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' Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.
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' Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:
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Scale-free refers specifically to the degree
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' Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for 'large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

L Barabasi and Albert,
L Science, 286, 509-511, 1999, [

Times cited: ~ 23,532 (as of October 8, 2015)
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~ Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for 'large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

L Barabasi and Albert,
L Science, 286, 509-511, 1999, [

Times cited: ~ 23,532 (as of October 8, 2015)

Somewhat misleading nomenclature...
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' Scale-free networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)
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Scale-free networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Primary example: hyperlink network of the Web

Much arguing about whether or networks are
‘scale-free’ or not...

PoCS | @poesvox

Scale-free
networks

Scale-free
networks
Main story

e O
ﬁ UNIVERSITY |9|
-8 virvont lo

DA 70f56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Some real data (we are feeling brave): SRkl v
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) = 23, (B) Yyww = 2.1 and (C) = 4.
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' Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

How does the exponent v depend on the
mechanism?

Do the mechanism details matter?
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BA model

& Barabasi-Albert model = BA model.
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3 BA model

Barabasi-Albert model =

Key ingredients:

Growth and Preferential Attachment (PA).

BA model.
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Barabasi-Albert model = BA model.
Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Generalized model

Sublineal achment

kernels

Superlinear attachment
kernels

Nutshell

References

UN'IVEthl’Y | |
o VERMONT

D 12 0f 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

| ‘BA model |

Barabasi-Albert model = BA model.
Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.

Step 2:

PoCS | @poesvox

Scale-free
networks

Scale-free
networks
Main story

Model details

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

UN'IVEthl’Y | |
o VERMONT

D 12 0f 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

BA mOdel PoCS | @pOC-SVOX

Scale-free

networks

Aci — Scale-fi
Barabasi-Albert model = BA model. s i
Key ingredients: e

Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
t:0,1,2,.... Kethels.

Superlinear attachment
kernels

d model

Nutshell

References

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

D 12 0f 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

| BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.

Step 2:
1. Growth—a new node appears at each time step
=10,1,2.00
2. Each new node makes m links to nodes already
present.
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| BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
=020
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.
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| BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
=020
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
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- BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
=020
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.
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3 BA modél |

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:
Ak‘ = k

Definition: Puach(k,t) is the attachment
probability.
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| ‘BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Puach(k,t) is the attachment
probability.

For the original model:

k(1)

D )

Pattach(nOde i, t) T

where N(t) = mq + t is # nodes at time ¢
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| BA model

Definition: A, is the attachment kernel for a node

with degree k.
For the original model:

Definition: Puach(k,t) is the attachment
probability.
For the original model:

= Ei(t) 0

attach(nOde iat) T =

ZN(t) k;(2) kaax(t) kN, (1)

j=1 k=0

where N(t) = mq + t is # nodes at time ¢
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: BA m Od el PoCS | @poesvox

Scale-free -

networks
Definition: A, is the attachment kernel foranode
with degree k. networks
For the original model: Wi

Definition: Puach(k,t) is the attachment
probability.
For the original model:

Nuts

References
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: K, (t) k,;(t)
Pyttach(node i, t) = N - = =% .
SR ) b RN, (1)
where N(t) = mgy + t is # nodes at time ¢ Ky

and N (t) is # degree k nodes at time ¢. 4
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_ Approximate analysis
When (N + 1)th node is added, the expected
increase in the degree of node i is

ki n
Elkraeis =k, ) momeibe
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_ Approximate analysis
When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k ki) ki N
S i\ o el P R
Assumes probability of being connected to is

small.
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| Approximaté analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k k; ) Ki N
S i\ o el P R
Assumes probability of being connected to is

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.
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| Approximaté analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k . o) Si

S i\ o el P R
Assumes probability of being connected to is
small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.

Approximate k; n,.q —k; n With £k, ;:
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| Approximaté analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k k; ) Ki N
S i\ o el P R
Dkt (L)

Assumes probability of being connected to is
small.

j=1

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.

Approximate k; n,.q —k; n With £k, ;:

gk‘?f =m ki (t)

d¢

where t = N(t) — m,.
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new edges.

Deal with denominator:

each added node brings m
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Deal with denominator: each added node brings m
new edges.

N(t)
& k(t)y—2tm
j=1
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Deal with denominator: each added node brings m
new edges.

N(t)

S NE L (e — Ot

Tt

The node degree equation now simplifies:

d k;(t)
—k; = i Lk B S
ds i k()
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Deal with denominator: each added node brings m

new edges.
N(t)

S NE L (e — Ot

Tt

The node degree equation now simplifies:

de HORE S NG
dt Lt_mz;.\r:(f)kj(t) _m2mt
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Deal with denominator: each added node brings m

new edges.
N(t)

S NE L (e — Ot

Tt

The node degree equation now simplifies:

A Rit) e e k()
Ek“ 4% mz;\’:(? k;(t) D AR ) i(®)

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Main story

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

D~ 16 of 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

PoCS | @poesvox

Deal with denominator: each added node brings m FeAkae
new edges.

DeCL) Scale-free

2D K(t) = 2tm it

= Model detalls

Analysis

The node degree equation now simplifies:

s ONSENGE
dt ot _ij.\’:(f> k(1) Sl

Rearrange and solve:

dk,(t)  dt
Blc 2t
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Deal with denominator: each added node brings m

new edges.
N(t)

S NE L (e — Ot

Tt

The node degree equation now simplifies:

A Rit) e e k()
Ek“ 4% mz;\’:(? k;(t) = TomE ot i(®)

Rearrange and solve:

deilal do :
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Deal with denominator: each added node brings m

new edges.
N(t)

S NE L (e — Ot

Tt

The node degree equation now simplifies:

A Rit) e e k()
Ek“ 4% mz;\’:(? k;(t) = TomE ot ki (t)

Rearrange and solve:

dki(t) _dt _ )
Eilt) [int Bk e

Next find ¢, ...
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~ Approximate analysis
- Know ith node appears at time

; [ i—my fori>mg,
BEIL R0 fori < mg

a oL
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| Approximaté analysis

Know ith node appears at time

; [ i—mg fori>mg,
stk 0 fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >1t; start-

k:i(t):m(

tz’,start
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_ Approximate analysis

Scale-free
networks
Know ith node appears at time Scale-free
networks
; [ i—mg fori>mg, i
i,start — 0 fori < m A usibe

So for i > m (exclude initial nodes), we must have

1/2
) fort >1t; start-

k:i(t):m(

tz’,start

All node degrees grow as '/
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Approximaté analysis

Know ith node appears at time

; [ i—mg fori>mg,
CEiE i) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >¢; start-

k:i(t):m<

tz’,start

All node degrees grow as #'/2 but later nodes have
larger ¢, e Which flattens out growth curve.
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Approximaté analysis

Know ith node appears at time

; [ i—mg fori>mg,
CEiE i) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >¢; start-

k:i(t):m<

tz’,start

All node degrees grow as #'/2 but later nodes have
larger ¢, e Which flattens out growth curve.

First-mover advantage: Early nodes do best.
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Approximaté analysis

Know ith node appears at time

; [ i—mg fori>mg,
CEiE i) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort >¢; start-

k:i(t):m(

tz’,start

All node degrees grow as #'/2 but later nodes have
larger ¢, e Which flattens out growth curve.

First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme (4.
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_ Approximate analysis
We are already at the Zipf distribution:

1/2
) fort >t; star-

k(o) = m (

Ly start

8 < Degree of node i is the size of the ith ranked node:
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| Approximaté analysis

Degree of node i is the size of the ith ranked node:

1/2
) fort >t; star-

ki(t):m(

Ly start

From before:

; [ i=mgy fori>mg
gt fori < my

SO t; start ~ @ Which is the rank.
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_ Approximate analysis

Degree of node i is the size of the ith ranked node:

1/2
) fort >t; star-

ki(t):m(

Ly start

From before:

; [ i=mgy fori>mg
Gleaclia i oy fori < my

SO t; start ~ @ Which is the rank.
We then have:

k; ocg=L2 =459,
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Approximaté analysis

Degree of node i is the size of the ith ranked node:

1/2
) fort >t; star-

ki(t):m(

Ly start

From before:

; [ i=mgy fori>mg
Gleaclia i oy fori < my

SO t; start ~ @ Which is the rank.
We then have:

k; ocg=L2 =459,

Our connectiona=1/(y—1)ory =1+ 1/a then
gives

T L5 35 It 1Ay ErTi |
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Approximate analysis: Sk o
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Degree distribution ' ialli s v
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Degree distribution
So what's the degree distribution at time ¢?
Use fact that birth time for added nodes is

distributed uniformly between time 0 and t:

dti,start

PI'(ti,start)dtz',start — /
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 Degree distribution
So what's the degree distribution at time ¢?
Scale-free

Use fact that birth time for added nodes is networks
distributed uniformly between time 0 and t:

dti,start

PI'(ti,start)dti,start — /

Also use

1/2 2
t m“t
k;(t) =m ( ) —t; start = Ak:-(t)f

U start

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

DA 200f 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Degree distribution

So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

dti,start

Pr(ti,start>dti,start — /

Also use

1/2 2
t m“t
k;(t) =m ( ) —t; start = f(t)Q-

ti,start
Transform variables—Jacobian:

OIti,start iy m2t
dk; ki ()3
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
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Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.
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We thus have a very specific prediction of

Analysis

Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.

Range true more generally for events with size
distributions that have power-law tails.
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Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < v < 3.
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We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance
In practice, v < 3 means variance is governed by
upper cutoff.
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We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance
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- Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Main stot

Nutshell

References
r— =

e O
ﬁ UNIVERSITY |9|
-8 virvont lo

DA 22 0of 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)
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- Back to that real data:
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

325,729, (k) =
slopes (A)

Yactor

5.

23, (8)

Ywww

= 2.1and (Q)

Ypower

= 4,
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- Examples

Web ~ =~ 2.1 forin-degree
Web ~ =~ 2.45 for out-degree
Movie actors -~ =~ 2.3
Words (synonyms) =~ 2.8

The Internets is a different business...
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- Things to do and questions

Scale-free

Vary attachment kernel. networks

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

DA 250f56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Scale-free
networks

- Things to do and questions Sk o

Scale-free

Vary attachment kernel. networks

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks? i

References
» -

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

DA 250f56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?
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- Things to do and questions

Vary attachment kernel.

Vary mechanisms:
1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?

PoCS | @poesvox

Scale-free -
networks

Scale-free
networks

kernt
Nuts

References
r— =

e O
ﬁ UNIVERSITY |9|
-8 virvont lo

DA 250f56


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter?
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- Things to do and questions

Vary attachment kernel.

Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter? Maybe ...
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Preferehtial éttachment

Let's look at preferential attachment (PA) a little
more closely.
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Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iycn(k) o k, we need to
determine the constant of proportionality.
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iycn(k) o k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...
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 Preferential attachment

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iycn(k) o k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...

PAis - an outrageous assumption of node
capability.
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Scale-free
networks

Let's look at preferential attachment (PA) a little
more closely.

PA implies arriving nodes have complete R
knowledge of the existing network’s degree
distribution.

For example: If P,iycn(k) o k, we need to
determine the constant of proportionality.

We need to know what everyone’s degree is...
PAis - an outrageous assumption of node
capability.

But a very simple mechanism saves the day...
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Preferential attachment through
randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.
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randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.
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randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.
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- Preferential attachment through

randomness

Instead of attaching preferentially, allow new

nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we
know probability of a random friend having

degree k is

Qp x kP,
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- Preferential attachment through
randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we
know probability of a random friend having

degree k is
Qp x kP,

So rich-gets-richer scheme can now be seen to
work in a natural way.
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- Robustness

o
o a0 A
a0 a8 0 A0 s0TAR 0 80 o

from Albert et al., 2000

Plots of network
diameter as a function
of fraction of nodes
removed

Erd&s-Rényi versus
scale-free networks

blue symbols =
random removal

red symbols =
targeted removal
(most connected first)
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Robustness

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.
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| Robustnes‘s

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.
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Scale-free networks are thus robust to random Scale-free

networks

failures yet fragile to targeted ones.
All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)
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Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:
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- Robustness |

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
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- Robustness |

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.
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- Robustness |

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.
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- Robustness

“The “Robust yet Fragile” nature of the

Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005. 13!

HOT networks versus scale-free networks

Same degree distributions, different
arrangements.

Doyle et al. take a look at the actual Internet.
Excellent project material.
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- Generalized model

2001: Krapivsky & Redner (KR)“! explored the
general attachment kernel:

Pr(attach to node i) o« A, = k¥

where A, is the attachment kernel and v > 0.
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- Generalized model

2001: Krapivsky & Redner (KR)“! explored the
general attachment kernel:

Pr(attach to node i) o« A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the
attachment kernel.

KR model will be fully studied in CoNKS.
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We'll follow KR's approach using rate equations(4. . ...

Here's the set up: s v
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where N, is the number of nodes of degree k.
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networks

We'll follow KR's approach using rate equations(4. . ...

networks

Here's the set up:

dN 1
Ttk Z A1 Neis — Apil £ 05
where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Ty [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Ty [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Z [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

4. Ais the correct normalization (coming up).
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Ty [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).

Seed with some initial network

gl
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Ty [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).

Seed with some initial network

(e.g., a connected pair)

gl
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Generalized model

We'll follow KR's approach using rate equations (4,

Here's the set up:

dN 1
Ttk Ty [Ag_1Np_1 — AgNg] +0p1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).

Seed with some initial network

(e.g., a connected pair)

6. Detail: A, =0

gl
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_ Generalized model
In general, probability of attaching to a specific

node of degree k at time ¢ is

Pr(attach to node i) = %

where A(t) = 3°° ANy (1)
E.g., for BAmodel, A, =kand A =327 kN, (t).
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = 2l

A(t)
where A(t) = 3°° ANy (1)

E.g., for BAmodel, A, =kand A =327 kN, (t).

For A, = k, we have
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In general, probability of attaching to a specific
node of degree k at time ¢ is Scale-free

networks

Pr(attach to node i) = 2

A(t)

where A(t) = 3°° ANy (1)
E.g., for BAmodel, A, =kand A =327 kN, (t).
For A, = k, we have
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networks

In general, probability of attaching to a specific
node of degree k at time ¢ is Scale-free

networks

Pr(attach to node i) = 2

A(t)

where A(t) = 3°° ANy (1)
E.g., for BAmodel, A, =kand A =327 kN, (t).
For A, = k, we have
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A(t)
where A(t) = 3°° ANy (1)

E.g., for BAmodel, A, =kand A =327 kN, (t).

For A, = k, we have

At i BN (D) =20

folilt

since one edge is being added per unit time.
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- Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A(t)
where A(t) = 3°° ANy (1)

E.g. for BAmodel, A, =kand A =37 kN, ().

For A, = k, we have

At) = ) K Ny (t) =2t
folilt
since one edge is being added per unit time.

Detail: we are ignoring initial seed network’s
edges.
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- Generalized model

So now

dN 1

Ttk =t [Ag_1Np_1 — AgNg] + 051
becomes

dN 1

bdt_k =7 k= LYN, (e kN el dhy

As for BA method, look for steady-state growing
solution:
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- Generalized model

So now

dN 1

Ttk =t (AL N — AN 0y
becomes

AVg

=P k= LYN, (e kN el dhy

As for BA method, look for steady-state growing
solution: N, = n.t.
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- Generalized model

So now

dN 1

Ttk it [Ag_1Np_1 — AgNg] + 051
becomes

dN 1

Ttk =7 k= LYN, (e kN el dhy

As for BA method, look for steady-state growing
solution: N, = n.t.
We replace dN,, /dt with dnt/dt = n,.
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- Generalized model

So now

dN 1

Ttk =t [Ag_1Np_1 — AgNg] + 051
becomes

dN 1

Ttk =7 k= LYN, (e kN el dhy

As for BA method, look for steady-state growing
solution: N, = n,t.

We replace dN,, /dt with dnt/dt = n,.

We arrive at a difference equation:

Ny = 21}( [(k = Dng_1f — kngf] + 051
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As expected, we have the same result as for the s 5
BA model:

N, (t) = ny(t)t < k=3t for large k.
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Universality?
As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?
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‘Universality?'

As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?

Again, we're asking if the result v = 3 universal (4?

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Main stot

e O]
ﬁ UNIVERSITY |9|
238l ¥ VERMONT 1Ol

DA 420of 56


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/w/index.php?title=Universality_%28dynamical_systems%29&oldid=204738455

PoCS | @poesvox

‘ Unlversa“ty? Scale-free -

networks
As expected, we have the same result as for the s 5
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N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?

Again, we're asking if the result v = 3 universal (4?

KR’s natural modification: A, = k¥ with v # 1. e
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| Universality?

As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around
with the attachment kernel A, ?

Again, we're asking if the result v = 3 universal (4?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!
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| Universality?

As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around

with the attachment kernel A, ?
Again, we're asking if the result v = 3 universal (47?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!

Keep A, linear in k but tweak details.
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As expected, we have the same result as for the
BA model:

N, (t) = ny(t)t < k=3t for large k.

Now: what happens if we start playing around

with the attachment kernel A, ?
Again, we're asking if the result v = 3 universal (47?

KR’s natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!

Keep A, linear in k but tweak details.
|dea: Relax from A, = kto A, ~ kas k — co.
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Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
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Recall we used the normalization:
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A(t) = > K Ny (t) = 2t for large t.
fol=il

We now have

AH =S AN ()

k’'=1

where we only know the asymptotic behavior of
A,.
We assume that A = ;¢

We'll find p later and make sure that our
assumption is consistent.
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Universality?

Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
fol=il

We now have

AH =S AN ()

k’'=1

where we only know the asymptotic behavior of
A,.
We assume that A = ;¢

We'll find p later and make sure that our
assumption is consistent.

As before, also assume N (t) = n,t.
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For A, = k we had

[(k—1)ng_q —kng] + g1

’I’Lk:

N | =

This now becomes

1
Ny = . [Ag_1Mp—1 — Agng] + 01
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Time for pure excitement: Find asymptotic
behavior of n, given A, — k as k — oo.

For large k, we find:
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Time for pure excitement: Find asymptotic
behavior of n, given A, — k as k — oo.

For large k, we find:

Since 1 depends on A,, details matter...
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Now we need to find p.
Our assumption again: A = ut = Zzil N (t)A,

Since N, = n.t, we have the simplification
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Our assumption again: A = ut = Zz‘;l N (t)Ag
Since N, = n.t, we have the simplification

i Zzil ng Ay
Now subsitute in our expression for n,:
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Our assumption again: A = ut = Z;‘;l N (t)Ag

Since N, = n.t, we have the simplification
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Now subsitute in our expression for n,:
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Closed form expression for p.
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Now we need to find . Saene
Our assumption again: A = ut = Zz‘;l N (t)Ag [k;i',‘,;;‘,;);f‘;
Since N, = n.t, we have the simplification
Bl Zk 1 A

Now subsitute in our expression for n,:

Ly = i%ﬂ AL

A

Closed form expression for p.
We can solve for p in some cases.

Our assumption that A = ut looks to be not too
horrible.
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Consider tunable A, =« and A, = kfor k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:
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Consider tunable A; = aand A, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:

i (k+1T(2+ p)

g Ll gt 1)
#mathisfun
1++vV1+8a
i I = don=n [ = =

Since vy = u + 1, we have

0<a<oo=2<y< @
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Consider tunable A; = aand A, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:

oo

I'(2+p)
Z k~|—u~|—1)

#mathisfun

14++/1+ 8«

gl = o= 1 — 2

Since vy = u + 1, we have
0<a<oo=2<y< @

Craziness...
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Sublinear attachment kernels

Rich-get-somewhat-richer:

A ~k"witho <v < 1.
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Rich-get-somewhat-richer:
A, ~ kY with0 < v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms
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Rich-get-somewhat-richer:
A, ~ kY with0 < v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 < v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).

aka Weibull distributions.
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 < v < 1.
General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
aka Weibull distributions.

Universality: now details of kernel do not matter.
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- Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 < v < 1.
General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
aka Weibull distributions.
Universality: now details of kernel do not matter.

Distribution of degree is universal providing v < 1.
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Sublinear attachment kernels

Details:
& Forili2i<pv <l

ny, ~ k’”e_u(

kl—u721—u

I-—v
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Generalized model
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e~ kY
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exponential.
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- Superlinear attachment kernels

Rich-get-much-richer:
Ay ~ kY withv > 1.

Now a winner-take-all mechanism.
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Rich-get-much-richer:

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.
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Superlinear attachment kernels

Rich-get-much-richer:
Ak (e kV W|th v > 1.

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.

For v > 2, all but a finite # of nodes connect to one
node.
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Obvious connections with the vast extant field of i
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.
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- Nutshell:

Obvious connections with the vast extant field of
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features
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Obvious connections with the vast extant field of

graph theory. im
But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

Two main areas of focus: iersat
1. Description: Characterizing very large networks emels

2. Explanation: Micro story = Macro features emels

Nutshell

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...
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- Nutshell:

Obvious connections with the vast extant field of
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

Still much work to be done, especially with respect
to dynamics...
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- Nutshell:

Obvious connections with the vast extant field of
graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

Still much work to be done, especially with respect
to dynamics... #excitement
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‘Neural reboot (

Turning the corner:
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https://www. youtu be. com/v/aerxEVQq N4?rel=0"
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