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Archival object:
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Scalingarama

General observation:
Systems (complex or not) that cross many spatial and
temporal scales often exhibit some form of scaling.

Outline—All about scaling:
 Basic definitions.
 Examples.

In CocoNuTs:
 Advances in measuring your power-law

relationships.
 Scaling in blood and river networks.
 The Unsolved Allometry Theoricides.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300
http://www.twitter.com/@pocsvox
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http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
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http://www.uvm.edu/~pdodds
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Definitions

A power law relates two variables � and � as follows:� = Ԓ��
 � is the scaling exponent (or just exponent)
 � can be any number in principle but we will find

various restrictions.
 Ԓ is the prefactor (which can be important!)
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Definitions

 The prefactor Ԓ must balance dimensions.
 Imagine the height ℓ and volume � of a family of

shapes are related as:ℓ = Ԓ�1/4
 Using [⋅] to indicate dimension, then[Ԓ] = [ԛ]/[ԋ 1/4] = ԁ/ԁ3/4 = ԁ1/4.
 More on this later with the Buckingham �

theorem.
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Looking at data

 Power-law relationships are linear in log-log space:� = Ԓ��⇒ log�� = �log�� � log�Ԓ
with slope equal to �, the scaling exponent.

 Much searching for straight lines on log-log or
double-logarithmic plots.

 Good practice: Always, always, always use base 10.
 Talk only about orders of magnitude (powers of

10).

A beautiful, heart-warming example:

 Ӽ = volume of
gray matter:
‘computing
elements’

 Ԍ = volume of
white matter:
‘wiring’

 Ԍ ∼ ԒӼ1.23
 from Zhang & Sejnowski, PNAS (2000) [25]
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Why is � ≃ �.��?
Quantities (following Zhang and Sejnowski):
 Ӽ = Volume of gray matter (cortex/processors)
 Ԍ = Volume of white matter (wiring)
 ԉ = Cortical thickness (wiring)
 Ԉ = Cortical surface area
 ԁ = Average length of white matter fibers
 ԟ = density of axons on white matter/cortex

interface

A rough understanding:
 Ӽ ∼ Ԉԉ (convolutions are okay)
 Ԍ ∼ 12ԟԈԁ
 Ӽ ∼ ԁ3 ← this is a little sketchy...
 Eliminate Ԉ and ԁ to find Ԍ ∝ Ӽ 4/3/ԉ
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Why is � ≃ �.��?
A rough understanding:
 We are here: Ԍ ∝ Ӽ 4/3/ԉ
 Observe weak scaling ԉ ∝ Ӽ 0.10±0.02.
 Implies Ԉ ∝ Ӽ 0.9 → convolutions fill space.
 ⇒ Ԍ ∝ Ӽ 4/3/ԉ ∝ Ӽ 1.23±0.02

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Tricksiness:

 With ԋ = Ӽ � Ԍ , some power laws must be
approximations.

 Measuring exponents is a hairy business...
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Good scaling:

General rules of thumb:
 High quality: scaling persists over

three or more orders of magnitude
for each variable.

 Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

 Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.
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Unconvincing scaling:

Average walking speed as a function of city
population:

Two problems:
1. use of natural log, and
2. minute varation in

dependent variable.

 from Bettencourt et al. (2007) [4]; otherwise totally
great—see later.
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Definitions

Power laws are the signature
of scale invariance:

Scale invariant ‘objects’
look the ‘same’
when they are appropriately
rescaled.

 Objects = geometric shapes, time series, functions,
relationships, distributions,...

 ‘Same’ might be ‘statistically the same’
 To rescale means to change the units of

measurement for the relevant variables
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Scale invariance

Our friend � = Ԓ��:
 If we rescale � as � = ԡ�′ and � as � = ԡ��′,
 then ԡ��′ = Ԓ�ԡ�′)�
 ⇒ �′ = Ԓԡ��′�ԡ−�
 ⇒ �′ = Ԓ�′�

PoCS|@pocsvox

Scaling

Scaling-at-large

Allometry

Biology

Physics

Cities

Money

Technology

Specialization

References

.
.
.
.
.

.
18 of 73

Scale invariance

Compare with � = ԒԔ−�֓:
 If we rescale � as � = ԡ�′, then� = ԒԔ−���′
 Original form cannot be recovered.
 Scale matters for the exponential.

More on � = ԒԔ−�֓:
 Say �0 = �/� is the characteristic scale.
 For � ≫ �0, � is small,

while for � ≪ �0, � is large.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Isometry:

 Dimensions scale linearly
with each other.

Allometry:

 Dimensions scale
nonlinearly.

Allometry:

 Refers to differential growth rates of the parts of a
living organism’s body part or process.

 First proposed by Huxley and Teissier, Nature, 1936
“Terminology of relative growth” [10, 22]
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Definitions

Isometry versus Allometry:
 Iso-metry = ‘same measure’
 Allo-metry = ‘other measure’

We use allometric scaling to refer to both:
1. Nonlinear scaling of a dependent variable on an

independent one (e.g., � ∝ �1/3)
2. The relative scaling of correlated measures

(e.g., white and gray matter).
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An interesting, earlier treatise on scaling:

McMahon and
Bonner, 1983 [17]

The many scales of life:

p. 2, McMahon and
Bonner [17]

The many scales of life:

p. 3, McMahon and
Bonner [17]
More on the
Elephant Bird
here.

The many scales of life:

p.
3, McMahon and
Bonner [17]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Allometry
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Aepyornis
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Size range (in grams) and cell differentiation:

10−13 to 108 g, p. 3,

McMahon and Bonner [17]
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Non-uniform growth:

p. 32, McMahon and Bonner [17]
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Non-uniform growth—arm length versus
height:

Good example of a break in scaling:

A crossover in scaling occurs around a height of 1
metre.
p. 32, McMahon and Bonner [17]

PoCS|@pocsvox

Scaling

Scaling-at-large

Allometry

Biology

Physics

Cities

Money

Technology

Specialization

References

.
.
.
.
.

.
28 of 73

Weightlifting: Ԃworld record ∝ Ԃ 2/3
lifter

Idea: Power ∼ cross-sectional area of isometric lifters.
p. 53, McMahon and Bonner [17]

PoCS|@pocsvox

Scaling

Scaling-at-large

Allometry

Biology

Physics

Cities

Money

Technology

Specialization

References

.
.
.
.
.

.
29 of 73

Titanothere horns: ԁhorn ∼ ԁskull4

p. 36, McMahon and Bonner [17]; a bit dubious.
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Animal power

Fundamental biological and ecological constraint:� = Ԓ Ԃ �� = basal metabolic rateԂ = organismal body mass

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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http://www.uvm.edu/~pdodds
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Stories—The Fraction Assassin:
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Ecology—Species-area law:

Allegedly (data is messy): [12, 11]

“An equilibrium theory of insular
zoogeography”
MacArthur and Wilson,
Evolution, 17, 373–387, 1963. [12]

 ԃspecies ∝ � �
 According to physicists—on islands: � ≈ �/4.
 Also—on continuous land: � ≈ �/8.
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Cancer:
in familial adenomatouspolyposis (FAP) syndrome

patients, yet cancers occur much more commonly

in the large intestine than in the small intestine

of these individuals.

If hereditary and environmental factors cannot

fully explain the differences in organ-specific can-

cer risk,howelse can thesedifferencesbe explained?

Here, we consider a third factor: the stochastic

effects associatedwith the lifetimenumber of stem

cell divisions within each tissue. In cancer epide-

miology, the term “environmental” is generally

used to denote anything not hereditary, and the

stochastic processes involved in the development

and homeostasis of tissues are grouped with ex-

ternal environmental influences in an uninforma-

tive way. We show here that the stochastic effects

of DNA replication can be numerically estimated

and distinguished from external environmental

factors. Moreover, we show that these stochastic

influences are in fact the major contributors to

cancer overall, often more important than either

hereditary or external environmental factors.

That cancer is largely the result of acquired

genetic and epigenetic changes is based on the

somatic mutation theory of cancer (9–13) and

has been solidified by genome-wide analyses

(14–16). The idea that the number of cells in a

tissue and their cumulative number of divisions

may be related to cancer risk, making themmore

vulnerable to carcinogenic factors, has been pro-

posed but is controversial (17–19). Other insight-

ful ideas relating to the nature of the factors

underlying neoplasia are reviewed in (20–22).

The concept underlying the current work is

that many genomic changes occur simply by

chance during DNA replication rather than as a

result of carcinogenic factors. Since the endog-

enous mutation rate of all human cell types ap-

pears to be nearly identical (23, 24), this concept

predicts that there should be a strong, quantitative

correlation between the lifetime number of divi-

sions among a particular class of cells within each

organ (stem cells) and the lifetime risk of cancer

arising in that organ.

To test this prediction, we attempted to iden-

tify tissues in which the number and dynamics

of stem cells have been described. Most cells in

tissues are partially or fully differentiated cells

that are typically short-lived and unlikely to be

able to initiate a tumor. Only the stem cells—

those that can self-renew and are responsible

for the development and maintenance of the tis-

sue's architecture—have this capacity. Stem cells

often make up a small proportion of the total

number of cells in a tissue and, until recently,

their nature, number, and hierarchical division

patterns were not known (25–28). Tissues were

not included in our analysis if the requisite pa-

rameters were not found in the literature or if

their estimation was difficult to derive.

Through an extensive literature search,we iden-

tified 31 tissue types in which stem cells had been

quantitatively assessed (see the supplementary

materials). We then plotted the total number of

stem cell divisions during the average lifetime of

a human on the x axis and the lifetime risk for

cancer of that tissue type on the y axis (Fig. 1)

(table S1). The lifetime risk in the United States

for all included cancer types has been evaluated

in detail, such as in the Surveillance, Epidemiol-

ogy, and End Results (SEER) database (3). The

correlation between these two very different

parameters—number of stem cell divisions and

lifetime risk—was striking, with a highly positive

correlation (Spearman’s rho = 0.81; P < 3.5 × 10
−8
)

(Fig. 1). Pearson’s linear correlation 0.804 [0.63

to 0.90; 95% confidence interval (CI)] was equiv-

alently significant (P < 5.15 × 10
−8
). One of the

most impressive features of this correlation was

that it extended across five orders of magnitude,

thereby applying to cancers with enormous differ-

ences in incidence. No other environmental or in-

herited factors are known to be correlated in this

way across tumor types. Moreover, these correla-

tionswere extremely robust; when the parameters

used to construct Fig. 1 were varied over a broad

range of plausible values, the tight correlation re-

mained intact (see the supplementarymaterials).

A linear correlation equal to 0.804 suggests

that 65% (39% to 81%; 95% CI) of the differences

in cancer risk among different tissues can be ex-

plained by the total number of stem cell divisions

in those tissues. Thus, the stochastic effects of

SCIENCE sciencemag.org 2 JANUARY 2015 • VOL 347 ISSUE 6217 79

Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue.

Values are from table S1, the derivation of which is discussed in the supplementary materials.

RESEARCH | REPORTS “Variation in cancer risk among tissues can
be explained by the number of stem cell
divisions”
Tomasetti and Vogelstein,
Science Magazine, 347, 78–81, 2015. [23]

Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue.

Values are from table S1, the derivation of which is discussed in the supplementary materials.

Roughly: ԟ ∼ ԡ2/3 where ԟ = life time probability and ԡ
= rate of stem cell replication.
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we wish to estimate the maximum speed, the relevant prop-
erty is not the basal metabolic rate but rather the maximum

metabolic rate. The order of magnitude of this parameter has
been shown to be roughly constant, too, when scaled to the
mass, with the value

bM � 2� 103Wkg�1 (7)

per unit of working tissue.27,30,31

B. Maximum relative speed

If the maximum relative speed Vmax=L only depends on
the parameters q, r, and bM, dimensional analysis can be
used to deduce its scaling. In terms of the three dimensions
½M�, ½L�; ½T�, the density scales as

q / ½M�½L��3: (8)

Since r is a force (/ ½M�½L�½T��2
) per unit cross-section

(/ ½L�2), it scales as

r / ½M�½L��1½T��2; (9)

and since bM is a power (/ ½M�½L�2½T��3
) per unit mass, it

scales as

bM / ½L�2½T��3: (10)

Therefore, since Vmax=L / ½T��1
, we deduce

Vmax=L / bMq=r: (11)

In order to make a quantitative estimate, let us go a step
further than dimensional analysis. First, consider running and
swimming of animals beyond the micro-organism range. At

zero order, both means of locomotion can be considered as a
cyclic process (of frequency f) in which an organism of length
L moves by one “step” of length �L during each cycle, by

contracting muscles. Consider an organism of cross-section S

and length L:

• its mass is M � qSL,
• moving by one step of length �L by applying the force
�rS requires the energy per unit mass w � rSL=M � r=q,

• since f steps per second consume the energy fw per unit
mass, which must be smaller than bM, the maximum step

rate is fmax � bM=w � bMq=r.

The maximum speed equals the step length �L times the
maximum step rate fmax, whence

Vmax=L � fmax � bMq=r: (12)

Substituting Eqs. (1), (2), and (7) into Eq. (12) yields

Vmax=L � 10 s�1; (13)

which is the large-scale relation mentioned in the

Introduction.
Consider now micro-organisms. They move by rotating or

undulating flagella, cilia, or pili, which are operated by mo-
lecular motors as are the muscles of larger organisms, even

though the number of motors is much smaller for micro-
organisms. In this case, it is more enlightening to consider

the microscopic level. During one period of rotation or undu-
lation,23,32 a micro-organism of length L moves along a dis-
tance �L using energy �W0 [given in Eq. (3)] per molecular
motor. With f cycles per second, the power spent is �fW0.
For a motor of size �a0 given in Eq. (4) and mass �qa30, the
power cannot exceed the maximum metabolic rate �bMqa

3
0.

This yields f � bMqa
3
0=W0, whence

Vmax=L � bMqa
3
0=W0: (14)

With n motors, both the numerator and the denominator of
Eq. (14) are multiplied by n, which does not change the
result. Since from Eq. (6) r � W0=a

3
0, Eq. (14) is equivalent

to Eq. (12).
Hence, both micro-organisms and larger animals should

have a similar maximum relative speed for running and
swimming, given by Eqs. (12)–(13), in agreement with the
data plotted in Fig. 1.

IV. CONCLUDING REMARKS

There are two exceptions to the scaling derived above: fly-
ing species and very large organisms.
Flying is outside the scope of our simplified model

because in that case the muscles essentially govern wing
flapping, and this frequency does not yield the total relative
speed of the organism. In addition, air drag represents the
dominant constraint at large flying speeds.4

Consider now large running and swimming organisms, for
which Vmax=L tends to decrease (Fig. 1), even though the
data do not lie below one order of magnitude of the scaling
(13) except for the largest animal. Several effects become
important at high speeds, such as friction and excess heat
production. However, Fig. 1 suggests a similar trend for run-
ning and swimming, which points to a more fundamental li-
mitation, independent of the surrounding medium.
Let us consider an organism of cross-section S and length

L, as in Sec. III B, and approximate the locomotion as a peri-
odic motion of legs (for running) or tail (for swimming) of
length �L. The maximum frequency is constrained not only
by the power available, as considered in Sec. III B, but also
by the maximum angular acceleration that muscles can pro-
vide. With the torque C�rSL and moment of inertia
I � ML2 � qSL3, the angular acceleration d2h=dt2 � C=I is
constrained by

d2h=dt2 � r=ðqL2Þ: (15)

Integrating Eq. (15) twice yields the order of magnitude of
the time for the appendage to be accelerated up to a fixed
angle h:

t� Lðqh=rÞ1=2: (16)

Setting h � 1 in Eq. (16) yields the frequency f �
1=t� ðr=qÞ1=2=L and therefore the upper limit of the maxi-
mum speed

Vmax � ðr=qÞ1=2: (17)

Hence, the value of Vmax=L in Eq. (12) can only hold for

L� ðr=qÞ1=2=ðbMq=rÞ ¼ ðr=qÞ3=2=bM: (18)

721 Am. J. Phys., Vol. 83, No. 8, August 2015 N. Meyer-Vernet and J.-P. Rospars 721
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“How fast do living organisms move:
Maximum speeds from bacteria to
elephants and whales”
Meyer-Vernet and Rospars,
American Journal of Physics, 83, 719–722,
2015. [18]

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127

swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed

[Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of

various masses are sketched in black (drawings by François Meyer).

Insert question from assignment 1
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Engines:

BHP = brake horse power
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The allometry of nails:
Observed: Diameter ∝ Length2/3 or ԓ ∝ ℓ2/3.

Since ℓԓ2 ∝ Volume �:
 Diameter ∝ Mass2/7 or տ ∝ ֑2/7.
 Length ∝ Mass3/7 or ℓ ∝ ֑3/7.
 Nails lengthen faster than they broaden (c.f. trees).

p. 58–59, McMahon and Bonner [17]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Species-area_curve
http://www.uvm.edu/~pdodds/research/papers/others/everything/macarthur1963a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/macarthur1963a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/macarthur1963a.pdf
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/tomasetti2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/tomasetti2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/tomasetti2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/tomasetti2015a.pdf
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/meyer-vernet2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/meyer-vernet2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/meyer-vernet2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/meyer-vernet2015a.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment1.pdf
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The allometry of nails:

A buckling instability?:
 Physics/Engineering result: Columns buckle

under a load which depends on ԓ4/ℓ2.
 To drive nails in, posit resistive force ∝ nail

circumference = �ԓ.
 Match forces independent of nail size: ԓ4/ℓ2 ∝ ԓ.
 Leads to ԓ ∝ ℓ2/3.
 Argument made by Galileo [7] in 1638 in

“Discourses on Two New Sciences.” Also, see
here.

 Another smart person’s contribution: Euler,
1757

 Also see McMahon, “Size and Shape in Biology,”
Science, 1973. [16]
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Rowing: Speed ∝ (number of rowers)1/9
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Physics:

Scaling in elementary laws of physics:
 Inverse-square law of gravity and Coulomb’s law:ӻ ∝ Ԝ1Ԝ2ԡ2 and ӻ ∝ Ԡ1Ԡ2ԡ2 .
 Force is diminished by expansion of space away

from source.
 The square is ԓ − � = � − � = �, the dimension of a

sphere’s surface.
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Dimensional Analysis:

The Buckingham � theorem:1

“On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations”
E. Buckingham,
Phys. Rev., 4, 345–376, 1914. [5]

As captured in the 1990s in the MIT physics library:
3*
H

N
k

? *Ui —

[ " A

%

pi0^u^> z I

Vol. IV.l
No. 4. J ON PHYSICALLY SIMILAR SYSTEMS.

345

KQi,Q*, ••• Qn, r', r", •••) =o.
( I )

Let us suppose, for the present only, that the ratios r do not vary

during the phenomenon described by the equation: for example, if the

equation describes a property of a material system and involves lengths,
the system shall remain geometrically similar to itself during any changes

of size which may occur. Under this condition equation (i) reduces to

F(Qx, Qt, • • • Qn) = o.
(2)

If none of the quantities involved in the relation has been overlooked,

the equation will give a complete description of the relation subsisting

among the quantities represented in it, and will be a complete equation.
The coefficients of a complete equation are dimensionless numbers, *. e.,

if the quantities Q are measured by an absolute system of units, the coef

ficients of the equation do not depend on the sizes of the fundamental

units but only on the fixed interrelations of the units which characterize

the system and differentiate it from any other absolute system.

To illustrate what is meant by a " complete " equation, we may consider

the familiar equation

Pv— = constant,

in which p is the pressure, v the specific volume, and 6 the absolute

temperature of a mass of gas. The constant is not dimensionless but

depends, even for a given gas, on the units adopted for measuring p, v,
and 9; the equation is not complete. Further investigation shows that

ON PHYSICALLY SIMILAR SYSTEMS; ILLUSTRATIONS OF

THE USE OF DIMENSIONAL EQUATIONS.

By E. Buckingham.

i. The Most General Form of Physical Equations.—Let it be required

to describe by an equation, a relation which subsists among a number of

physical quantities of n different kinds. If several quantities of any
one kind are involved in the relation, let them be specified by the value

of any one and the ratios of the others to this one. The equation will

then contain n symbols Ql - ■ ■ Qn, one for each kind of quantity, and

also, in general, a number of ratios r', r", etc., so that it may be written

BP

* I

• ••-*

E. BUCKINGHAM.

*he equation may be written

in which the symbol R stands for a quantity characteristic of each gas

and differing from one to another, but fixed for any given gas when the

units of p, v, and 0 are fixed. We thus recognize that R is a quantity that

can be measured by a unit derived from those of p, v, and d. If we do

express the value of R in terms of a unit thus derived, N is a dimensionless
constant and does not depend on the sizes of the units of p, v, and 6 but

only on the fixed relation which the unit of R bears to them. The equa-
. tion is now a " complete " equation.

Every complete physical equation (2) has the more specific form

Z M Q i ' W * ■ ■ • < 2 > = 0 . ( 3 )

Such expressions as log Q or sin Q do not occur in physical equations; for

no purely arithmetical operator, except a simple numerical multiplier,

can be applied to an operand which is not itself a dimensionless number,

because we can not assign any definite meaning to the result of such an

operation. The reason why such an expression as Q2 can appear, is that

Q2 may be regarded as a symbol for the result of operating on Q by Q.
For example, when we write A = P, P is a symbol for the result of oper

ating on a length / by itself. We are directed to take the length / as

operand and " operate on it with the length I " by constructing on it as a

base, a rectangle of altitude I; and the result of this operation, which fixes
an area A, is represented by I2. Whenever functions that do not have

the form of the terms in equation (3) appear to occur in physical equations,

it is invariably found upon examination that the arguments of these

functions are dimensionless numbers.

2. Introduction of Dimensional Conditions.—We have now to make use

of the familiar principle, which seems to have been first stated by Fourier,

that all the terms of a physical equation must have the same dimensions,

I or that every correct physical equation is dimensionally homogeneous. \

Let equation (3) be divided through by any one term and it takes the-

form

- L N Q f i Q f t ■ • • Q n ° n + 1 = 0 , ( 4 )

in which the iV's are dimensionless numbers. In virtue of the principle -

of dimensional homogeneity the exponents ax, a2, • • • an of each term of "

equation (4) must be such that that term has no dimensions or that a '
dimensional equation

is satisfied.
[&«&•» • ■ • <2„°»] = [1]

Vol. IV.l
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Let II represent a dimensionless product of the form

n = Qi«tQi** • • • Qn'*.

so that equation (4) may be written more shortly

Z 2 V I T + 1 = 0 . ( , ,

Since IT is dimensionless, IP is dimensionless; and furthermore, any

product of the form TI^'IV2 • • • IT;*' is also dimensionless. Hence if Hi,

ITo, • • • n,- represent all the separate independent dimensionless products
of the form (6) which can be made up in accordance with/equation (5)

from the quantities Q, equation (7) may be written in the form

SiVlVITo12 I V * + 1 = 0

and still satisfy the requirement of dimensional homogeneity.

Now there are, so far as this requirement is concerned, no restrictions

on the number of terms, the values of the coefficients, or the v^ues of

the exponents. Hence the 2 merely represents some unknown function

of the independent arguments Hi, • • • II,- and equation (8) may- more

simply be written

t f U b i i t , • • • n . ) = 0 . ( 9 )

By reason of the principle of dimensional homogeneity, every complete

physical equation of the form (2) is reducible to the form (9) in which

m = M = • • • = [ n , ] . [ 1 ] ( 1 0 )

and the number i, of separate independent arguments of \p, is the maximum

number of independent dimensionless products of the form (6) which can

be made by combining the n quantities Q\, Q» • • • Qn in different ways.

We have next to find the value of i. Let k be the number of arbitrary

fundamental units needed as a basis for the absolute system [Qi],
• " • [Qn] by which the Q's are measured. Then in principle and if we

disregard the practical considerations connected with the preservation
of standards, etc., there is always, among the n units [Q], at least one

set of k which may be used as^furtdamental units, the remaining (» — k)

being derived from them.
Now each equation of the form (5) with a particular set of exponents

a (corresponding to a particular dimensionless product IT) is an equation

to which the dimensions of the units [Q] are subject. But since (n — k)

of the units are derivable from the other k and the units are otherwise,

arbitrary, it is evident that each equation of the form (5) is in reality

equivalent to one of these equations of derivation. There are therefore
{n — k) equations of the form (5) and the number of products II which

E. BUCKINGHAM.

appear" as independent variables in equation (9) is

i = n - k.

Furthermore, if [Ql]f [Qs] ... [Qk] are k of ^ „ units
used as fundamental, the i equations (5) may be written

I ( 1 1 )
Did =[<2iai<22Si--- ft-PJ-fi]-

in which the P'8 represent &«-(?., i. e., the quantities that are

t e m p o r a r i l y , r e g a r d e d a s d e r i v e d . f G '

of i^^?^ °f 6qUati0nS (II) ^ **"« * *•* *»

convenient The resulting equation contains the » independent funZ

mental units and since both members are of zero dimensions, the ex

ponent of each unit must vanish. We therefore obtain k independent
linear equations whirh mffin* +~ a~* :_. .., , -JH^-Mqent

less and wdl be mdependent of the remaining ffs. This remark enables

us to dispense wth fracfonal exponents, when they happen to result

o u Tr e X t h e f ° r m ( U ) ' a n < J S ° t 0 S i m p H f y t h e | S ^ S S

> OuMfafe-Tk, make the meaning of the foregoing developments
more evident we may treat an example. Let us suppose that we have

to deal with a relafaon which involves one quantity of each of the following

n = 7 k i n d s : s

1. Force

2. Density

3. Length

4. Linear speed

5. Revolutions per unit time.
6. Viscosity

7. Acceleration

Symbol.

• F \.
Dimensions.

[mltr*\ 1

Vol. IV.l
No. 4. J ON PHYSICALLY SIMILAR SYSTEMS.

Three fundamental units are needed, i. e», k = 3, but they need not be

[m, I, t] for we could also use [F, p, S] or [p, n, /*] or several other com
binations. On the other hand, such combinations as [/, S, n] or [S, n, g]
could not be used.

We know by section (2) that any relation whatever which involves

all the above seven quantities and no others, must be expressible by an

equation which can be reduced to the form

^ ( n , , n 2 , n 3 , n o = o ( 9 ,

because n — k = 7 — 3=4.

To find a specific form of this equation, we select 3 of the quantili,

as fundamental and proceed to use equations (11).

Let us, to start with, set

F = Qx, P = Q* D = Q3

these being a possible set of fundamental units sufficient for deriving til

others. Then S, n, p., g, act as Pi, P2, P3, P4 and we have, corresponding

to equations (11),

[FV«Z>*.S] =[i],l

[F*p*tDM = [i],

[F°*p*>DM =[i],[

[F-P^D^g] =[1],

Taking the first of these equations and substituting the dimensions
of [F, p, D, S) in it we have

and since m, I, and / are in'

and 71 are related as showj

otx -3

t, this can be satisfied only if a1( fi(\

equations

+ 1 =0,1- or ^i = h

o , 7 l = 1 .

«i = - h,

We therefore hav

write and satisfy"
pWS, which will be more convenient to

ion of being dimensionless equally well if

. = PD2$/F.
If we follow a .similar method with the remaining three equations of

the set (n, a) we have

*Mir

' ~ * ™ ~

3 5 O E . B U C K I N G H A M . L s e p i e s .

and equation (9, a) takes the form

/ pD-S1 PDf7i2 1

Our conclusion is that any equation which is the correct and complete

expression of a physical relation subsisting among seven quantities of
the kinds mentioned is reducible to the form (9, b).

If [F, p, D] were the only triad that could be used as fundamental units

for the seven kinds of quantity, equation (9, b) would be the only general

form of the equation; but in reality several other triads can be used, so

that other equations may be found which, while essentially equivalent to

(9, b), present a different appearance. If, for instance, we select the
triad [p, D, S], a process like that which led to equation (9, b) gives us

the equation

/ p D ' S 2 D n P D S D g \ . ,

to which we shall have occasion to refer later.

4.. .The General Form to Which Any Physical Equation is Reducible.—

Equation (9), subject to equations (11), gives the necessary form of any
relation which subsists among n quantities of different kinds: it is the

final form to which the dimensional conditions reduce equation (2).

Now equation (2) describes a particular form of the more general relation

described by equation (1), in which several quantities of each of the n

kinds may be involved,—all but one of each kind being specified by their

ratios to that one. Dimensional reasoning can not furnish any informa

tion regarding the influence of these dimensionless ratios on the phenome

non which is characterized by the relation in question, nor can it tell

us how they are involved in the equation which describes the relation.

But we can not assume that they are without influence, and the possi

bility of their entering into the relation must be indicated in the final

equation which corresponds to (1) as equation (9) does to (2). Since

equation (9) follows from equation (2), it is correct for any fixed values
of the r's, and it may therefore be generalized so as to be applicable to

any and all values of the ratios r by introducing the r's as independent

arguments of the unknown function \j/, which is then a function of all the

independent dimensionless combinations of powers of all the quantities
of all the n kinds which are involved in the relation to be described.

The general conclusion from the principle of dimensional homogeneity

may therefore be stated as follows: If a relation subsists among any
number of physical quantities of n different kinds, and if the symbols

Gii (?2, • • • Qn represent one quantity of each kind, wfcfle the remaining

1Stigler’s Law of Eponymy applies. See here.
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Dimensional Analysis:2

Fundamental equations cannot depend on units:

 System involves � related quantities with some
unknown equation ց�֌1, ֌2, … , ֌�) = 0.

 Geometric ex.: area of a square, side length ℓ:� = ℓ2 where [�] = �2 and [ℓ] = �.
 Rewrite as a relation of ֋ ≤ � independent

dimensionless parameters where ֋ is the number of
independent dimensions (mass, length, time, luminous
intensity …): ���1, �2, … , ��) = 0

 e.g., �/ℓ2 − 1 = 0 where �1 = �/ℓ2.
 Another example: � = �� ⇒ �/�� − 1 = 0.
 Plan: solve problems using only backs of envelopes.

2Length is a dimension, furlongs and smoots are units
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Example:

Simple pendulum:

 Idealized mass/platypus
swinging forever.

 Four quantities:
1. Length ℓ,
2. mass �,
3. gravitational

acceleration ւ, and
4. pendulum’s period � .

 Variable dimensions: [ℓ] = ԁ, [Ԝ] = Ԃ , [�] = ԁԉ −2,
and [� ] = ԉ .

 Turn over your envelopes and find some �’s.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Buckling
http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling
http://en.wikipedia.org/wiki/Buckling
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Buckingham_π_theorem
http://www.uvm.edu/~pdodds/research/papers/others/everything/buckingham1914a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/buckingham1914a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/buckingham1914a.pdf
http://en.wikipedia.org/wiki/Stigler's_law_of_eponymy
https://en.wikipedia.org/wiki/Dimensional_analysis#History
http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Smoot
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A little formalism:
 Game: find all possible independent combinations of

the {֌1, ֌2, … , ֌�}, that form dimensionless quantities{�1, �2, … , ��}, where we need to figure out ֋ ≤ �.
 Consider �� = ֌�11 ֌�22 ⋯ ֌��� .

 We (desperately) want to find all sets of powers ֓� that
create dimensionless quantities.

 Dimensions: want [��] = [֌1]�1 [֌2]�2 ⋯ [֌�]�� = 1.
 For the platypus pendulum we have[֌1] = �, [֌2] = � , [֌3] = �� −2, and [֌4] = � ,

with dimensions տ1 = �, տ2 = � , and տ3 = � .

 So: [��] = ��1��2��� −2)�3� �4 .
 We regroup: [��] = ��1��3��2� −2�3��4 .
 We now need: ֓1 � ֓3 = 0, ֓2 = 0, and −2֓3 � ֓4.
 Time for matrixology …
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Well, of course there are matrices:

 Thrillingly, we have:

� ⃗֓ = ⎡⎢⎣ 1 0 1 00 1 0 00 0 −2 1 ⎤⎥⎦ ⎡⎢⎢⎣
֓1֓2֓3֓4

⎤⎥⎥⎦ = ⎡⎢⎣ 000 ⎤⎥⎦
 A nullspace equation: � ⃗֓ = 0⃗.
 Number of dimensionless parameters = Dimension of

null space = � − ֍ where � is the number of columns of� and ֍ is the rank of �.

 Here: � = 4 and ֍ = 3 → ���1) = 0 → �1 = const.

 In general: Create a matrix � where ��th entry is the
power of dimension � in the �th variable, and solve by
row reduction to find basis null vectors.

 We (you) find: �1 = ℓ/ւ�2 = const. Upshot: � ∝ √ℓ.
Insert question from assignment 1
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“Scaling, self-similarity, and intermediate
asymptotics”

by G. I. Barenblatt (1996). [2]

G. I. Taylor, magazines, and classified secrets:

1945
New Mexico
Trinity test:

Self-similar blast wave:

 Radius: [�] = �,
Time: [�] = � ,
Density of air: [�] = �/�3,
Energy: [�] = ��2/� 2.

 Four variables, three dimensions.

 One dimensionless variable:� = constant × ��5/�2.
 Scaling: Speed decays as 1/�3/2.

Related: Radiolab’s Elements on the Cold War, the Bomb
Pulse, and the dating of cell age (33:30).
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We’re still sorting out units:

Proposed 2018 revision of SI base units:

Acd

kg

s m

K mol

by Dono/Wikipedia

by Wikipetzi/Wikipedia

 Now: kilogram is an artifact in
Sèvres, France.

 Future: Defined by fixing
Planck’s constant as6.6�606ԍ × �0−34 s−1⋅m2⋅kg.3

 Metre chosen to fix speed of
light at 299792458 m⋅s−1.

 Radiolab piece: ≤ kg

3� = still arguing …
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Turbulence:

Big whirls have little whirls
That heed on their velocity,
And little whirls have littler
whirls
And so on to viscosity.

— Lewis Fry Richardson

 Image from here.

 Jonathan Swift (1733): “Big fleas have little fleas upon
their backs to bite ’em, And little fleas have lesser fleas,
and so, ad infinitum.” The Siphonaptera.

PoCS|@pocsvox

Scaling

Scaling-at-large

Allometry

Biology

Physics

Cities

Money

Technology

Specialization

References

.
.
.
.
.

.
48 of 73

278 J Math Imaging Vis (2008) 30: 275–283

Fig. 2 Simplified example to illustrate the procedure for obtaining the

PDF of the luminance differences of a gray scale image. (a) 5×5 pixel

gray scale image stored using 3 bits per pixel; 0 corresponds to black

and 7 to white. (b) Histogram of the differences of the luminance

of pixels separated by R = 3, obtained from the matrix L (Fig. 3).

(c) Semilog plot of the normalized PDF (see text for details)

Fig. 3 Luminace differences for different pixel separations for the ex-

ample in Fig. 2a. Diagonal distances were approximated by the nearest

integer function

5 Results

Starry Night (June, 1889), painted during his one year pe-

riod in the Saint Paul de Mausole Asylum at Saint-Rémy-

de-Provence, is undoubtedly one of the best known and most

reproduced paintings by van Gogh (Fig. 4). The composition

describes an imaginary sky in a twilight state, transfigured

by a vigorous circular brushwork. To perform the luminance

statistics of Starry Night, we start from a digitized, 300 dpi,

2750 × 3542 image obtained from The Museum of Modern

Art in New York (where the original painting lies), provided

by Art Resource, Inc. The PDF of pixel luminance fluctu-

ations of the overall image was calculated as described in

Sect. 4 and in Fig. 5 we show this function for six pixel sep-

arations, R = 60, 240, 400, 600, 800, 1200. In order to rule

out scaling artifacts, we have systematically recalculated the

Fig. 4 Vincent van Gogh’s Starry Night (taken from the WebMu-

seum-Paris webpage: www.ibiblio.org/wm/)

Fig. 5 Semi-log plot of the probability density P (δu) of luminance

changes δu for pixel separations R = 60, 240, 400, 600, 800, 1200

(from bottom to top). Curves have been vertically shifted for better

visibility. Data points were fitted according to (2), and the results are

shown in full lines; parameter values are λ = 0.2, 0.15, 0.12, 0.11,

0.09, 0.0009 (from bottom to top) and σ0 = 1.0

PDF function for the same image at lower resolutions (with

an adequate rescaling of the pixel separations R). No sig-

“Turbulent luminance in impassioned van
Gogh paintings”
Aragón et al.,
J. Math. Imaging Vis., 30, 275–283, 2008. [1]

 Examined the probability pixels a distance ԇ apart
share the same luminance.

 “Van Gogh painted perfect turbulence” by
Phillip Ball, July 2006.

 Apparently not observed in other famous painter’s
works or when van Gogh was settled.

 Oops: Small ranges and natural log used.

http://www.uvm.edu
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http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment1.pdf
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http://www.amazon.com/dp/0521435226/
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https://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
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Advances in turbulence:

Kolmogorov, armed only with dimensional
analysis and an envelope figures this out in 1941:Ӻ�Ԛ) = ��2/3Ԛ−5/3
 Ӻ�Ԛ) = energy spectrum function.
 � = rate of energy dissipation.
 Ԛ = ��/� = wavenumber.

 Energy is distributed across all modes, decaying
with wave number.

 No internal characteristic scale to turbulence.
 Stands up well experimentally and there has been

no other advance of similar magnitude.
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“The Geometry of Nature”: Fractals

4

 “Anomalous” scaling of
lengths, areas, volumes
relative to each other.

 The enduring question:
how do self-similar
geometries form?

 Robert E. Horton: Self-similarity of river (branching)
networks (1945). [8]

 Harold Hurst—Roughness of time series (1951). [9]

 Lewis Fry Richardson—Coastlines (1961).

 Benoît B. Mandelbrot—Introduced the term
“Fractals” and explored them everywhere, 1960s
on. [13, 14, 15]

dNote to self: Make millions with the “Fractal Diet”
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Scaling in Cities:

Growth, innovation, scaling, and the pace
of life in cities
Luís M. A. Bettencourt*†, José Lobo‡, Dirk Helbing§, Christian Kühnert§, and Geoffrey B. West*¶

*Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545; ‡Global Institute of Sustainability, Arizona State University,
P.O. Box 873211, Tempe, AZ 85287-3211; §Institute for Transport and Economics, Dresden University of Technology, Andreas-Schubert-Strasse 23,
D-01062 Dresden, Germany; and ¶Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Edited by Elinor Ostrom, Indiana University, Bloomington, IN, and approved March 6, 2007 (received for review November 19, 2006)

Humanity has just crossed a major landmark in its history with the

majority of people now living in cities. Cities have long been

known to be society’s predominant engine of innovation and

wealth creation, yet they are also its main source of crime, pollu-

tion, and disease. The inexorable trend toward urbanization world-

wide presents an urgent challenge for developing a predictive,

quantitative theory of urban organization and sustainable devel-

opment. Here we present empirical evidence indicating that the

processes relating urbanization to economic development and

knowledge creation are very general, being shared by all cities

belonging to the same urban system and sustained across different

nations and times. Many diverse properties of cities from patent

production and personal income to electrical cable length are

shown to be power law functions of population size with scaling

exponents, �, that fall into distinct universality classes. Quantities

reflecting wealth creation and innovation have � �1.2 >1 (increas-

ing returns), whereas those accounting for infrastructure display �

�0.8 <1 (economies of scale). We predict that the pace of social life

in the city increases with population size, in quantitative agree-

ment with data, and we discuss how cities are similar to, and differ

from, biological organisms, for which �<1. Finally, we explore

possible consequences of these scaling relations by deriving

growth equations, which quantify the dramatic difference be-

tween growth fueled by innovation versus that driven by econo-

mies of scale. This difference suggests that, as population grows,

major innovation cycles must be generated at a continually accel-

erating rate to sustain growth and avoid stagnation or collapse.

population � sustainability � urban studies � increasing returns �

economics of scale

Humanity has just crossed a major landmark in its history with
the majority of people now living in cities (1, 2). The present

worldwide trend toward urbanization is intimately related to
economic development and to profound changes in social orga-
nization, land use, and patterns of human behavior (1, 2). The
demographic scale of these changes is unprecedented (2, 3) and
will lead to important but as of yet poorly understood impacts on
the global environment. In 2000, �70% of the population in
developed countries lived in cities compared with �40% in
developing countries. Cities occupied a mere 0.3% of the total
land area but �3% of arable land. By 2030, the urban population
of developing countries is expected to more than double to �4
billion, with an estimated 3-fold increase in occupancy of land
area (3), whereas in developed countries it may still increase by
as much as 20%. Paralleling this global urban expansion, there
is the necessity for a sustainability transition (4–6) toward a
stable total human population, together with a rise in living
standards and the establishment of long-term balances between
human development needs and the planet’s environmental limits
(7). Thus, a major challenge worldwide (5, 6) is to understand
and predict how changes in social organization and dynamics
resulting from urbanization will impact the interactions between
nature and society (8).

The increasing concentration of people in cities presents both
opportunities and challenges (9) toward future scenarios of
sustainable development. On the one hand, cities make possible
economies of scale in infrastructure (9) and facilitate the opti-
mized delivery of social services, such as education, health care,
and efficient governance. Other impacts, however, arise because
of human adaptation to urban living (9, 10–14). They can be
direct, resulting from obvious changes in land use (3) [e.g., urban
heat island effects (15, 16) and increased green house gas
emissions (17)] or indirect, following from changes in consump-
tion (18) and human behavior (10–14), already emphasized in
classical work by Simmel and Wirth in urban sociology (11, 12)
and by Milgram in psychology (13). An important result of
urbanization is also an increased division of labor (10) and the
growth of occupations geared toward innovation and wealth
creation (19–22). The features common to this set of impacts are
that they are open-ended and involve permanent adaptation,
whereas their environmental implications are ambivalent, ag-
gravating stresses on natural environments in some cases and
creating the conditions for sustainable solutions in others (9).

These unfolding complex demographic and social trends make
it clear that the quantitative understanding of human social
organization and dynamics in cities (7, 9) is a major piece of the
puzzle toward navigating successfully a transition to sustainabil-
ity. However, despite much historical evidence (19, 20) that cities
are the principal engines of innovation and economic growth, a
quantitative, predictive theory for understanding their dynamics
and organization (23, 24) and estimating their future trajectory
and stability remains elusive. Significant obstacles toward this
goal are the immense diversity of human activity and organiza-
tion and an enormous range of geographic factors. Nevertheless,
there is strong evidence of quantitative regularities in the
increases in economic opportunities (25–29), rates of innovation
(21, 22), and pace of life (11–14, 30) observed between smaller
towns and larger cities.

In this work, we show that the social organization and dynam-
ics relating urbanization to economic development and knowl-
edge creation, among other social activities, are very general and
appear as nontrivial quantitative regularities common to all
cities, across urban systems. We present an extensive body of
empirical evidence showing that important demographic, socio-
economic, and behavioral urban indicators are, on average,
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“Growth, innovation, scaling, and the pace
of life in cities”
Bettencourt et al.,
Proc. Natl. Acad. Sci., 104, 7301–7306,
2007. [4]

 Quantified levels of
 Infrastructure
 Wealth
 Crime levels
 Disease
 Energy consumption

as a function of city size ԃ (population).
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Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for

the U.S. (blue points) vs. metropolitan population. (b) Supercreative employ-

ment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population.

Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace

of biological life, which decreases with organism size. (a) Scaling of walking

speed vs. population for cities around the world. (b) Heart rate vs. the size

(mass) of organisms.
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Scaling in Cities:

Table 1. Scaling exponents for urban indicators vs. city size

Y ! 95% CI Adj-R2 Observations Country–year

New patents 1.27 '1.25,1.29( 0.72 331 U.S. 2001

Inventors 1.25 '1.22,1.27( 0.76 331 U.S. 2001

Private R&D employment 1.34 '1.29,1.39( 0.92 266 U.S. 2002

)Supercreative) employment 1.15 '1.11,1.18( 0.89 287 U.S. 2003

R&D establishments 1.19 '1.14,1.22( 0.77 287 U.S. 1997

R&D employment 1.26 '1.18,1.43( 0.93 295 China 2002

Total wages 1.12 '1.09,1.13( 0.96 361 U.S. 2002

Total bank deposits 1.08 '1.03,1.11( 0.91 267 U.S. 1996

GDP 1.15 '1.06,1.23( 0.96 295 China 2002

GDP 1.26 '1.09,1.46( 0.64 196 EU 1999–2003

GDP 1.13 '1.03,1.23( 0.94 37 Germany 2003

Total electrical consumption 1.07 '1.03,1.11( 0.88 392 Germany 2002

New AIDS cases 1.23 '1.18,1.29( 0.76 93 U.S. 2002–2003

Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00 '0.99,1.01( 0.99 316 U.S. 1990

Total employment 1.01 '0.99,1.02( 0.98 331 U.S. 2001

Household electrical consumption 1.00 '0.94,1.06( 0.88 377 Germany 2002

Household electrical consumption 1.05 '0.89,1.22( 0.91 295 China 2002

Household water consumption 1.01 '0.89,1.11( 0.96 295 China 2002

Gasoline stations 0.77 '0.74,0.81( 0.93 318 U.S. 2001

Gasoline sales 0.79 '0.73,0.80( 0.94 318 U.S. 2001

Length of electrical cables 0.87 '0.82,0.92( 0.75 380 Germany 2002

Road surface 0.83 '0.74,0.92( 0.87 29 Germany 2002

Data sources are shown in SI Text. CI, confidence interval; Adj-R2, adjusted R2; GDP, gross domestic product.
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Scaling in Cities:
Intriguing findings:
 Global supply costs scale sublinearly with ԃ

(� < �).
 Returns to scale for infrastructure.

 Total individual costs scale linearly with ԃ (� = �)
 Individuals consume similar amounts

independent of city size.

 Social quantities scale superlinearly with ԃ (� � �)
 Creativity (# patents), wealth, disease, crime, ...

Density doesn’t seem to matter...
 Surprising given that across the world, we observe

two orders of magnitude variation in area covered
by agglomerations of fixed populations.
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http://www.uvm.edu/~pdodds/research/papers/others/everything/bettencourt2007a.pdf
http://www.uvm.edu
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A possible theoretical explanation?
pipes, s0 ¼ s*b

ð1−dÞh≫sh ¼ s*: Additionally, be-
cause infrastructure must reach everyone in the city

(6, 18), total network length is area filling,

li ¼ ai=l;with ai ¼ abða−1Þi: This means that

the land area per person,ah ¼ aNa−1, and shortest

network distance, lh ¼ ða=lÞNa−1, which defines

l, decrease with N. The total network length Ln
and network area An follow from the sum of the

geometric series over levels

Ln ¼ ∑
h

i¼0

liNi ¼
a

l
∑
h

i¼0

bai

¼
a

l

baðhþ1Þ − 1

ba − 1
≃ L0N

a; L0 ¼ a=l ð1Þ

An ¼ ∑
h

i¼0

siliNi

¼ s*
a

l
bð1−dÞh ∑

h

i¼0

bðaþd−1Þi ≃ A0N
1−d,

A0 ¼
s*a

lð1 − baþd−1Þ
ð2Þ

where I took aþ d < 1, which holds for D > 1.

I can now compute the cost of maintaining

the city connected as the energy necessary for

moving people, goods, and information across

its infrastructure networks. Thesemovements form

a set of currents, transporting various quantities

across the city and can be quantified by means of

the language of circuits. The scaling of si together

with total current, J, conservation across levels

Ji ¼ siriviNi ¼ si−1ri−1vi−1Ni−1 ¼ Ji−1for all i,

sets the scaling for rivi; the current density at

level i, where ri is the density of carriers in the

network and vi their average velocity. This quan-

tity is interesting because it controls the dis-

sipation mechanisms in any network. I obtain

rivi ¼ b−dri−1vi−1; which implies that the cur-

rent density decreases with increasing i, so that

highways are faster and/or more densely packed

than smaller roads (27, 28). Making the ad-

ditional assumption that individual needs,

rhvh ¼ r*v*, are independent of N (12) leads

to rivi ¼ bdðh−iÞr*v*. Then, the total current Ji =

J = J0N, with J0 ¼ s*r*v*, which is a function

only of individuals’ characteristics.

There aremany forms of energy dissipation in

networks, including those that occur at large veloc-

ity or density. Here, Imake the standard assumption

that the resistance per unit length per transverse

network area, r, is constant (2, 5), leading to the

resistance per network segment, ri ¼ r li
si
: For Ni

parallel resistors this gives the total resistance per

level, Ri ¼
ri
Ni
¼ ar

ls*
b−ð1 − a þ dÞi−ð1 − dÞh. The total

power dissipated, W, follows from summing

Wi ¼ RiJ
2
i over levels,

W ¼ J 2 ∑
h

i¼1

Ri

¼ J 2
ar

ls*
b−ð1−dÞh

1−b−ð1−aþdÞðhþ1Þ

1−b−1þa−d
≃W0N

1þd;

W0 ¼
arJ 20

ls*ð1−b
−1þa−dÞ

ð3Þ

which scales superlinearly, with exponent 1+ d =

1+1/6 in D = 2, H = 1. Thus, energy dissipation

scales with population like social interactions, as

observed in German urban power grids (12), so

that the ratio Y/W, a measure of urban efficiency,

is independent of city size.

Finally, I show that these results can be de-

rived by maximizing net urban output, L, as the
difference between social interaction outcomes,

Y, and infrastructure energy dissipation,W, under

settlement and network constraints,

L ¼ Y −W þ l1ðeA
H=D −GN=AÞ þ

l2ðAn − cNdÞ →

dL=dG¼0

2a − 1

a
G*

N 2

AnðNÞ

ð4Þ

where c ¼ A0a
−1=D andl1, l2 are Lagrange mul-

tipliers. Equation 4 gives the basis for the deri-

vation of the properties of every segment in the

network, through Eqs. 1 and 2, in analogy with

(2, 4, 5). The novelty in Eq. 4 is the prediction of

an optimal G ¼ G*; through dL=dG ¼ 0; and
the expectation that values of G for different cities

fluctuate around this value, as observed in Fig. 1B

(inset).

To see this, consider that, keeping e fixed and

a ¼ ðG=eÞa, both YandW growwithG, because

Y0 eG1−a and W0 eGa. This tension between

social interactivity, transportation costs, and spatial

settlement patterns is at the root of most urban

planning and policy. The limiting values of G

follow from the solutions to L ¼ 0 : G ¼ 0 and

G=Gmax ¼
ðelÞ2a

r0J 2
0

l2ð1−aÞ
h i 1

2a−1

, wherer0 ≈ r (14). It

follows that G* ¼ 1−a
a

! "1=ð2a−1Þ
Gmax ≃Gmax=8,

witha ≃ 2=3 (Fig. 1B, inset). Thus, cities will form
if the balance of social interactions is positive,

g( > 0: However, there is an upper value of

G ¼ Gmax(Fig. 1B, inset) beyond which dissipa-

tion costs overcome social benefits and a city may

split up into regions. For G < G*; the social

interaction potential of a city is underdeveloped.

Such places tend to be poorer and have less

advanced infrastructure. Thus, I would expect that

cities such as Riverside, California, or Brownsville,

Texas (Fig. 1B), where estimates ofG are less than

average, would typically benefit from measures

Fig. 2. The spatial city and its social and dissipative processes. (A) Gray blocks denote settled areas,
and spaces in between (white, yellow, green) represent infrastructure networks, treated in terms of a size
hierarchy. Total network length Ln ¼ 2(nb + 1)L ≃ A/l is area filling (circle), where nb is the number of
blocks across the city (14). Red lines denote the volume of public space spanned by an individual, which
determines his or her average number of social interactions. As the city grows and new land is settled
(orange blocks), the infrastructure network grows incrementally (orange segments). The flux rivi in larger
network segments is higher (black dots plus arrows), controlling the energy dissipation in the city. (B)
There is an optimal value of G at which cities are most productive. Cities can exist when social interactions
are positive G > Gmin = 0, and less than an upper value G < Gmax (red circles), at which point dissipation
costs overcome benefits. The optimal G = G* (green circle) corresponds to the most efficient city.

21 JUNE 2013 VOL 340 SCIENCE www.sciencemag.org1440

REPORTS

“The origins of scaling in cities”
Luís M. A. Bettencourt,
Science, 340, 1438–1441, 2013. [3]
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Density of public and private facilities:

�fac ∝ ��
pop

 Left plot: ambulatory hospitals in the U.S.
 Right plot: public schools in the U.S.
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Explore the original zoomable and interactive version
here: http://xkcd.com/980/.
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Moore’s Law:
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Scaling laws for technology production:

 “Statistical Basis for Predicting Technological
Progress [20]” Nagy et al., PLoS ONE, 2013.

 ֔� = stuff unit cost; ֓� = total amount of stuff made.

 Wright’s Law, cost decreases as a power of total stuff
made: [24] ֔� ∝ ֓−�� .

 Moore’s Law, framed as cost decrease connected
with doubling of transistor density every two years: [19]֔� ∝ ր−��.

 Sahal’s observation that Moore’s law gives rise to
Wright’s law if stuff production grows exponentially: [21]֓� ∝ ր��.

 Sahal + Moore gives Wright with ֒ = �/ւ.
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Figure 3. Three examples showing the logarithm of price as a function of time in the left column and the logarithm of production as
a function of time in the right column, based on industry-wide data. We have chosen these examples to be representative: The top row
contains an example with one of the worst fits, the second row an example with an intermediate goodness of fit, and the third row one of the best
examples. The fourth row of the figure shows histograms of R2 values for fitting g and m for the 62 datasets.
doi:10.1371/journal.pone.0052669.g003
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Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are
equivalent to Wright’s law. The value of the Wright parameter w is plotted against the prediction m=g based on the Sahal formula, where m is the
exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004

PoCS|@pocsvox

Scaling

Scaling-at-large

Allometry

Biology

Physics

Cities

Money

Technology

Specialization

References

.
.
.
.
.

.
62 of 73

Scaling of Specialization:
“Scaling of Differentiation in Networks: Nervous
Systems, Organisms, Ant Colonies, Ecosystems,
Businesses, Universities, Cities, Electronic Circuits, and
Legos”
M. A. Changizi, M. A. McDannald and D. Widders [6]
J. Theor. Biol., 2002.
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Fig. 3. Log–log (base 10) (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts
in Lego structures (n ¼ 391). To help to distinguish the data points, logarithmic values were perturbed by adding a random
number in the interval ["0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval
["1, 1].

 Nice 2012 wired.com write-up
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� ∼ ԃ1/տ, ԓ ≥ �:
 � = network differentiation = # node types.
 ԃ = network size = # nodes.
 ԓ = combinatorial degree.
 Low ԓ: strongly specialized parts.
 High ԓ: strongly combinatorial in nature, parts are

reused.
 Claim: Natural selection produces high ԓ systems.
 Claim: Engineering/brains produces low ԓ

systems.
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Table 1

Summary of results*

Network Node No. data
points

Range of
logN

Log–logR2 Semi-logR2 ppower=plog Relationship
between C
and N

Comb.
degree

Exponent v
for type-net
scaling

Figure
in text

Selected networks
Electronic circuits Component 373 2.12 0.747 0.602 0.05/4e!5 Power law 2.29 0.92 2

Legost Piece 391 2.65 0.903 0.732 0.09/1e!7 Power law 1.41 F 3

Businesses
military vessels Employee 13 1.88 0.971 0.832 0.05/3e!3 Power law 1.60 F 4
military offices Employee 8 1.59 0.964 0.789 0.16/0.16 Increasing 1.13 F 4
universities Employee 9 1.55 0.786 0.749 0.27/0.27 Increasing 1.37 F 4
insurance co. Employee 52 2.30 0.748 0.685 0.11/0.10 Increasing 3.04 F 4

Universities
across schools Faculty 112 2.72 0.695 0.549 0.09/0.01 Power law 1.81 F 5
history of Duke Faculty 46 0.94 0.921 0.892 0.09/0.05 Increasing 2.07 F 5

Ant colonies
caste¼ type Ant 46 6.00 0.481 0.454 0.11/0.04 Power law 8.16 F 6
size range¼ type Ant 22 5.24 0.658 0.548 0.17/0.04 Power law 8.00 F 6

Organisms Cell 134 12.40 0.249 0.165 0.08/0.02 Power law 17.73 F 7

Neocortex Neuron 10 0.85 0.520 0.584 0.16/0.16 Increasing 4.56 F 9

Competitive networks
Biotas Organism F F F F F Power law E3 0.3 to 1.0 F

Cities Business 82 2.44 0.985 0.832 0.08/8e-8 Power law 1.56 F 10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. logðNmax=NminÞ), (5) the log–log

correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship

between differentiation C and organization size N (if one of the two models can be refuted with po0:05; otherwise we just write ‘‘increasing’’ to denote that neither model can be rejected), (9)

the combinatorial degree (i.e. the inverse of the best-fit slope of a log–log plot of C versus N), (10) the scaling exponent for how quickly the edge-degree d scales with type-network size C

(in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.
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Shell of the nut:
 Scaling is a fundamental feature of complex

systems.
 Basic distinction between isometric and allometric

scaling.
 Powerful envelope-based approach: Dimensional

analysis.
 “Oh yeah, well that’s just dimensional analysis”

said the [insert your own adjective] physicist.
 Tricksiness: A wide variety of mechanisms give

rise to scalings, both normal and unusual.
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