∗ = �
 All chains: �∗ = �
 Milgram: �∗ ≃ 9

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Usefulness:

Harnessing social search:
 Can distributed social search be used for

something big/good?
 What about something evil? (Good idea to check.)
 What about socio-inspired algorithms for

information search? (More later.)
 For real social search, we have an incentives

problem.
 Which kind of influence mechanisms/algorithms

would help propagate search?
 Fun, money, prestige, ... ?
 Must be ‘non-gameable.’

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Red balloons:

A Grand Challenge:
 1969: The Internet is born

(the ARPANET—four nodes!).
 Originally funded by DARPA who created a grand

Network Challenge for the 40th anniversary.
 Saturday December 5, 2009: DARPA puts 10 red

weather balloons up during the day.
 Each 8 foot diameter balloon is anchored to the

ground somewhere in the United States.
 Challenge: Find the latitude and longitude of each

balloon.
 Prize: $40,000.∗DARPA = Defense Advanced Research Projects Agency.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/History_of_the_Internet
http://en.wikipedia.org/wiki/ARPANET
http://en.wikipedia.org/wiki/DARPA_Network_Challenge
http://www.darpa.mil/
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Where the balloons were:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Finding red balloons:
The winning team and strategy:
 MIT’s Media Lab won in less than 9 hours. [9]

 Pickard et al. “Time-Critical Social Mobilization,” [9]
Science Magazine, 2011.

 People were virally recruited online to help out.
 Idea: Want people to both (1) find the balloons,

and (2) involve more people.
 Recursive incentive structure with exponentially

decaying payout:
 $2000 for correctly reporting the coordinates of a

balloon.
 $1000 for recruiting a person who finds a balloon.
 $500 for recruiting a person who recruits the

balloon finder, …
 (Not a Ponzi scheme.)

 True victory: Colbert interviews Riley Crane

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.media.mit.edu/
http://www.colbertnation.com/the-colbert-report-videos/260725/january-05-2010/riley-crane
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Finding balloons:
Clever scheme:
 Max payout = $4000 per balloon.
 Individuals have clear incentives to both

1. involve/source more people (spread), and
2. find balloons (goal action).

 Gameable?
 Limit to how much money a set of bad actors can

extract.

Extra notes:
 MIT’s brand helped greatly.
 MIT group first heard about the competition a few

days before. Ouch.
 A number of other teams did well.
 Worthwhile looking at these competing

strategies. [9]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://networkchallenge.darpa.mil/FinalStandings.pdf
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Collective Detective:
 Finding an errant panda

 Nature News: “Crowdsourcing in manhunts can
work: Despite mistakes over the Boston bombers,
social media can help to find people quickly” by
Philip Ball (April 26, 2013)

 Motherboard, Vice: One Degree of Separation in
the Forever War by Brian Castner (November
11, 2015)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2013/06/25/us/a-parallel-search-for-a-missing-panda.html
http://www.nature.com/news/crowdsourcing-in-manhunts-can-work-1.12867
http://www.nature.com/news/crowdsourcing-in-manhunts-can-work-1.12867
http://www.nature.com/news/crowdsourcing-in-manhunts-can-work-1.12867
http://motherboard.vice.com/read/its-a-small-war
http://motherboard.vice.com/read/its-a-small-war
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http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The social world appears to be small...
why?

Theory: how do we understand the small world
property?
 Connected random networks have short average

path lengths: ⟨ ��⟩ ∼ log(�)� = population size,�� = distance between nodes � and �.
 But: social networks aren’t random...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Simple socialness in a network:

Need “clustering”
(your friends are
likely to know each
other):

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Non-randomness gives clustering:

A

B

�� = �� → too many long paths.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Randomness + regularity

B

A

Now have �� = 3 ⟨ ⟩ decreases overall

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) [14]
“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:
 neural network of C. elegans,
 semantic networks of languages,
 actor collaboration graph,
 food webs,
 social networks of comic book characters,...

Very weak requirements:
 local regularity + random short cuts

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Papers should be apps:

 Bret Victor’s Scientific Communication As
Sequential Art

 Interactive figures and tables = windows into large
data sets (empirical or simulated).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
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The structural small-world property:

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

p

L(p) / L(0)

C(p) / C(0)

 �(�) = average shortest path length as a function of �
 �(�) = average clustring as a function of �
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Previous work—finding short paths

But are these short cuts findable?

Nope. [8]

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

 What can a local search method reasonably use?
 How to find things without a map?
 Need some measure of distance between friends

and the target.

Some possible knowledge:
 Target’s identity
 Friends’ popularity
 Friends’ identities
 Where message has been

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) [8]
“Navigation in a small world.”

Allowed to vary:
1. local search algorithm

and
2. network structure.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

Kleinberg’s Network:
1. Start with regular d-dimensional cubic lattice.
2. Add local links so nodes know all nodes within a

distance .
3. Add � short cuts per node.
4. Connect to with probability∝ −�.
 � = �: random connections.
 � large: reinforce local connections.
 � = : connections grow logarithmically in space.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

Theoretical optimal search:
 “Greedy” algorithm.
 Number of connections grow logarithmically

(slowly) in space: � = .
 Social golf.

Search time grows slowly with system size (like log2� ).

But: social networks aren’t lattices plus links.

http://www.uvm.edu
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Advances for understanding Kleinberg’s model:
Kleinberg navigation in fractal small-world networks

Mickey R. Roberson and Daniel ben-Avraham*
Department of Physics, Clarkson University, Potsdam, New York 13699-5820, USA

�Received 4 May 2006; published 17 July 2006�

We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is a

fractal consisting of N≫1 nodes. Our extensive numerical simulations confirm the prediction that the most

efficient navigation is attained when the length r of long-range links is taken from the distribution P�r�
�r−�, where �=df is the fractal dimension of the underlying lattice. We find finite-size corrections to the

exponent �, proportional to 1/ �ln N�2.

DOI: 10.1103/PhysRevE.74.017101 PACS number�s�: 89.75.Hc, 02.50.�r, 05.40.Fb, 05.60.�k

Recently Kleinberg has studied the problem of efficient
navigation in small-world networks, based on local algo-
rithms that rely on the underlying geography �1,2�. Consider,
for example, a d-dimensional hypercubic lattice, consisting
of N nodes, where in addition to the links between nearest
neighbors each node i is connected randomly to a node j

with a probability proportional to rij
−� �here, and elsewhere,

rij = �ri−r j� denotes the Euclidean distance between nodes i
and j�. Suppose that a message is to be passed from a

“source” node s to a “target” node t, along the links of the

network, by a decentralized or local algorithm �an algorithm

that relies solely on data gathered from the immediate vicin-

ity of the node that holds the message at each step�, when the

location of the target is publicly available. Kleinberg shows

that when the exponent �=d an algorithm exists that requires

fewer than �ln N�2 steps to complete the task. If ��d, the

required number of steps grows as a power of N. Moreover,

no local algorithm will do better, functionally, than the

simple minded greedy algorithm: pass the message forward

to the neighbor node which is closest to the target �geo-

graphically�.
Kleinberg observes �2� that the above results generalize to

“less structured graphs with analogous scaling properties.”

Interest in such cases is practical, as the nodes of many real-

life networks �routers of the Internet, population in social

nets, etc.� are not distributed regularly. Here we test this

assertion for the case of fractal lattices, enhanced by the

addition of random long-range links as in the original Klein-

berg problem. We find that the results indeed generalize to

this case and that most efficient navigation is achieved when

the power exponent for the random connections is �=df, the

fractal dimension of the underlying lattice. Our numerical

analysis is sensitive enough to allow for a study of finite-size

effects. For a lattice of N nodes optimal navigation is at-

tained for an effective exponent ��N� that is smaller than the

idealized limit of �=df �when N→�� by as much as

1/ �ln N�2. Thus, corrections are substantial even for very

large lattices.

Consider a fractal lattice, such as the Sierpinski carpet �3�
�Fig. 1�, where, in addition to the existing links, each node i

is randomly connected to a single node j, selected from

among all other nodes with probability pij =rij
−� /�krik

−�. The

sum in the denominator runs over all nodes k� i and is re-

quired for normalization. If the fractal is finite, consisting of

N≫1 nodes, its linear size is L�N1/df. The normalization

term then scales as

�
k

rik
−� � �

1

L

r−�rdf−1dr � 	
�� − df�

−1, � � df,

ln L , � = df,

Ldf−�, � � df.

�1�

The average distance between randomly chosen �s , t�
pairs is �L, so in the absence of long contacts a message

takes T�N1/df steps to be delivered �4�. Long-range contacts

reduce the 1/df exponent, but only when the exponent �

=df does the expected delivery time scale slower than a

power of N. The basic idea of Kleinberg’s argument, applied

to the case of fractals, is as follows �2�. For �=df, surround

the target node t with m shells of radii em−1
�r�em, m

=1,2 , . . . . Suppose that the message holder is currently in

shell m; then, the probability that the node is connected by a

*Electronic address: benavraham@clarkson.edu

FIG. 1. Small-world net based on the Sierpinski carpet. Shown

is a carpet of generation n=3. The nodes �open squares� are con-

nected to their nearest neighbors �not shown�. In addition, each

node i is connected to a random node j as described in the text. For

the sake of clarity, only one such connection is shown as an

example.

PHYSICAL REVIEW E 74, 017101 �2006�

1539-3755/2006/74�1�/017101�3� ©2006 The American Physical Society017101-1

“Kleinberg Navigation in Fractal Small
World Networks”
Roberson and ben-Avrahma,
Phys. Rev. E, 74, 017101, 2006. [10]

probability that a message, at distance l from the target,

takes n additional steps to reach the target. Once the

message is at the target it takes no additional time to reach

it, so Pðn; 0Þ ¼ �n;0. Likewise, Pð0; lÞ ¼ �0;l, since the

only way to reach the target in 0 steps is if the message

is already there to begin with.

Pðn; lÞ satisfies the equation

Pðn; lÞ ¼ A
X2l�1

k¼1

k��Pðn� 1; jl� kjÞ

þ

�

1� A
X2l�1

k¼1

k��

�

Pðn� 1; l� 1Þ: (3)

The first term on the right-hand side (rhs) represents the

events that the first of the additional n steps is a long step of

length k, in which case the message would come to within

distance jl� kj from the target. The second term repre-

sents a short step, that advances the message a single lattice

spacing.

For our main purpose here it is sufficient to consider just

the first moment hni � Tl, that is, the mean delivery time

from a site a distance l away from the target. Multiplying

Eq. (3) by n and summing over n, we get

Tl ¼ A
X2l�1

k¼1

k��ð1þ Tjl�kjÞ

þ

�

1� A
X2l�1

k¼1

k��

�

ð1þ Tl�1Þ; (4)

for l ¼ 1; 2; . . . ; L. Numerical integration of Eqs. (3) and

(4) yields perfect agreement with the results from direct

simulation of the Kleinberg navigation process on a ring

(Fig. 1).

Using the fact that T�k ¼ Tk, and defining Dk ¼ Tk �
Tk�1, we obtain, after some rearranging,

Dlþ1 �Dl ¼ A

�
Xl

k¼1

½ðlþ 1� kÞ��

� ðlþ kÞ���Dk �
X2l�1

k¼1

k��Dl

�

; (5)

for l ¼ 1; 2; . . . ; L� 1, while for l ¼ 0 we have D1 ¼
T1 � T0 ¼ 1.

As a quick check, consider the limit of � ! 1, when all

the long-range contacts are restricted to length 1, and

therefore one expects Tl ¼ l. Indeed, in this case all the

k�� terms in the equation tend to zero, unless k ¼ 1, and
we get Dlþ1 �Dl ¼ 0, which along with D1 ¼ 1 yields

Dk ¼ 1, and Tl ¼
P

l
k¼1 Dk ¼ l, just as expected.

Next, consider the opposite limit of � ¼ 0, where the

distribution of long-range contacts is homogeneous. In this

case A ¼ ½2ð2L� 1Þ��1 and we obtain from (5),

Dlþ1 �Dl ¼ �
2l� 1

2ð2L� 1Þ
Dl:

Although this equation can be solved exactly, a continuous

approximation,

d

dl
DðlÞ ¼ �

l

2L
DðlÞ;

assuming L � l � 1, works just as well. In view of the

boundary condition Dð0Þ ¼ 1, this has the solution DðlÞ ¼
expð�l2=4LÞ. Then, TðLÞ ¼

R
L
0 DðlÞdl. The upper integra-

tion limit may be safely replaced with 1, due to the rapid

decay of the Gaussian, and a simple change of variables

yields TðLÞ � L1=2, in perfect agreement with the

Kleinberg bound for � ¼ 0.

For larger values of � we are not as fortunate as to find a

full analytic solution, but we can still obtain the asymptotic

behavior. For 0 � �< 1 we take a hint from the solution

for � ¼ 0 and make the ansatz DðlÞ ¼ fðl�=LÞ, where
fðxÞ is a smoothly decreasing function; fðxÞ ¼ Oð1Þ for
x & 1, and decays very rapidly (e.g., exponentially) for

x * 1. Consistent with this behavior, the derivative at the

crossover point x	 ¼ 1 is f0ðx	Þ ¼ �Oð1Þ. This ansatz is

nicely confirmed by numerical integration of Eq. (5).

Apply now Eq. (5) to the crossover length l	 ¼ L1=�.

The left-hand side (lhs) is

Dl	þ1 �Dl	



d

dl
DðlÞjl¼l	

��L�1=�;

while the sums on the rhs can be estimated by replacingDl

with a constant for l < l	, and zero for l > l	, yield-
ing �Al1��

	 . But A� 1=L1��, leading to �1=� ¼ ð1�
�Þ=�� ð1� �Þ, or � ¼ ð2� �Þ=ð1� �Þ. Finally,

TðlÞ ¼
Z L

0

DðlÞdl 

Z 1

0

DðlÞdl

¼
L1=�

�

Z 1

0

fðxÞx1=��1dx� L1=�;

so

TðLÞ � Lð1��Þ=ð2��Þ; 0 � �< 1: (6)

FIG. 1 (color online). Mean delivery time TL as a function of

the long-contact exponent �. Note the perfect agreement be-

tween simulations (solid line) and the results from Eq. (4)

(symbols). Shown are results for three values of L.
Inset: Distribution of the delivery time for the case of � ¼ 1

and L ¼ 1000 as computed from (3) (solid line) is compared to

simulations (symbols).

PRL 102, 238702 (2009) P HY S I CA L R EV I EW LE T T E R S
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238702-2

“Asymptotic behavior of the Kleinberg
model”
Carmi et al.,
Phys. Rev. Lett., 102, 238702, 2009. [4]

path) and reaches distance r� dr in two cases: (1) if it

does not find any shortcut, which occurs with probability

1� qdr, where q is now a linear shortcut probability

density (the correct mapping would thus be to a lattice

model where shortcuts go from network edges to network

nodes), (2) if it finds a shortcut which is not useful, that is,

that leads to distances greater than r, which occurs with

probability qdr½1�
R
d�

R
2rcos�
0
N ð�þ lÞ��ld�1dl� (see

Fig. 1 for the geometric construction). In this expression

N ð�þ lÞ�� is the properly normalized probability distri-

bution for shortcuts of length l and � is a cutoff (not needed
in the lattice formulation) that makes the distribution inte-

grable for �> d, � is the angle between ~r and the direction
of the shortcut, and

R
d� integrates over all the remaining

angles that describe the half-space with origin in ~r and

containing the target (such half-space is marked by an

arrow in Fig. 1). In the continuum version of Eq. (1), the

probability not to encounter a shortcut while moving from

r to r� drmultiplies the time it takes to go from r� dr to
the target, augmented by the time it takes to travel the

distance dr, which is �ðr� drÞ þ dr, assuming a unitary

velocity.

In all other cases the algorithm has found a useful long-

range connection along dr, leading to any possible point

within the (hyper)sphere of radius r and centered at the

origin.

Taking eventually the limit dr ! 0, the continuum equa-

tion corresponding to (1) is thus

�0ðrÞ¼1�qN �ðrÞ
Z

d�
Z 2rcos�

0

ð�þ lÞ��ld�1dlþqN
Z

d�
Z 2rcos�

0

ð�þ lÞ��ld�1�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2þr2�2rlcos�
p

Þdl; (2)

where we have used the complete isotropy of the problem,

so that �ðrÞ depends only on r ¼ j~rj. The initial condition
is clearly �ð0Þ ¼ 0 since it takes no time to reach the

destination from itself.

We simplify Eq. (2) by a few simple tricks. First we

postulate a scaling function form for �ðrÞ of the kind

�ðrÞ ¼ K�1fðKrÞ; (3)

with K ¼ ðqN Þ1=ðdþ1��Þ. In this way we get rid of much

of the explicit dependence on q andN . Next, after a few

straightforward but tedious manipulations, involving inte-

grations by parts, it is possible to obtain an integral equa-

tion for the derivative of fðxÞ,

f0ðxÞ ¼ 1� xdþ1��
Z

d�
Z 2 cos�

0

Iðy; K�=xÞ

�
y� cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 1� 2y cos�
p f0ðx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 1� 2y cos�
q

Þdy;

(4)

where Iðy; K�=xÞ ¼
Ry
0
ðK�=xþ zÞ��zd�1dz. To obtain

the asymptotic behavior of fðxÞ we rely on simple consid-

erations. Since �ðrÞ cannot decrease with the distance r
from the target, fðxÞ is nondecreasing and therefore

f0ðxÞ � 0. Moreover, Iðy; K�=xÞ is a positive and increas-

ing function of y and thus from (4) we obtain f0ðxÞ � 1.

There are then two cases that must be examined separately.

If �< dþ 1, the term xdþ1�� in front of the integral

diverges asymptotically. As a consequence, if f0ðxÞ de-

cayed slower than x�ðdþ1��Þ, then the second term in the

right-hand side (rhs) of (4) would asymptotically diverge;

i.e., f0ðxÞ would become negative, contrary to what was

found in the preceding paragraph, that is f0ðxÞ � 0. If

instead f0ðxÞ decayed faster than x�ðdþ1��Þ, the second

term on the rhs of (4) would asymptotically decrease and

the overall rhs, and thus f0ðxÞ, would tend to 1, contrary to

its postulated decrease. We are thus left with the only

possibility: f0ðxÞ � x�ðdþ1��Þ.

The case �> dþ 1 is subtler, because xdþ1�� ! 0

asymptotically, but it is compensated, to the leading be-

havior, by Iðy; K�=xÞ � x��d�1, leaving no choice other

than an asymptotically constant f0ðxÞ, which in turn leads

to f0ðxÞ ! 1=½1þ cð�; �; dÞq�, where cð�Þ is a constant

depending only on d and � (see below).

In the following we separately analyze five cases.

(i) �< d. Since f0ðxÞ � 1=xðdþ1��Þ, fðxÞ converges

asymptotically to a constant. In this case the normalization

isN ¼ ðd� �Þ=Ld�� so that using the scaling form (3)

with the associated expression for K it is straightforward to

θ
r’

θ

FIG. 1 (color online). The geometrical setup to compute the

various contributions to Eq. (2). The target is at the origin, and

useful shortcuts from ~r must fall within the (hyper)sphere of

radius r. � is the angle between a shortcut and the greedy path to

the target. The end point of a shortcut of length l has a distance r0

from the target. The dashed line (hyperplane in d > 2) through ~r
and orthogonal to the ray selects the half-space containing the

target.

PRL 102, 238703 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

238703-2

“Extended navigability of small world
networks: Exact results and new
insights”
Cartoza and De Los Rios,
Phys. Rev. Lett., 2009, 238703, 2009. [5]
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Previous work—finding short paths

 If networks have hubs can also search well:
Adamic et al. (2001) [1]�( ) ∝ −�
where = degree of node (number of friends).

 Basic idea: get to hubs first
(airline networks).

 But: hubs in social networks are limited.
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The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

b

a

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

What is ‘social distance’?

http://www.uvm.edu
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Models

One approach: incorporate identity.

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Religious beliefs
 Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Social distance—Bipartite affiliation
networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

 Bipartite affiliation networks: boards and
directors, movies and actors.
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Social distance—Context distance

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db
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Models

Distance between two individuals is the height of
lowest common ancestor.

b=2

g=6

i j

l=4

kv= 3, = �, � = 4.
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Models

 Individuals are more likely to know each other the
closer they are within a hierarchy.

 Construct connections for each node using= exp{−� }.
 � = �: random connections.
 � large: local connections.

http://www.uvm.edu
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Models

Generalized affiliation networks

100

eca b d

geography occupation age

0

 Blau & Schwartz [2], Simmel [11], Breiger [3], Watts et
al. [13]; see also Google+ Circles.

http://www.uvm.edu
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The model

h=2

i j

h=3

i, j

i

h=1

j

⃗� = [� � �]� , ⃗� = [� 4 �]� Social distance:1 = 4, 2 = 3, 3 = �. = ℎ ℎ .

http://www.uvm.edu
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The model

Triangle inequality doesn’t hold:

k

h=2

i, ji j,k

h=1

= 4 � + = � + � = �.

http://www.uvm.edu
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The model

 Individuals know the identity vectors of
1. themselves,
2. their friends,

and
3. the target.

 Individuals can estimate the social distance
between their friends and the target.

 Use a greedy algorithm + allow searches to fail
randomly.

http://www.uvm.edu
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The model-results—searchable networks� = � versus � = � for � ≃ ��5:

1 3 5 7 9 11 13 15
−2.5

−2

−1.5

−1

−0.5

H

lo
g 10

q
≥<= �.�5

= probability an arbitrary message chain reaches a
target.

 A few dimensions help.
 Searchability decreases as population increases.
 Precise form of hierarchy largely doesn’t matter.

http://www.uvm.edu
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The model-results

Milgram’s Nebraska-Boston data:

1 2 3 4 5 6 7 8 9 101112131415
0

2

4

6

8

10

12

L

n(
L
)

Model parameters:
 � = ��8,
 = 3��, � = ���,
 = ��,
 � = �, � = �;
 ⟨�model⟩ ≃ 6.�
 �data ≃ 6.5

http://www.uvm.edu
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Social search—Data

Adamic and Adar (2003)
 For HP Labs, found probability of connection as

function of organization distance well fit by
exponential distribution.

 Probability of connection as function of real
distance ∝ �/ .

http://www.uvm.edu
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Social Search—Real world uses

 Tags create identities for objects
 Website tagging: bitly.com

 (e.g., Wikipedia)
 Photo tagging: flickr.com

 Dynamic creation of metadata plus links between
information objects.

 Folksonomy: collaborative creation of metadata

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Search—Real world uses

Recommender systems:
 Amazon uses people’s actions to build effective

connections between books.
 Conflict between ‘expert judgments’ and

tagging of the hoi polloi.

http://www.uvm.edu
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Nutshell for Small-World Networks:
 Bare networks are typically unsearchable.
 Paths are findable if nodes understand how

network is formed.
 Importance of identity (interaction contexts).
 Improved social network models.
 Construction of peer-to-peer networks.
 Construction of searchable information

databases.

http://www.uvm.edu
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Neural reboot (NR):

Food-induced happiness

https://www.youtube.com/v/vC8gJ0_9o4M?rel=0

http://www.uvm.edu
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