Scaling-a Plenitude of Power Laws

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | \#FallPoCS2016

Prof. Peter Dodds | @peterdodds

PoCS
Principles of
@pocsvox
What's the Story?

(c) (1)(2)

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
. $\frac{\text { In }}{\text { Zn }}$ UNIVERSITY of VERMONT

These slides are brought to you by:

Pocs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Outline

Scaling-at-large
Allometry
Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Physics
Cities
Technology
Specialization
References
Money
Technology
Specialization
References

Scaling-at-large

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

$|0|$

Archival object:

PoCS | @poesvox Scaling

Scaling-at-large

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

のac 5 of 73

Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
Outline-All about scaling:
\& Basic definitions.
Examples.
Cities
Money
Technology
Specialization
References
In CocoNuTs:
Advances in measuring your power-law relationships.
Scaling in blood and river networks.
The Unsolved Allometry Theoricides.
 - VERMONT

10

Definitions

A power law relates two variables x and y as follows:

$$
y=c x^{\alpha}
$$

Biology
Physics
Cities
Money
Technology
Specialization

- 4 VERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Definitions

The prefactor c must balance dimensions.
\& Imagine the height ℓ and volume v of a family of shapes are related as:

Biology
Physics
Cities
Money

$$
\ell=c v^{1 / 4}
$$

Technology
Specialization

$$
[c]=[l] /\left[V^{1 / 4}\right]=L / L^{3 / 4}=L^{1 / 4} .
$$

More on this later with the Buckingham π theorem.

๑aल 8 of 73

Looking at data

. Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.
Much searching for straight lines on log-log or double-logarithmic plots.
(Good practice: Always, always, always use base 10.
Talk only about orders of magnitude (powers of 10).

Biology
Physics
Cities
Money
Technology
Specialization
References

A beautiful, heart-warming example:

s W = volume of white matter: 'wiring'

from Zhang \& Sejnowski, PNAS (2000) ${ }^{[25]}$

Why is $\alpha \simeq 1.23 ?$
Quantities (following Zhang and Sejnowski):
$G=$ Volume of gray matter (cortex/processors)
$W=$ Volume of white matter (wiring)
$T=$ Cortical thickness (wiring)
R $S=$ Cortical surface area
. $L=$ Average length of white matter fibers

- $p=$ density of axons on white matter/cortex interface

A rough understanding:
\& $G \sim S T$ (convolutions are okay)
. $W \sim \frac{1}{2} p S L$
$G \sim L^{3} \leftarrow$ this is a little sketchy...
Eliminate S and L to find $W \propto G^{4 / 3} / T$

Why is $\alpha \simeq 1.23 ?$

PoCS 1@poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics

A rough understanding:

- We are here: $W \propto G^{4 / 3} / T$

Observe weak scaling $T \propto G^{0.10 \pm 0.02}$.
Implies $S \propto G^{0.9} \rightarrow$ convolutions fill space.
$\Rightarrow W \propto G^{4 / 3} / T \propto G^{1.23 \pm 0.02}$

Cities

Money
Technology
Specialization
References

๑aع 12 of 73

Tricksiness:

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

With $V=G+W$, some power laws must be approximations.
Measuring exponents is a hairy business...

Good scaling:

General rules of thumb:

High quality: scaling persists over three or more orders of magnitude for each variable.
(Medium quality: scaling persists over three or more orders of magnitude for only one variable and at least one for the other.

Very dubious: scaling 'persists' over less than an order of magnitude for both variables.
 of VERMONT

Unconvincing scaling:

Average walking speed as a function of city population:

Two problems:

1. use of natural log, and
2. minute varation in dependent variable.
from Bettencourt et al. (2007) ${ }^{[4]}$; otherwise totally great-see later.

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Definitions

Power laws are the signature of scale invariance:

Scaling-at-large
Allometry
Biology
Scale invariant 'objects'
Physics
look the 'same' when they are appropriately rescaled.

Objects = geometric shapes, time series, functions, relationships, distributions,...
R 'Same' might be 'statistically the same'
R To rescale means to change the units of measurement for the relevant variables

Scale invariance

PoCS | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
Cities

Money
Technology
Specialization
References

$$
\Rightarrow y^{\prime}=c x^{\prime \alpha}
$$

つa^ 17 of 73

Scale invariance

Compare with $y=c e^{-\lambda x}$:
If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References
More on $y=c e^{-\lambda x}$:
Say $x_{0}=1 / \lambda$ is the characteristic scale.
For $x \gg x_{0}, y$ is small, while for $x \ll x_{0}, y$ is large.

Isometry:

- Dimensions scale linearly with each other.

Dimensions scale nonlinearly.

Refers to differential growth rates of the parts of a living organism's body part or process.
\& First proposed by Huxley and Teissier, Nature, 1936 "Terminology of relative growth" ${ }^{[10,22]}$

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Definitions

Isometry versus Allometry:
Iso-metry = 'same measure'
Allo-metry = 'other measure'
Allometry
Biology
Physics
Cities
Money
Technology
Specialization

We use allometric scaling to refer to both:

1. Nonlinear scaling of a dependent variable on an independent one (e.g., $y \propto x^{1 / 3}$)
2. The relative scaling of correlated measures (e.g., white and gray matter).

An interesting, earlier treatise on scaling:

Pocs | @poesvox Scaling

ON SIZE AND LIFE

THOMAS A. MCMAHON AND JOHN TYLER BONNER

McMahon and Bonner, $1983{ }^{[17]}$

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

- ${ }^{\text {zin }}$ UNIVERStiy VERMONT

のаल 21 of 73

The many scales of life:

The biggest living things (left). All the organisms are drawn to the same scale. 1, The largest flying bird (albatross); 2, the largest known animal (the blue whale), 3, the largest extinct land mammal (Baluchitherium) with a human figure shown for scale; 4, the tallest living land animal (giraffe); 5, Tyrannosaurus; 6, Diplodocus; 7, one of the largest flying reptiles (Pteranodon); 8, the largest extinct snake; 9 , the length of the largest tapeworm found in man; 10, the largest living reptile (West African crocodile); 11, the largest extinct lizard; 12, the largest extinct bird (Aepyornis); 13, the largest jellyfish (Cyanea); 14, the largest living lizard (Komodo dragon); 15, sheep; 16, the largest bivalve mollusc (Tridacna); 17; the largest fish (whale shark); 18, horse; 19, the largest crustacean (Japanese spider crab); 20, the largest sea scorpion (Eurypterid); 21, large tarpon; 22, the largest lobster; 23, the largest mollusc (deep-water squid, Architeuthis); 24, ostrich; 25, the lower 105 feet of the largest organism (giant sequoia), with a 100 -foot larch superposed.

p. 2, McMahon and Bonner ${ }^{[17]}$

The many scales of life:

Medium-sized creatures (above). 1, Dog; 2, common herring; 3, the largest egg (Aepyornis); 4, song thrush with egg; 5, the smallest bird (hummingbird) with egg; 6, queen bee; 7 , common cockroach; 8 , the largest stick insect; 9, the largest polyp (Branchiocerianthus); 10, the smallest mammal (flying shrew); 11, the smallest vertebrate (a tropical frog); 12, the largest frog (goliath frog); 13, common grass frog; 14, house mouse; 15, the largest land snail (Achatina) with egg; 16, common snail; 17, the largest beetle (goliath beetle); 18, human hand; 19, the largest starfish (Luidia); 20 , the largest free-moving protozoan (an extinct nummulite).

p. 3, McMahon and Bonner More on the Elephant Bird

 here ${ }^{\text {E }}$.

The many scales of life:

Small, "naked-eye" creatures (lower left). 1, One of the smallest fishes (Trimmatom nanus); 2, common brown hydra, expanded; 3, housefly; 4, medium-sized ant; 5, the smallest vertebrate (a tropical frog, the same as the one numbered 11 in the figure above); 6, flea (Xenopsylla cheopis); 7 , the smallest land snail; 8 , common water flea (Daphnia).

The smallest "naked-eye" creatures and some large microscopic animals and cells (below right). 1, Vorticella, a ciliate; 2, the largest ciliate protozoan (Bursaria); 3, the smallest many-celled animal (a rotifer); 4, smallest flying insect (Elaphis); 5, another ciliate (Paramecium); 6, cheese mite; 7, human sperm; 8, human ovum; 9 , dysentery amoeba; 10, human liver cell; 11, the foreleg of the flea (numbered 6 in the figure to the left).

3, McMahon and Bonner ${ }^{[17]}$

Size range (in grams) and cell differentiation:

PoCs | @poesvox Scaling

Scaling-at-large
Allometry

Biology

Physics
Cities

Money
Technology
Specialization
References
 VERMONT

Non-uniform growth:

Pocs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References
p. 32, McMahon and Bonner ${ }^{[17]}$

のаल 26 of 73

Non-uniform growth-arm length versus height:

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

のQc 27 of 73

Weightlifting: $M_{\text {world record }} \propto M_{\text {lifter }}^{2 / 3}$
PoCS | @poesvox

Scaling-at-large

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Idea: Power ~ cross-sectional area of isometric lifters.
p. 53, McMahon and Bonner ${ }^{[17]}$

のaल 28 of 73

Titanothere horns: $L_{\text {horn }} \sim L_{\text {skull }}{ }^{4}$

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

ZWinIVERSITY of VERMONT

Animal power

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

Stories-The Fraction Assassin:

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

IIIT 1 inililini 1 milimii $0 \quad 7,089,0100$ $\frac{|1| 1||||||||||||||||||||||\mid}{10|10| 60}$ $\begin{array}{llllll}6 & 1.5 & 1.4 & 1.3 & 1.2\end{array}$

UNIVERSITY eV VERMONT

Ecology—Species-area law: [

Allegedly (data is messy): ${ }^{[12, ~ 11]}$

> "An equilibrium theory of insular zoogeography" MacArthur and Wilson, Evolution, 17, 373-387, 1963. ${ }^{[12]}$

$$
N_{\text {species }} \propto A^{\beta}
$$

According to physicists-on islands: $\beta \approx 1 / 4$.
\& Also-on continuous land: $\beta \approx 1 / 8$.

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

Cancer:

Fig. 1 The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue. Values are from table Sl , the derivation of which is ciscussed in the supplemertary materises.

Pocs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

Roughly: $p \sim r^{2 / 3}$ where $p=$ life time probability and r $=$ rate of stem cell replication.
"How fast do living organisms move: Maximum speeds from bacteria to élephants and whales"
Meyer-Vernet and Rospars,
American Journal of Physics, 83, 719-722, 2015. ${ }^{[18]}$

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127 swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed [Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by François Meyer).

PoCs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

IUNIVERSITY ef VERMONT

Engines:

PoCs | @poesvox Scaling

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

| Zn |
| :--- | :--- |
| UNIVERSITY |
| UN VERMONT |\(| \begin{aligned} \& On

\& 0\end{aligned}\)
つaع 35 of 73

The allometry of nails:

PoCS 1@poesvox Scaling
Observed: Diameter \propto Length ${ }^{2 / 3}$ or $d \propto \ell^{2 / 3}$.

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

Since $\ell d^{2} \propto$ Volume v :

Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
Length \propto Mass $^{3 / 7}$ or $\ell \propto v^{3 / 7}$.
Nails lengthen faster than they broaden (c.f. trees).
p. 58-59, McMahon and Bonner ${ }^{[17]}$

The allometry of nails:

A buckling instability?:

* Physics/Engineering result [\because : Columns buckle under a load which depends on d^{4} / ℓ^{2}.
R To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.
Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Reads to $d \propto \ell^{2 / 3}$.
Argument made by Galileo ${ }^{[7]}$ in 1638 in "Discourses on Two New Sciences." Also, see here.
\& Another smart person's contribution: Euler, 1757주
\& Also see McMahon, "Size and Shape in Biology," Science, 1973. ${ }^{[16]}$

Rowing: Speed $\propto\left(\right.$ number of rowers) ${ }^{1 / 9}$

Shell dimensions and performances.

No. of oarsmen	Modifying description	$\begin{aligned} & \text { Length, } l \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Beam, } b \\ & (\mathrm{~m}) \end{aligned}$	$1 / 6$	Boat mass per oarsman (kg)	Time for 2000 m (min)			
						I	II	III	IV
8	Heavyweight	18.28	0.610	30.0	14.7	5.87	5.92	5.82	5.73
8	Lightweight	18.28	0.598	30.6	14.7				
4	With coxswain	12.80	0.574	22.3	18.1				
4	Without coxswain	11.75	0.574	21.0	18.1	6.33	6.42	6.48	6.13
2	Double scull	9.76	0.381	25.6	13.6				
2	Pair-oared shell	9.76	0.356	27.4	13.6	6.87	6.92	6.95	6.77
1	Single scull	7.93	0.293	27.0	16.3	7.16	7.25	7.28	7.17

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

A $\begin{aligned} & \text { Z } \\ & \text { Un } \\ & \text { UNIVERSITY }\end{aligned}$ of VERMONT

Physics：

Scaling－at－large Allometry

Scaling in elementary laws of physics：

Inverse－square law of gravity and Coulomb＇s law：

$$
F \propto \frac{m_{1} m_{2}}{r^{2}} \quad \text { and } \quad F \propto \frac{q_{1} q_{2}}{r^{2}}
$$

Biology
Physics
Cities
Money
Technology
Specialization
References

Dimensional Analysis:

Pocs | @poesvox Scaling

Scaling-at-large
The Buckingham π theorem ${ }^{\top}: 1$
"On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations"
E. Buckingham,
Ehys. Rev., 4, 345-376, 1914. ${ }^{[5]}$

Allometry

Biology
Physics

Cities

Money
Technology
Specialization
As captured in the 1990s in the MIT physics library:

[^0]
Dimensional Analysis: ${ }^{2}$

Fundamental equations cannot depend on units:

. 8 System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Geometric ex.: area of a square, side length ℓ : $A=\ell^{2}$ where $[A]=L^{2}$ and $[\ell]=L$.
R Rewrite as a relation of $p \leq n$ independent dimensionless parameters 3 where p is the number of independent dimensions (mass, length, time, luminous intensity ...):

$$
F\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)=0
$$

e.g., $A / \ell^{2}-1=0$ where $\pi_{1}=A / \ell^{2}$.

A Another example: $F=m a \Rightarrow F / m a-1=0$.
R Plan: solve problems using only backs of envelopes.

[^1]
Example:

Simple pendulum:

- Idealized mass/platypus swinging forever.
- Four quantities:

1. Length ℓ,
2. mass m,
3. gravitational acceleration g, and
4. pendulum's period τ.

Variable dimensions: $[\ell]=L,[m]=M,[g]=L T^{-2}$, and $[\tau]=T$.
Turn over your envelopes and find some π 's.

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

のa@ 42 of 73

A little formalism:

Game: find all possible independent combinations of
the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$, where we need to figure out $p \leq n$.

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References
$\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$, and $\left[q_{4}\right]=T$,
with dimensions $d_{1}=L, d_{2}=M$, and $d_{3}=T$.
So: $\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$.
We regroup: $\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$.
We now need: $x_{1}+x_{3}=0, x_{2}=0$, and $-2 x_{3}+x_{4}$.
R Time for matrixology ...

UNIVERSITY of VERMONT

Well, of course there are matrices:

Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

A nullspace equation: $\mathbf{A} \vec{x}=\overrightarrow{0}$.
R Number of dimensionless parameters = Dimension of null space $=n-r$ where n is the number of columns of A and r is the rank of \mathbf{A}.
\& Here: $n=4$ and $r=3 \rightarrow F\left(\pi_{1}\right)=0 \rightarrow \pi_{1}=$ const.
\& In general: Create a matrix A where $i j$ th entry is the power of dimension i in the j th variable, and solve by row reduction to find basis null vectors.
We (you) find: $\pi_{1}=\ell / g \tau^{2}=$ const. Upshot: $\tau \propto \sqrt{\ell}$. Insert question from assignment 1 ®

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

M
"Scaling, self-similarity, and intermediate àsymptotics" ${ }^{\text {and }}$
G. I. Taylor, magazines, and classified secrets:

Self-similar blast wave:

We're still sorting out units:

PoCS 1@poesvox Scaling

Proposed 2018 revision of SI base units: [J

Scaling-at-large Allometry
by Dono/Wikipedia

by Wikipetzi/Wikipedia

- Now: kilogram is an artifact $\sqrt{3}$ in Sèvres, France.
Future: Defined by fixing Planck's constant as $6.62606 \mathrm{X} \times 10^{-34} \mathrm{~s}^{-1} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} .{ }^{3}$
R Metre chosen to fix speed of light at $299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
\& Radiolab piece: $\leq \mathrm{kg}$ ■

Biology
Physics
Cities
Money
Technology
Specialization
References

っのल 46 of 73

Turbulence:

Big whirls have little whirls That heed on their velocity, And little whirls have littler whirls
And so on to viscosity.

- Lewis Fry Richardson ©

Scaling-at-large
Allometry
Biology
Physics
Cities

8 Image from here[3.
Jonathan Swift (1733): "Big fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so, ad infinitum." The Siphonaptera. ©

Hog展
"Turbulent luminance in impassioned van Gogh paintings"

Aragón et al.,

J. Math. Imaging Vis., 30, 275-283, 2008.

Examined the probability pixels a distance R apart share the same luminance.
"Van Gogh painted perfect turbulence" [\checkmark by Phillip Ball, July 2006.
A Apparently not observed in other famous painter's works or when van Gogh was settled.
Oops: Small ranges and natural log used.

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

UNIVERSTIY - VERMONT

Advances in turbulence:

Kolmogorov, armed only with dimensional analysis and an envelope figures this out in 1941:

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

$E(k)=$ energy spectrum function.
$\epsilon=$ rate of energy dissipation.
R $k=2 \pi / \lambda=$ wavenumber.

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

UNIVERSITY vivermont

"Anomalous" scaling of lengths, areas, volumes relative to each other.

绝 The enduring question: how do self-similar geometries form?

R Robert E. Horton [J: Self-similarity of river (branching) networks (1945). ${ }^{\text {[8] }}$

- Harold Hurst[3—Roughness of time series (1951). ${ }^{\text {[9] }}$

Lewis Fry Richardson [3 -Coastlines (1961).
, Benoît B. Mandelbrot $\sqrt[3]{ }$-Introduced the term "Fractals" and explored them everywhere, 1960s on. ${ }^{[13,14,15]}$

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

I

Scaling in Cities:

"Growth, innovation, scaling, and the pace ōf life in cities" "̄
Bettencourt et al.,
Proc. Natl. Acad. Sci., 104, 7301-7306, 2007. ${ }^{[4]}$

Quantified levels of

- Infrastructure
- Wealth
- Crime levels
- Disease
- Energy consumption
as a function of city size N (population).

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for the U.S. (blue points) vs. metropolitan population. (b) Supercreative employment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population. Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace of biological life, which decreases with organism size. (a) Scaling of walking speed vs. population for cities around the world. (b) Heart rate vs. the size (mass) of organisms.

Scaling-at-large

Allometry
Biology
Physics
Cities
Money
Technology
Specialization

References

Scaling in Cities:

PoCs | @poesvox Scaling

Table 1. Scaling exponents for urban indicators vs. city size

Y	β	$95 \% \mathrm{Cl}$	Adj-R	Observations	Country-year
New patents	1.27	$[1.25,1.29]$	0.72	331	U.S. 2001
Inventors	1.25	$[1.22,1.27]$	0.76	331	U.S. 2001
Private R\&D employment	1.34	$[1.29,1.39]$	0.92	266	U.S. 2002
"Supercreative" employment	1.15	$[1.11,1.18]$	0.89	287	U.S. 2003
R\&D establishments	1.19	$[1.14,1.22]$	0.77	287	U.S. 1997
R\&D employment	1.26	$[1.18,1.43]$	0.93	295	China 2002
Total wages	1.12	$[1.09,1.13]$	0.96	361	U.S. 2002
Total bank deposits	1.08	$[1.03,1.11]$	0.91	267	U.S. 1996
GDP	1.15	$[1.06,1.23]$	0.96	295	China 2002
GDP	1.26	$[1.09,1.46]$	0.64	196	EU $1999-2003$
GDP	1.13	$[1.03,1.23]$	0.94	37	Germany 2003
Total electrical consumption	1.07	$[1.03,1.11]$	0.88	392	Germany 2002
New AIDS cases	1.23	$[1.18,1.29]$	0.76	93	U.S. 2002-2003
Serious crimes	1.16	$[1.11,1.18]$	0.89	287	U.S. 2003
Total housing	1.00	$[0.99,1.01]$	0.99	316	U.S. 1990
Total employment	1.01	$[0.99,1.02]$	0.98	331	U.S. 2001
Household electrical consumption	1.00	$[0.94,1.06]$	0.88	377	Germany 2002
Household electrical consumption	1.05	$[0.89,1.22]$	0.91	295	China 2002
Household water consumption	1.01	$[0.89,1.11]$	0.96	295	China 2002
Gasoline stations	0.77	$[0.74,0.81]$	0.93	318	U.S. 2001
Gasoline sales	0.79	$[0.73,0.80]$	0.94	318	U.S. 2001
Length of electrical cables	0.87	$[0.82,0.92]$	0.75	380	Germany 2002
Road surface	0.83	$[0.74,0.92]$	0.87	29	Germany 2002

[^2]Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Scaling in Cities:

Intriguing findings:
Global supply costs scale sublinearly with N
($\beta<1$).
Returns to scale for infrastructure.
R Total individual costs scale linearly with $N(\beta=1)$

- Individuals consume similar amounts independent of city size.
Social quantities scale superlinearly with $N(\beta>1)$
Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Density doesn't seem to matter...
Surprising given that across the world, we observe
 two orders of magnitude variation in area covered by agglomerations $\widehat{\beta}$ of fixed populations.

Scaling-at-large Allometry

A possible theoretical explanation?

"The origins of scaling in cities" \longleftarrow Luís M. A. Bettencourt, Science, 340, 1438-1441, 2013. ${ }^{[3]}$

Biology
Physics
Cities
Money
Technology
Specialization
References
\#sixthology

Density of public and private facilities：

$$
\rho_{\mathrm{fac}} \propto \rho_{\mathrm{pop}}^{\alpha}
$$

Left plot：ambulatory hospitals in the U．S．
Right plot：public schools in the U．S．

PoCS｜＠poesvox Scaling

Scaling－at－large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

高 UNVERSTIY
$|0|$
っのल 56 of 73

PoCs |@poesvox Scaling

Explore the original zoomable and interactive version here: http://xkcd.com/980/[.

Moore's Law: E

PoCs | @poesvox Scaling

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

() WNDIVERSITY of VERMONT

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress ${ }^{[20] "}$ Nagy et al., PLoS ONE, 2013.
\& $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff made: ${ }^{[24]}$

$$
y_{t} \propto x_{t}^{-w}
$$

R Moore's Law[$\mathbb{\pi}$, framed as cost decrease connected with doubling of transistor density every two years: ${ }^{\text {[19] }}$

$$
y_{t} \propto e^{-m t}
$$

R Sahal's observation that Moore's law gives rise to Wright's law if stuff production grows exponentially:

$$
x_{t} \propto e^{g t}
$$

Sahal + Moore gives Wright with $w=m / g$.

Scaling-at-large Allometry

Biology
Physics
Cities
Money
Technology
Specialization
References

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are equivalent to Wright's law. The value of the Wright parameter w is plotted against the prediction m / g based on the Sahal formula, where m is the exponent of cost reduction and g the exponent of the increase in cumulative production. doi:10.1371/journal.pone.0052669.g004

Scaling of Specialization:

"Scaling of Differentiation in Networks: Nervous Systems, Organisms, Ant Colonies, Ecosystems, Businesses, Universities, Cities, Electronic Circuits, and Legos"
M. A. Changizi, M. A. McDannald and D. Widders ${ }^{[6]}$ J. Theor. Biol., 2002.

Fig. 3. $\log -\log ($ base 10$)$ (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts in Lego structures $(n=391)$. To help to distinguish the data points, logarithmic values were perturbed by adding a random number in the interval $[-0.05,0.05]$, and non-logarithmic values were perturbed by adding a random number in the interval $[-1,1]$.

PoCs | @poesvox Scaling

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

UNIVERSITY of VERMONT
$C \sim N^{1 / d}, d \geq 1:$
Scaling-at-large
Allometry
. C = network differentiation = \# node types.
\& $N=$ network size $=\#$ nodes.
\& d = combinatorial degree.
Low d : strongly specialized parts.
High d : strongly combinatorial in nature, parts are reused.

Biology
Physics
Cities
Money
Technology

Claim: Natural selection produces high d systems.
Claim: Engineering/brains produces low d systems.

Table 1
Summary of results*

Network	Node	No. data points	Range of $\log N$	Log- $\log R^{2}$	Semi-log R^{2}	$p_{\text {power }} / p_{\text {tog }}$	Relationship between C and N	Comb. degree	Exponent v for type-net scaling	Figure in text
Selected networks Electronic circuits	Component	373	2.12	0.747	0.602	0.05/4e-5	Power law	2.29	0.92	2
Legos ${ }^{\text {¹ }}$	Piece	391	2.65	0.903	0.732	0.09/1e-7	Power law	1.41	-	3
Businesses military vessels military offices universities insurance co.	Employee Employee Employee Employce	$\begin{aligned} & 13 \\ & 8 \\ & 9 \\ & 52 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.59 \\ & 1.55 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 0.971 \\ & 0.964 \\ & 0.786 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 0.832 \\ & 0.789 \\ & 0.749 \\ & 0.685 \end{aligned}$	$\begin{aligned} & 0.05 / 3 \mathrm{e}-3 \\ & 0.16 / 0.16 \\ & 0.27 / 0.27 \\ & 0.11 / 0.10 \end{aligned}$	Power law Increasing Increasing Increasing	$\begin{aligned} & 1.60 \\ & 1.13 \\ & 1.37 \\ & 3.04 \end{aligned}$	-	4 4 4 4
Universities across schools history of Duke	Faculty Faculty	$\begin{aligned} & 112 \\ & 46 \end{aligned}$	$\begin{aligned} & 2.72 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.695 \\ & 0.921 \end{aligned}$	$\begin{aligned} & 0.549 \\ & 0.892 \end{aligned}$	$\begin{aligned} & 0.09 / 0.01 \\ & 0.09 / 0.05 \end{aligned}$	Power law Increasing	$\begin{aligned} & 1.81 \\ & 2.07 \end{aligned}$	I	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
Ant colonies caste $=$ type size range $=$ type	$\begin{aligned} & \text { Ant } \\ & \text { Ant } \end{aligned}$	$\begin{aligned} & 46 \\ & 22 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.481 \\ & 0.658 \end{aligned}$	$\begin{aligned} & 0.454 \\ & 0.548 \end{aligned}$	$\begin{aligned} & 0.11 / 0.04 \\ & 0.17 / 0.04 \end{aligned}$	Power law Power law	$\begin{aligned} & 8.16 \\ & 8.00 \end{aligned}$	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$
Organisms	Cell	134	12.40	0.249	0.165	0.08/0.02	Power law	17.73		7
Neocortex	Neuron	10	0.85	0.520	0.584	0.16/0.16	Increasing	4.56		9
Competitive networks Biotas	Organism	-	-	-	-	-	Power law	≈ 3	0.3 to 1.0	-
Cities	Business	82	2.44	0.985	0.832	0.08/8e-8	Power law	1.56	-	10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. $\log \left(N_{m a x} / N_{m i n}\right)$), (5) the $\log -\log$ correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship between differentiation C and organization size N (if one of the two models can be refuted with $p<0.05$; otherwise we just write "increasing" to denote that neither model can be rejected), (9) the combinatorial degree (i.e. the inverse of the best-fit slope of a $\log -\log$ plot of C versus N), (10) the scaling exponent for how quickly the edge-degree δ scales with type-network size C (in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.

Scaling-at-large

Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References

Shell of the nut:

Scaling is a fundamental feature of complex systems.
Basic distinction between isometric and allometric scaling.
Powerful envelope-based approach: Dimensional analysis.
8
"Oh yeah, well that's just dimensional analysis" said the [insert your own adjective] physicist.

- Tricksiness: A wide variety of mechanisms give rise to scalings, both normal and unusual.

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
 VERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

References I

[1] J. L. Aragón, G. G. Naumis, M. Bai, M. Torres, and P. K. Maini.

Turbulent luminance in impassioned van Gogh paintings.

Scaling-at-large
Allometry
Biology
Physics
Cities
J. Math. Imaging Vis., 30:275-283, 2008. pdf©
[2] G.I. Barenblatt.
Scaling, self-similarity, and intermediate asymptotics, volume 14 of Cambridge Texts in Applied Mathematics.
Cambridge University Press, 1996.
[3] L. M. A. Bettencourt.
The origins of scaling in cities.
Science, 340:1438-1441, 2013. pdf[
 v/ VERMONT

References II

[4] L. M. A. Bettencourt, J. Lobo, D. Helbing, Kühnhert, and G. B. West. Growth, innovation, scaling, and the pace of life in cities.

```
Proc. Natl. Acad. Sci., 104(17):7301-7306, 2007.
pdf[]
```

[5] E. Buckingham.
On physically similar systems: Illustrations of the use of dimensional equations.
Phys. Rev., 4:345-376, 1914. pdf[־
[6] M. A. Changizi, M. A. McDannald, and D. Widders. Scaling of differentiation in networks: Nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos.
J. Theor. Biol, 218:215-237, 2002. pdf[3

UNIVERSITY of VERMONT

References III

[7] G. Galilei.
Dialogues Concerning Two New Sciences.
Kessinger Publishing, 2010.
Translated by Henry Crew and Alfonso De Salvio.
Scaling-at-large
Allometry
Biology
Physics
Cities
[8] R. E. Horton.
Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology. Bulletin of the Geological Society of America, 56(3):275-370, 1945. pdf[^
[9] H. E. Hurst.
Long term storage capacity of reservoirs.
Transactions of the American Society of Civil Engineers, 116:770-808, 1951.

Money
Technology
Specialization
References
 of VERMONT

References IV

[10] J. S. Huxley and G. Teissier.
Terminology of relative growth.
Scaling-at-large
Nature, 137:780-781, 1936. pdf[^
Allometry
Biology
Physics
[11] S. Levin.
The problem of pattern and scale in ecology.
Ecology, 73(6):1943-1967, 1992.
. pdf[
Cities
Money
Technology
Specialization
References
[12] R. H. MacArthur and E. O. Wilson.
An equilibrium theory of insular zoogeography. Evolution, 17:373-387, 1963. pdf(
[13] B. B. Mandelbrot.
How long is the coast of britain? statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. pdf[3 d VERMONT

References V

[14] B. B. Mandelbrot.
Fractals: Form, Chance, and Dimension.
Scaling-at-large

Freeman, San Francisco, 1977.
Allometry
Biology
Physics
Cities
Money
Technology Freeman, San Francisco, 1983.
[16] T. McMahon.
[15] B. B. Mandelbrot. The Fractal Geometry of Nature.

Size and shape in biology. Science, 179:1201-1204, 1973. pdfC‘
[17] T. A. McMahon and J. T. Bonner. On Size and Life.
Scientific American Library, New York, 1983.

References VI

[18] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719-722, 2015. pdf[

Scaling-at-large
Allometry
Biology
Physics
Cities
Money
Technology
Specialization
References circuits.
Electronics Magazine, 38:114-117, 1965.
[20] B. Nagy, J. D. Farmer, Q. M. Bui, and J. E. Trancik. Statistical basis for predicting technological progress.
PLoS ONE, 8:352669, 2013. pdf[^]

[19] G. E. Moore.
Cramming more components onto integrated of VERMONT

References VII

[21] D. Sahal.
A theory of progress functions.
Alle Transactions, 11:23-29, 1979.
Scaling-at-large
Allometry
Biology
Physics
[22] A. Shingleton.
Allometry: The study of biological scaling. Nature Education Knowledge, 1:2, 2010.

Cities
Money
Technology
Specialization
[23] C. Tomasetti and B. Vogelstein.
Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science Magazine, pages 78-81, 2015. pdf[
[24] T. P. Wright.
Factors affecting the costs of airplanes. Journal of Aeronautical Sciences, 10:302-328, 1936.

UNIVERSITY of VERMONT

References VIII

[25] K. Zhang and T. J. Sejnowski.
A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences,

[^0]: ${ }^{1}$ Stigler's Law of Eponymy[3 applies. See here[3 .

[^1]: ${ }^{2}$ Length is a dimension, furlongs and smoots [$]$ are units

[^2]: Data sources are shown in SI Text. CI, confidence interval; Adj- R^{2}, adjusted R^{2}; GDP, gross domestic product.

