Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

mechanism

Robustness

Krapivsky & Redner's model

Generalized mode

nalysis

iversality?

rnels

ernels

Nutshell

These slides are brought to you by:

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

A more plausible

Robustness

Krapivsky & Redner's

Universality?

Nutshell

Outline

Scale-free networks

Main story

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

References

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

A more plai

nechanism

obustness

Krapivsky & Redner's model

Generalized mode

Analysis

Universali

kernels

ernels

Nutshell

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model Reuner's

Generalized mode

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachmen kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Robustness

Krapivsky & Redner's

Generalized model

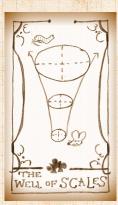
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

nouei

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible

mechanism Robustness

obustness

Krapivsky & Redner's

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment

kernels Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Hondstriess

Krapivsky & Redner's

Generalized model

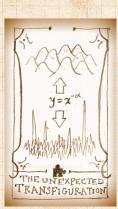
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

moder

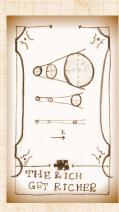
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachmen kernels

Nutshell References



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model

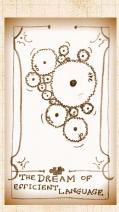
Generalized model

Analysis

Universality? Sublinear attachment

kernels Superlinear attachmen

kernels Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model

Generalized model

Analysis
Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Robustiless

Krapivsky & Redner's model

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

Analysis

Universality? Sublinear attachment

kernels

kernels Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

nodel

eneralized model

Analysis
Universality?

Sublinear attachment kernels

Superlinear attachment

kernels Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

PoCS | @pocsvox Scale-free

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism

Robustness

Krapivsky & Redner's

Generalized model

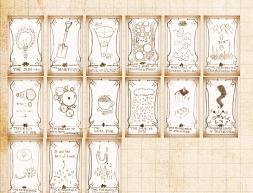
Analysis

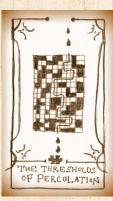
Universality?

Sublinear attachment kernels

Superlinear attachment

kernels Nutshell





Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism Robustness

ronnameza

Krapivsky & Redner's

operalized model

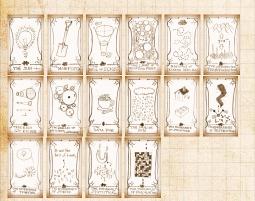
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Hechanism

Robustness

Krapivsky & Redner's

Seneralized model

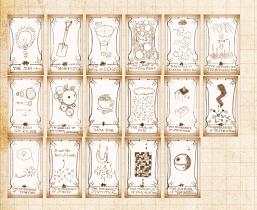
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

Constitution and del

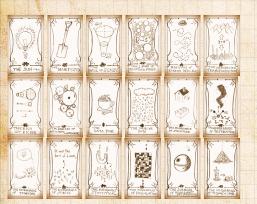
Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



PoCS | @pocsvox Scale-free

networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

nodel

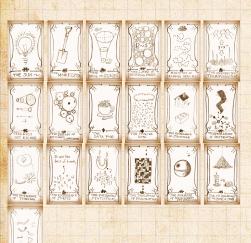
Generalized model

Analysis

Universality?
Sublinear attachment kernels

Superlinear attachment

kernels Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism Robustness

Krapivsky & Redner's

nodel

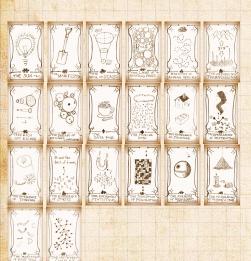
Generalized model Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell



Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism

Robustness

Krapivsky & Redner's

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism

Robustness

Krapivsky & Redner's

Analysis Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels

Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels Nutshell

Scale-free networks

Scale-free networks

Model details

Analysis

A more plausible

mechanism

Robustness Krapivsky & Redner's

Analysis

Universality?

Sublinear attachment kernels

Superlinear attachment kernels Nutshell

Outline

Scale-free networks Main story

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Networks with power-law degree distributions have become known as scale-free networks.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

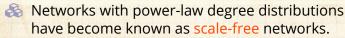
Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?



Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

PoCS | @pocsvox

Scale-free networks

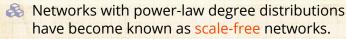
Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's



Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness Krapivsky & Redner's

Networks with power-law degree distributions have become known as scale-free networks.

Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

One of the seminal works in complex networks:

"Emergence of scaling in random networks"
Barabási and Albert,
Science, **286**, 509–511, 1999. [2]

Times cited: $\sim 23,532$ (as of October 8, 2015)

Somewhat misleading nomenclature...

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

more plausib nechanism

Robustness

Krapivsky & Redner's

model
Generalized model

Analysis

Sublinear attachme kernels

uperlinear attachr ernels utshell

Networks with power-law degree distributions have become known as scale-free networks.

Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

One of the seminal works in complex networks:

networks" The Barabási and Albert, Science, **286**, 509–511, 1999. [2]

"Emergence of scaling in random

Times cited: $\sim 23,532$ (as of October 8, 2015)

🙈 Somewhat misleading nomenclature...

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

nalysis

nechanism

Krapivsky & Redner's

Generalized model

Universality?

Sublinear attachmer kernels

kernels Nutshell

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are abstrace, relational, informational, ...(non-physical Primary example: hyperlink network of the Web Much arguing about whether or networks are 'scale-free' or not.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Analysis

more plausible

Robustness

Krapivsky & Redner's

nodel

eneralized model

Universality?

ublinear attachment

Superlinear attachment kernels

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are abstract, relational, informational, ...(non-physical)

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ...(non-physical)
- Primary example: hyperlink network of the Web

Much arguing about whether or networks are 'scale-free' or not.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausib

Robustness

Krapivsky & Redner's model

Generalized mode

Iniversality?

ernels

uperlinear attachn ernels lutshell

- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ...(non-physical)
- 🙈 Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story Model details

Model detail

A more plaus

nechanism

Krapivsky & Redner's

Generalized model

nalysis

Universality?

ernels

Superlinear attac kernels Nutshell

Some real data (we are feeling brave):

From Barabási and Albert's original paper [2]:

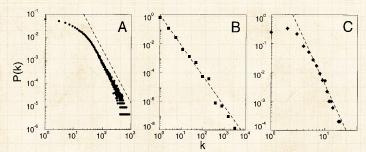


Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N=212,250 vertices and average connectivity $\langle k \rangle=28.78$. (B) WWW, N=325,729, $\langle k \rangle=5.46$ (c) Power grid data, N=4941, $\langle k \rangle=2.67$. The dashed lines have slopes (A) $\gamma_{\rm actor} = 2.3$, (B) $\gamma_{\rm www} = 2.1$ and (C) $\gamma_{\rm power} = 4$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible

Robustness Krapivsky & Redner's

Universality?

Nutshell

Random networks: largest components

$$\gamma = 2.5$$
 $\langle k \rangle = 1.8$

 $\gamma = 2.5$ $\langle k \rangle = 2.05333$

 $\gamma = 2.5$ $\langle k \rangle = 1.66667$

 $\gamma = 2.5$ $\langle k \rangle = 1.92$

 $\gamma = 2.5$ $\langle k \rangle = 1.62667$

 $\gamma = 2.5$ $\langle k \rangle = 1.8$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Analysis

A more plausible

Robustness

Krapivsky & Redner's

Analysis

Universality? Sublinear attachment

Nutshell

The big deal:

We move beyond describing networks to finding mechanisms for why certain networks are the way they are. PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Analysis

more plausible nechanism

Robustness

Krapivsky & Redner's

model Redner's

eneralized model

Universality?

Superlinear attachmen kernels

The big deal:

We move beyond describing networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

 \ref{how} How does the exponent γ depend on the mechanism?

Do the mechanism details matter?

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story

Model details

Analysis

mechanism

Robustness Krapivsky & Redner's

nodel

eneralized model

Universality?

kernels Superlinear attachmer

kernels Nutshell

The big deal:

We move beyond describing networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

- \Leftrightarrow How does the exponent γ depend on the mechanism?
- Do the mechanism details matter?

Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Outline

Scale-free networks

Main story

Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's mode

Generalized model

Analysis

Universality?

Sublinear attachment kernels

Nutshel

Beierarres

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Andlysis Amoro plancible

nechanism

Robustness

Krapivsky & Redner's

nodel

Generalized model

Universality?

Sublinear attachn

Superlinear attachmer

vernels Nutshell

Barabási-Albert model = BA model.

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

Barabási-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Nutshell

Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

- 🙈 Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- \clubsuit Step 1: start with m_0 disconnected nodes.
- Step 2:

 1. Growth—a new node appears at each time step
 - 2. Each new node makes *m* links to nodes already present.
 - 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.

In essence, we have a rich gets-richer scheme. Yes, we've seen this all before in Simon's mode

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

Model details Analysis

more plausible

mechanism Robustness

Krapivsky & Redner's

Generalized model

Universality?

Sublinear attachment kernels

Superlinear attachmen kernels

🙈 Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

& Step 1: start with m_0 disconnected nodes.

🙈 Step 2:

- 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
- 2. Each new node makes *m* links to nodes already present.
- 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.

In essence, we have a rich-gets-richer scheme. Yes, we've seen this all before in Simon's mode PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story
Model details

Model details Analysis

more plausible

Robustness

Krapivsky & Redner's

Generalized model

Universality? Sublinear attachment

Superlinear attachmen kernels

🙈 Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

 \Leftrightarrow Step 1: start with m_0 disconnected nodes.

🚓 Step 2:

- 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
- 2. Each new node makes *m* links to nodes already present.

3. Preferential attachment—Probability of connecting to ith node is ∞k_i .

In essence, we have a rich gets-richer scheme. Yes, we've seen this all before in Simon's mode. PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story
Model details

Analysis

A more plausible

nechanism

Krapivsky & Redner's

Generalized model

Universality?

Superlinear attachmen kernels

Nutshell

🙈 Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

 \Leftrightarrow Step 1: start with m_0 disconnected nodes.

🙈 Step 2:

- 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
- 2. Each new node makes *m* links to nodes already present.
- 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.

In essence, we have a rich gets-richer scheme.
Yes, we've seen this all before in Simon's mode

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details Analysis

> more plausible echanism

Robustness Krapivsky & Redner's

nodel

Analysis

Universality? Sublinear attachmen

Superlinear attachm kernels

🙈 Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

 $\stackrel{\textstyle <}{\&}$ Step 1: start with m_0 disconnected nodes.

Step 2:

- 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
- 2. Each new node makes *m* links to nodes already present.
- 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.

In essence, we have a rich-gets-richer scheme.

Yes, we've seen this all before in Simon's model.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

Model details Analysis

> more plausible echanism

Krapivsky & Redner's

Generalized model

Universality? Sublinear attachment

Superlinear attachmo

& Barabási-Albert model = BA model.

Key ingredients: Growth and Preferential Attachment (PA).

 \Leftrightarrow Step 1: start with m_0 disconnected nodes.

Step 2:

- 1. Growth—a new node appears at each time step t = 0, 1, 2, ...
- 2. Each new node makes *m* links to nodes already present.
- 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.
- In essence, we have a rich-gets-richer scheme.
- Yes, we've seen this all before in Simon's model.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

more plausible echanism

Krapivsky & Redner's model

Generalized model Analysis

Sublinear attachment kernels

Superlinear attach kernels Nutshell

Outline

Scale-free networks

Analysis

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

\bigotimes Definition: A_k is the attachment kernel for a node with degree k.

$$A_k = k$$

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

PoCS | @pocsvox Scale-free networks

 \bigotimes Definition: A_k is the attachment kernel for a node with degree k.

Scale-free networks

For the original model:

Main story Model details Analysis

 $A_k = k$

Krapivsky & Redner's

Universality?

Nutshell

 \bigotimes Definition: A_k is the attachment kernel for a node with degree k.

For the original model:

$$A_k = k$$

 $Arr Definition: P_{\mathsf{attach}}(k,t)$ is the attachment probability.

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Nutshell

 \bigotimes Definition: A_k is the attachment kernel for a node with degree k.

For the original model:

$$A_k = k$$

 $Arr Definition: P_{\mathsf{attach}}(k,t)$ is the attachment probability.

For the original model:

$$P_{\mathrm{attach}}(\mathsf{node}\ i,t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=0}^{k_{\mathrm{max}}(t)} k_j(t)} =$$

PoCS | @pocsvox Scale-free networks

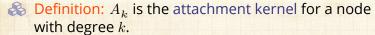
Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Nutshell



For the original model:

$$A_k = k$$

- $ightharpoonup extstyle{ } extstyle{ }$
- For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=0}^{k_{\text{max}}} k_j(t)} = \frac{k_i(t)}{$$

where $N(t) = m_0 + t$ is # nodes at time t

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story

Analysis

Analysis

more nl

echanism

Krapivsky & Redner's

eneralized model

nalysis

Iniversality? ublinear attachme

Superlinear attachmer

kernels Nutshell

- Definition: A_k is the attachment kernel for a node with degree k.
- For the original model:

$$A_k = k$$

- ightharpoonup Definition: $P_{\mathsf{attach}}(k,t)$ is the attachment probability.
- For the original model:

$$P_{\mathrm{attach}}(\mathsf{node}\ i,t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=0}^{k_{\max}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story
Model details

Analysis

Analysis

more plausible

Robustness

Krapivsky & Redner's model

eneralized model

nalysis niversality2

Sublinear attachme

Superlinear attachmer

Nutshell

 \bigcirc Definition: A_k is the attachment kernel for a node with degree k.

For the original model:

$$A_k = k$$

 $Arr Definition: P_{\mathsf{attach}}(k,t)$ is the attachment probability.

For the original model:

$$P_{\mathrm{attach}}(\mathsf{node}\ i,t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=0}^{k_{\max}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Nutshell

 \aleph When (N+1)th node is added, the expected increase in the degree of node i is

$$E(k_{i,N+1} - k_{i,N}) \simeq m \frac{k_{i,N}}{\sum_{j=1}^{N(t)} k_j(t)}.$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

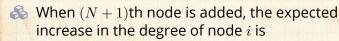
Main story Model details

Analysis

Robustness Krapivsky & Redner's

Universality?

Nutshell



$$E(k_{i,\,N+1}-k_{i,\,N}) \simeq m \frac{k_{i,\,N}}{\sum_{j=1}^{N(t)} k_j(t)}.$$

Assumes probability of being connected to is small.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

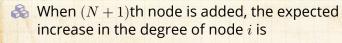
Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell



$$E(k_{i,N+1} - k_{i,N}) \simeq m \frac{k_{i,N}}{\sum_{j=1}^{N(t)} k_{j}(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.

Approximate $k_{i,N+1} - k_{i,N}$ with $\frac{d}{dt}k_{i,N}$

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

Analysis

A more plau

mechanism Robustness

Krapivsky & Redner's model

Generalized model

nalysis

ublinear attachmen

Superlinear attachm kernels

When (N+1)th node is added, the expected increase in the degree of node i is

$$E(k_{i,N+1} - k_{i,N}) \simeq m \frac{k_{i,N}}{\sum_{j=1}^{N(t)} k_{j}(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- & Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

A more plausibl mechanism

nechanism obustness

Krapivsky & Redner's model

Generalized model

Iniversality?

kernels Superlinear attachmen kernels

vutshell

When (N+1)th node is added, the expected increase in the degree of node i is

$$E(k_{i,\,N+1}-k_{i,\,N}) \simeq m \frac{k_{i,\,N}}{\sum_{j=1}^{N(t)} k_j(t)}.$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- \Leftrightarrow Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)}$$

where $t = N(t) - m_0$.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story

Model details

Analysis A more plan

more plausible nechanism

Krapivsky & Redner's model

Seneralized model

nalysis

Sublinear attachment kernels

Superlinear attach kernels

Deal with denominator: each added node brings m new edges.

$$\sum_{i=1}^{N(t)} k_j(t) = 2tm$$

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{i=1}^{N(t)} k_i(t)}$$

$$\frac{\mathsf{d}k_i(t)}{k_i(t)} = \frac{\mathsf{d}t}{2t}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Universality?

Nutshell

Deal with denominator: each added node brings m new edges.

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{i=1}^{N(t)} k_j(t)}$$

$$rac{\mathsf{d} k_i(t)}{k_i(t)} = rac{\mathsf{d} t}{2i}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

Nutshell

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t}$$

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

Arr Deal with denominator: each added node brings m new edges.

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} - \frac{1}{2t}k_i(t)$$

Rearrange and solve

$$\frac{\mathsf{d}k_i(t)}{k_i(t)} = \frac{\mathsf{d}t}{2t}$$

Next find

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausible echanism

Robustness

Krapivsky & Redner's model

Generalized model

Universality?

Sublinear attachment kernels

Superlinear attachmer kernels Nutshell

$$\vdots \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2i}$$

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t} k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = m \frac{k_i(t)}{2mt} = \frac{1}{2t} k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \square$$

Next find

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

nore plausible chanism

Robustness

Krapivsky & Redner's

nodel

Analysis

Universality?

kernels Superlinear attachme

kernels Nutshell

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{\frac{k_i(t) = c_i\,t^{1/2}}{}}.$$

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$\div \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{\frac{k_i(t) = c_i\,t^{1/2}}{}}.$$

 $\red {\mathbb R}$ Next find c_i ...

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Analysis

nore plausible

Robustness Krapivsky & Redner's

nodel

analysis

Universality? Sublinear attachme

Superlinear attachmer kernels

kernels Nutshell

Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

$$k_i(t) = m \left(rac{t}{t_i \, ext{start}}
ight)^{1/2} \, ext{for } t \geq t_i \, ext{start}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

3 So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i,\,\mathrm{start}}}\right)^{1/2} \, \mathrm{for} \, t \geq t_{i,\,\mathrm{start}}.$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Nutshell

Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

3 So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i, \text{start}}}\right)^{1/2} \text{ for } t \geq t_{i, \text{start}}.$$

All node degrees grow as $t^{1/2}$ but later nodes have

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Nutshell

Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

3 So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i, \text{start}}}\right)^{1/2} \text{ for } t \geq t_{i, \text{start}}.$$

All node degrees grow as $t^{1/2}$ but later nodes have larger $t_{i,\text{start}}$ which flattens out growth curve.

PoCS | @pocsvox Scale-free

Scale-free

networks

networks Main story

Model details

Analysis

Krapivsky & Redner's

Nutshell

Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

 \clubsuit So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i, \text{start}}}\right)^{1/2} \text{ for } t \geq t_{i, \text{start}}.$$

- All node degrees grow as $t^{1/2}$ but later nodes have larger $t_{i,\text{start}}$ which flattens out growth curve.
- First-mover advantage: Early nodes do best.

Clearly, a

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Analysis

Allalysis

more plaus nechanism

Robustness
Krapiysky & Redner's

odel

neralized model

Iniversality?

kernels Superlinear attachmer

kernels Nutshell

 $\red{\$}$ Know ith node appears at time

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

 \clubsuit So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i, \, \mathrm{start}}}\right)^{1/2} \, \, \mathrm{for} \, \, t \geq t_{i, \, \mathrm{start}}.$$

- All node degrees grow as $t^{1/2}$ but later nodes have larger $t_{i,\text{start}}$ which flattens out growth curve.
- First-mover advantage: Early nodes do best.
- & Clearly, a Ponzi scheme .

PoCS | @pocsvox
Scale-free

Scale-free networks

Main story
Model details

networks

Analysis

Alidiysis

more plausible nechanism

Robustness Krapivsky & Redner's

eneralized model

alysis

Iniversality? ublinear attachmen

Superlinear attachr kernels Nutshell

We are already at the Zipf distribution:

 \mathbb{R} Degree of node i is the size of the ith ranked node:

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \ \mathrm{for} \ t \geq t_{i, \mathrm{start}}.$$

$$t_{i, \text{start}} = \left\{ \begin{array}{ll} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \leq m_0 \end{array} \right.$$

$$k_i \propto i^{-1/2} = i^{-\alpha} \qquad -$$

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

We are already at the Zipf distribution:

 \mathbb{R} Degree of node i is the size of the ith ranked node:

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \ \mathrm{for} \ t \geq t_{i, \mathrm{start}}.$$

From before:

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

so $t_{i,\text{start}} \sim i$ which is the rank.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

We are already at the Zipf distribution:

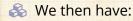
 \mathbb{R} Degree of node i is the size of the ith ranked node:

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \ \mathrm{for} \ t \geq t_{i, \mathrm{start}}.$$

From before:

$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

so $t_{i,\text{start}} \sim i$ which is the rank.



$$k_i \propto i^{-1/2} = i^{-\alpha}.$$

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

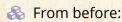
Analysis

Krapivsky & Redner's

We are already at the Zipf distribution:

 \bigcirc Degree of node i is the size of the ith ranked node:

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \ \mathrm{for} \ t \geq t_{i, \mathrm{start}}.$$

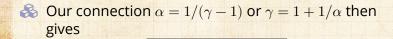


$$t_{i, \mathrm{start}} = \left\{ \begin{array}{ll} i - m_0 & \mathrm{for} \ i > m_0 \\ 0 & \mathrm{for} \ i \leq m_0 \end{array} \right.$$

so $t_{i,\text{start}} \sim i$ which is the rank.

We then have:

$$k_i \propto i^{-1/2} = i^{-\alpha}$$
.



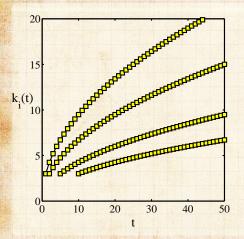
PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details Analysis

Krapivsky & Redner's



m=3

 $\& t_{i,\text{start}} =$ 1, 2, 5, and 10.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?

Nutshell

& So what's the degree distribution at time t?

$$\mathbf{Pr}(t_{i, \mathsf{start}}) \mathsf{d}t_{i, \mathsf{start}} \simeq \frac{\mathsf{d}t_{i, \mathsf{start}}}{t}$$

$$k_i(t) = m \left(\begin{array}{c|c} t \\ \hline t_i & \text{start} \end{array} \right)^{1/2} \rightarrow t_i, \text{start} = \frac{m^2 t}{k_i(t)^2}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?

& So what's the degree distribution at time t?

Use fact that birth time for added nodes is distributed uniformly between time 0 and t:

$$\mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}t_{i, \mathrm{start}} \simeq \frac{\mathrm{d}t_{i, \mathrm{start}}}{t}$$

$$k_i(t) = m \left(\frac{t}{t_{i, \, \mathrm{start}}}\right)^{1/2} + t_i$$

PoCS | @pocsvox

Scale-free networks

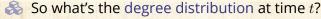
Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?



Use fact that birth time for added nodes is distributed uniformly between time 0 and t:

$$\mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}t_{i, \mathrm{start}} \simeq \frac{\mathrm{d}t_{i, \mathrm{start}}}{t}$$

🙈 Also use

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \Rightarrow t_{i, \mathrm{start}} = \frac{m^2 t}{k_i(t)^2}.$$

Transform variables—lacobian:

$$\frac{\mathrm{d}t_{i,\mathrm{start}}}{\mathrm{d}k_i} = -2\frac{m^2t}{k_i(t)^3}$$

PoCS | @pocsvox
Scale-free

Scale-free networks

Scale-free networks

Main story

Analysis

Halysis

nore plausible echanism

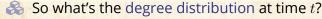
Robustness

Krapivsky & Redner's model

Analysis

Sublinear attachmen kernels

Superlinear attachment kernels Nurshell



Use fact that birth time for added nodes is distributed uniformly between time 0 and t:

$$\mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}t_{i, \mathrm{start}} \simeq \frac{\mathrm{d}t_{i, \mathrm{start}}}{t}$$

Also use

$$k_i(t) = m \left(\frac{t}{t_{i, \mathrm{start}}}\right)^{1/2} \Rightarrow t_{i, \mathrm{start}} = \frac{m^2 t}{k_i(t)^2}.$$

Transform variables—Jacobian:

$$\frac{\mathrm{d}t_{i,\mathrm{start}}}{\mathrm{d}k_i} = -2\frac{m^2t}{k_i(t)^3}.$$

Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

$$\mathbf{Pr}(k_i) \mathrm{d}k_i = \mathbf{Pr}(t_{i,\mathrm{start}}) \mathrm{d}t_{i,\mathrm{start}}$$

$$= \mathbf{Pr}(t_{i, \, \mathsf{start}}) \mathsf{d} k_i \, \left| \frac{\mathsf{d} t_{i, \, \mathsf{start}}}{\mathsf{d} k_i} \right|$$

$$\frac{1}{t} dk_i 2 \frac{m^2 t}{k_i (t)^3}$$

$$=2\frac{m^2}{k_i(t)^3}\mathsf{d}k_i$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Universality?

Nutshell

$$\mathbf{Pr}(k_i) \mathrm{d}k_i = \mathbf{Pr}(t_{i,\mathrm{start}}) \mathrm{d}t_{i,\mathrm{start}}$$

$$= \mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}k_i \left| \frac{\mathrm{d}t_{i, \mathrm{start}}}{\mathrm{d}k_i} \right|$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$\mathbf{Pr}(k_i) \mathrm{d}k_i = \mathbf{Pr}(t_{i,\mathrm{start}}) \mathrm{d}t_{i,\mathrm{start}}$$

$$= \mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}k_i \left| \frac{\mathrm{d}t_{i, \mathrm{start}}}{\mathrm{d}k_i} \right|$$

$$=\frac{1}{t}\mathrm{d}k_i\,2\frac{m^2t}{k_i(t)^3}$$

$$=2\frac{m^2}{k_i(t)^3}\mathrm{d}k_i$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$\mathbf{Pr}(k_i) \mathrm{d}k_i = \mathbf{Pr}(t_{i,\mathrm{start}}) \mathrm{d}t_{i,\mathrm{start}}$$

$$= \mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}k_i \left| \frac{\mathrm{d}t_{i, \mathrm{start}}}{\mathrm{d}k_i} \right|$$

$$=\frac{1}{t}\mathrm{d}k_i\,2\frac{m^2t}{k_i(t)^3}$$

$$=2\frac{m^2}{k_i(t)^3}\mathsf{d}k_i$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness Krapivsky & Redner's

Universality?

Nutshell

$$\mathbf{Pr}(k_i) \mathrm{d}k_i = \mathbf{Pr}(t_{i,\mathrm{start}}) \mathrm{d}t_{i,\mathrm{start}}$$

$$= \mathbf{Pr}(t_{i, \mathrm{start}}) \mathrm{d}k_i \left| \frac{\mathrm{d}t_{i, \mathrm{start}}}{\mathrm{d}k_i} \right|$$

$$=\frac{1}{t}\mathrm{d}k_i\,2\frac{m^2t}{k_i(t)^3}$$

$$=2\frac{m^2}{k_i(t)^3}\mathsf{d}k_i$$

 $\propto k_i^{-3} \mathrm{d} k_i$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

more plausible echanism

Robustness Krapivsky & Redner's

nodel

Analysis

Universality? Sublinear attachmen

Superlinear attachme

kernels Nutshell

We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.

 \red Typical for real networks: $2 < \gamma < 3$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness Krapivsky & Redner's

Universality?

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- 3 Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- \red Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.

In practice, $\gamma < 3$ means variance is governed by upper cutoff.

3: finite mean and variance

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

Analysis

lialysis

mechanism

Krapivsky & Redner's

Generalized model

nalysis Iniversality?

ublinear attachment ernels

uperlinear attachmer ernels

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- \red Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- $lap{8}$ In practice, $\gamma < 3$ means variance is governed by upper cutoff.

3: finite mean and variance

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

Analysis

mechanism

Krapivsky & Redner's

Generalized model

Analysis

Sublinear attachmen kernels

uperlinear attachr ernels utshell

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- \red Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- $lap{8}$ In practice, $\gamma < 3$ means variance is governed by upper cutoff.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

lodel deta

Analysis

mechanism

Robustness

Krapivsky & Redner's

Generalized model

Analysis

Iniversality? ublinear attachme

kernels Superlinear attachme

ernels lutshell

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- \clubsuit Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- 3 $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- & In practice, $\gamma < 3$ means variance is governed by upper cutoff.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Model deta

Analysis

A more plausi

Robustness

Krapivsky & Redner's model

Generalized model Analysis

Universality? Sublinear attachme

Superlinear attachme kernels

ernels Nutshell

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.
- \red Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- $\stackrel{2}{\ll} 2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- & In practice, $\gamma < 3$ means variance is governed by upper cutoff.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

lodel detai

Analysis

A more plausi mechanism

Krapivsky & Redner's

Generalized model

Universality?

Sublinear attachment kernels Superlinear attachme

ernels utshell

Back to that real data:

From Barabási and Albert's original paper [2]:

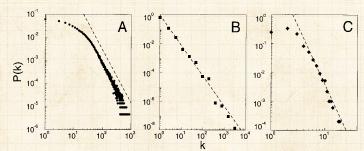


Fig. 1. The distribution function of connectivities for various large networks. **(A)** Actor collaboration graph with N=212,250 vertices and average connectivity $\langle k \rangle = 28.78$. **(B)** WWW, N=325,729, $\langle k \rangle = 5.46$ **(6)**. **(C)** Power grid data, N=4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{\rm actor} = 2.3$, (B) $\gamma_{\rm www} = 2.1$ and (C) $\gamma_{\rm power} = 4$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story
Model details

Analysis

more plausib

Robustness
Krapiysky & Redner's

model

Generalized model

Universality? Sublinear attachmen

Superlinear attachmen kernels Nutshell

Examples

 $\gamma \simeq 2.1$ for in-degree Web $\gamma \simeq 2.45$ for out-degree Web Movie actors $\gamma \simeq 2.3$ Words (synonyms) $\gamma \simeq 2.8$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

Robustness Krapivsky & Redner's

Universality?

Nutshell

Examples

 $\gamma \simeq 2.1$ for in-degree Web $\gamma \simeq 2.45$ for out-degree Web $\gamma \simeq 2.3$ Movie actors Words (synonyms) $\gamma \simeq 2.8$

The Internets is a different business...

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?

Nutshell

Things to do and questions

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring

Deal with directed versus undirected networks.

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Things to do and questions

Vary attachment kernel.

Vary mechanisms:

- 1. Add edge deletion
- 2. Add node deletion
- 3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality classes for these networks?

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story Model details

Analysis

Krapivsky & Redner's

Things to do and questions

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- \bigcirc Q.: How does changing the model affect γ ?

Scale-free

Scale-free networks

Main story Model details

networks

Analysis

Krapivsky & Redner's

Things to do and questions

- Vary attachment kernel.
- Wary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: Do we need preferential attachment and growth?

Do model details matter?

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

naiy3i3

more plausi mechanism

hustness

Krapivsky & Redner's

eneralized model

nalysis

niversality?

kernels

kernels Nutshell

Things to do and questions

Scale-free networks

Vary attachment kernel.

Scale-free networks

Vary mechanisms:

Main story Model details

1. Add edge deletion

Analysis

2. Add node deletion

A more plausib mechanism Robustness

3. Add edge rewiring

Krapivsky & Redner's model

Deal with directed versus undirected networks.

Malysis Universality? Sublinear attachment

Important Q.: Are there distinct universality classes for these networks?

Superlinear attackernels

Nutshell

 $\mathfrak{S} = \mathbb{Q}$.: How does changing the model affect γ ?

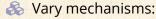
References

Q.: Do we need preferential attachment and growth?

💫 Q.: Do model details matter? Maybe 🗔

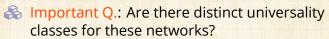
Things to do and questions

Vary attachment kernel.



- 1. Add edge deletion
- 2. Add node deletion
- 3. Add edge rewiring

Deal with directed versus undirected networks.



Q.: Do we need preferential attachment and growth?

😞 Q.: Do model details matter? Maybe ...

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

more plausib

Robustness

Krapivsky & Redner's model

Generalized model

Analysis

Sublinear attachmen kernels

kernels Nutshell

Outline

Scale-free networks

A more plausible mechanism

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

Universality?

🚵 Let's look at preferential attachment (PA) a little more closely.

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

Universality?

PoCS | @pocsvox Scale-free networks

🚵 Let's look at preferential attachment (PA) a little more closely.

PA implies arriving nodes have complete knowledge of the existing network's degree distribution.

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

Let's look at preferential attachment (PA) a little more closely.

PA implies arriving nodes have complete knowledge of the existing network's degree distribution.

For example: If $P_{\rm attach}(k) \propto k$, we need to determine the constant of proportionality.

We need to know what everyone's degree is

PA is an outrageous assumption of node capability.

But a very simple mechanism saves the day.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness Krapivsky & Redner's

model

Generalized mode

Universality?

Sublinear attachment kernels

ernels

Let's look at preferential attachment (PA) a little more closely.

PA implies arriving nodes have complete knowledge of the existing network's degree distribution.

For example: If $P_{\rm attach}(k) \propto k$, we need to determine the constant of proportionality.

We need to know what everyone's degree is...

PA is : an outrageous assumption of node capability.

But a very simple mechanism saves the day.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

> Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's

model

Analysis

Sublinear attachment kernels

> uperlinear attachi ernels urshell

Let's look at preferential attachment (PA) a little more closely.

PA implies arriving nodes have complete knowledge of the existing network's degree distribution.

For example: If $P_{\rm attach}(k) \propto k$, we need to determine the constant of proportionality.

We need to know what everyone's degree is...

PA is .. an outrageous assumption of node capability.

But a very simple mechanism saves the day.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness Krapivsky & Redner's

model

Analysis

Sublinear attachment kernels

Superlinear attach ernels

Let's look at preferential attachment (PA) a little more closely.

PA implies arriving nodes have complete knowledge of the existing network's degree distribution.

For example: If $P_{\rm attach}(k) \propto k$, we need to determine the constant of proportionality.

We need to know what everyone's degree is...

PA is .. an outrageous assumption of node capability.

But a very simple mechanism saves the day...

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness Krapivsky & Redner's

model
Generalized model

Analysis

Sublinear attachme

Superlinear attack

Nutshell

Instead of attaching preferentially, allow new nodes to attach randomly.

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

Universality?

Instead of attaching preferentially, allow new nodes to attach randomly.

Now add an extra step: new nodes then connect to some of their friends' friends.

PoCS | @pocsvox Scale-free

networks

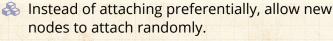
Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's



Now add an extra step: new nodes then connect to some of their friends' friends.

Can also do this at random.

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- Assuming the existing network is random, we know probability of a random friend having degree k is

 $Q_k \propto kP_k$

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible

mechanism

Krapivsky & Redner's

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- Assuming the existing network is random, we know probability of a random friend having degree k is

$$Q_k \propto kP_k$$

So rich-gets-richer scheme can now be seen to work in a natural way.

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Krapivsky & Redner's

Outline

Scale-free networks

Robustness

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

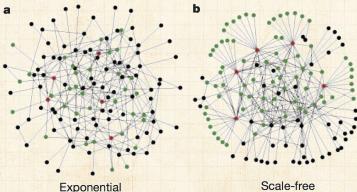
Robustness

Krapivsky & Redner's

Universality?

Albert et al., Nature, 2000: "Error and attack tolerance of complex networks" [1]

Standard random networks (Erdős-Rényi) versus Scale-free networks:



PoCS | @pocsvox Scale-free

networks

Scale-free networks

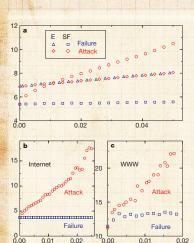
Main story

Model details Analysis

Robustness

Krapivsky & Redner's

Nutshell



from Albert et al., 2000

Plots of network diameter as a function of fraction of nodes

Erdős-Rényi versus scale-free networks

removed

- blue symbols = random removal
 - red symbols = targeted removal (most connected first)

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Scale-free networks are thus robust to random failures yet fragile to targeted ones.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

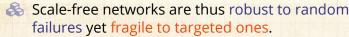
Main story

Model details Analysis

Robustness

Krapivsky & Redner's

Universality?



Scale-free networks

All very reasonable: Hubs are a big deal.

Main story Model details Analysis

But: next issue is whether hubs are vulnerable or

more plausible echanism

Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)

Robustness

Krapivsky & Redner's model

Analysis

Universality? Sublinear attachment kernels

Superlinear attachm kernels Nurshell

References

Need to explore cost of various targeting schemes.

Scale-free networks

Scale-free networks are thus robust to random failures yet fragile to targeted ones.

Scale-free networks

All very reasonable: Hubs are a big deal.

Main story Model details Analysis

But: next issue is whether hubs are vulnerable or not.

Robustness

Krapivsky & Redner's

Universality?

Scale-free networks

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)

Most connected nodes are either:

Scale-free networks

Main story Model details

Analysis
A more plausible

more plausible echanism

Robustness

Krapivsky & Redner's model

nalysis

Universality?

Superlinear attachmo kernels

References

Need to explore cost of various targeting schemes.

Scale-free networks

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:

1. Physically larger nodes that may be harder to 'target'

2 or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.

Scale-free networks

Main story Model details

Analysis

more plausible echanism

Robustness

Krapivsky & Redner's model

Analysis

Universality?

kernels
Superlinear attachment
Superlinear attachme

kernels Nutshell

Scale-free networks

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'

Scale-free networks Main story Model details

Analysis

Krapivsky & Redner's

Scale-free networks

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.

Scale-free networks

Main story Model details

Krapivsky & Redner's

Scale-free networks

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Scale-free networks

Model details

Analysis

more plausible

obustness

Robustness

Krapivsky & Redner's model

Analysis

Universality?

Superlinear atta kernels

Nutshell

PoCS | @pocsvox Scale-free networks

Not a robust paper:

"The "Robust yet Fragile" nature of the Internet"

Doyle et al., Proc. Natl. Acad. Sci., 2005, 14497-14502, 2005. [3]

- HOT networks versus scale-free networks
- Same degree distributions, different arrangements.
- Doyle et al. take a look at the actual Internet.
- Excellent project material.

Scale-free networks

Main story Model details Analysis

Robustness

Krapivsky & Redner's

Outline

Scale-free networks

Krapivsky & Redner's model

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Outline

Scale-free networks

Generalized model

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Generalized model Analysis

Universality?

Fooling with the mechanism:

2001: Krapivsky & Redner (KR)^[4] explored the general attachment kernel:

 $\mathbf{Pr}(\mathsf{attach}\ \mathsf{to}\ \mathsf{node}\ i) \propto A_k =$

where A_k is the attachment kernel and $\nu > 0$. KR also looked at changing the details of the attachment kernel.

KR model will be fully studied in CoNKS.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausible echanism

Robustness

Krapivsky & Redner's

nodel

Generalized model

Universality?

Superlinear attachment

Fooling with the mechanism:

2001: Krapivsky & Redner (KR)^[4] explored the general attachment kernel:

 $\mathbf{Pr}(\mathsf{attach}\;\mathsf{to}\;\mathsf{node}\;i) \propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

KR also looked at changing the details of the attachment kernel.

KR model will be fully studied in CoNKS

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausil

Robustness

Krapivsky & Redner's model

Generalized model

Universalit

ernels

Superlinear attachme kernels

Fooling with the mechanism:

2001: Krapivsky & Redner (KR) [4] explored the general attachment kernel:

 $\mathbf{Pr}(\mathsf{attach}\ \mathsf{to}\ \mathsf{node}\ i) \propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

KR also looked at changing the details of the attachment kernel.

KR model will be fully studied in CoNKS

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story
Model details

Analysis

more plan

hustness

Krapivsky & Redner's

Generalized model

Universality?

Superlinear attachmer kernels

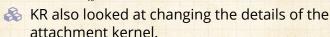
Nutshell

Fooling with the mechanism:

2001: Krapivsky & Redner (KR) [4] explored the general attachment kernel:

$$\mathbf{Pr}(\mathsf{attach}\ \mathsf{to}\ \mathsf{node}\ i) \propto A_k = k_i^{\nu}$$

where A_k is the attachment kernel and $\nu > 0$.



& KR model will be fully studied in CoNKS.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story
Model details

Analysis

Analysis

nechanism

Robustness

Krapivsky & Redner's model

Generalized model

Universality?

kernels Superlinear attachmer

ernels lutshell

We'll follow KR's approach using rate equations
✓.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Generalized model

Universality?

Nutshell

We'll follow KR's approach using rate equations

C.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Generalized model

Universality?

We'll follow KR's approach using rate equations

C.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Generalized model

Universality?

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Generalized model

Universality?

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k-1 nodes.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Generalized model

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k-1 nodes.
- 4. A is the correct normalization (coming up).

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story

Model details

Analysis

Krapivsky & Redner's

Generalized model

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k-1 nodes.
- 4. A is the correct normalization (coming up).
- 5. Seed with some initial network

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Generalized model

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k-1 nodes.
- 4. A is the correct normalization (coming up).
- 5. Seed with some initial network (e.g., a connected pair)

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Generalized model

We'll follow KR's approach using rate equations
✓.

Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k-1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k-1 nodes.
- 4. A is the correct normalization (coming up).
- 5. Seed with some initial network (e.g., a connected pair)
- 6. Detail: $A_0 = 0$

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story

Model details

Analysis

Krapivsky & Redner's

Generalized model

Outline

Scale-free networks

Main story

Model details

Analysis

A more plausible mechanism

Robustness

Constable of model

Analysis

Universality:

Sublinear attachment kernels Superlinear attachment kernels

References

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausible

Robustness

Krapivsky & Redner's

model Rediters

Analysis

Universality?

ublinear attachment ernels

Superlinear attachmer

Nutshell

In general, probability of attaching to a specific node of degree k at time t is

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

Nutshell

In general, probability of attaching to a specific node of degree k at time t is

$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.

 \clubsuit E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

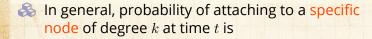
Model details Analysis

Robustness

Krapivsky & Redner's

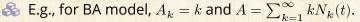
Analysis

Nutshell



$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.



$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

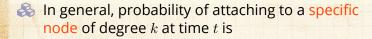
Model details Analysis

Robustness

Krapivsky & Redner's

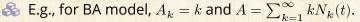
Analysis

Nutshell



$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.



$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) =$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

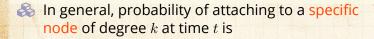
Model details

Analysis

Krapivsky & Redner's

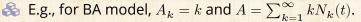
Analysis

Nutshell



$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.



$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

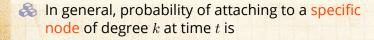
Model details

Analysis

Krapivsky & Redner's

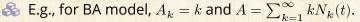
Analysis

Nutshell



$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.



$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

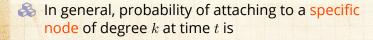
Main story

Model details Analysis

Krapivsky & Redner's

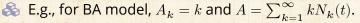
Analysis

Nutshell



$$\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$$

where
$$A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$$
.



$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Analysis

Nutshell

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

$$k = \frac{1}{2!} \left[(k-1)n_{k+1} / - kn_k / \right] + \delta_{k1}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

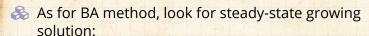
Nutshell

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$



PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

As for BA method, look for steady-state growing solution: $N_k = n_k t$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

Robustness

Krapivsky & Redner's

Analysis Universality?

Nutshell

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- As for BA method, look for steady-state growing solution: $N_k = n_k t$.
- $Arr N_k$ We replace dN_k/dt with $dn_k t/dt = n_k$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Nutshell

 $\frac{\mathrm{d}N_{k}}{\mathrm{d}t} = \frac{1}{4} \left[A_{k-1} N_{k-1} - A_{k} N_{k} \right] + \delta_{k1}$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- As for BA method, look for steady-state growing solution: $N_k = n_k t$.
- $Arr N_k$ We replace dN_k/dt with $dn_k t/dt = n_k$.
- We arrive at a difference equation:

$$n_{k} = \frac{1}{2 \textcolor{red}{t}} \left[(k-1) n_{k-1} \textcolor{red}{t} - k n_{k} \textcolor{red}{t} \right] + \delta_{k1}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Nutshell

Outline

Scale-free networks

Main Story

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redners mode

Generalized model

Analysis

Universality?

Sublinear attachment kernels Superlinear attachment kernels Nutshell

References

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

A more plausible

echanism

Robustness

Krapivsky & Redner's

model

Analysis

Universality?

Sublinear attachr

kernels

kernels

Nutshell

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

Now: what happens if we start playing around with the attachment kernel A_{h} ?

PoCS | @pocsvox Scale-free

Scale-free networks

networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, we're asking if the result $\gamma = 3$ universal ??

But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner Keep A_k linear in k but tweak details.

PoCS | @pocsvox Scale-free networks

Scale-free

networks Main story

Model details

Analysis

more plansi

necnanism

Robustness

Krapivsky & Redner's

eneralized model

Analysis

Universality?

Sublinear attachmer kernels

Superlinear attachmer kernels

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, we're asking if the result $\gamma = 3$ universal ??
- & KR's natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.

But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner

Keep A_k linear in k but tweak details.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausib

Robustness

Krapivsky & Redner's

odel

Analysis

Universality?

Sublinear attachme kernels

Superlinear attack kernels

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, we're asking if the result $\gamma = 3$ universal \square ?
- & KR's natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- & But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner [4]

Keep A_k linear in k but tweak details.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story

Model deta Analysis

nalysis

nechanism

obustness

Krapivsky & Redner's

eneralized model

Analysis

Universality? Sublinear attack

kernels Superlinear attachme

kernels Nutshell

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

- Now: what happens if we start playing around with the attachment kernel A_{h} ?
- Again, we're asking if the result $\gamma = 3$ universal \mathbb{Z} ?
- KR's natural modification: $A_{\nu} = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner [4]
- & Keep A_k linear in k but tweak details.

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?

kernels

As expected, we have the same result as for the BA model:

$$N_k(t) = n_k(t)t \propto k^{-3}t$$
 for large k .

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, we're asking if the result $\gamma = 3$ universal ??
- & KR's natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner [4]
- & Keep A_k linear in k but tweak details.
- \clubsuit Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

PoCS | @pocsvox
Scale-free
networks

Scale-free networks

Main story

Model deta Analysis

Analysis

nechanism

bustness

Krapivsky & Redner's model

Generalized model

Universality?

Sublinear attach

Superlinear attach kernels

References

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Universality?

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

 \clubsuit We assume that $A = \mu t$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Universality?

kernels

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

assumption is consistent.

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Universality?

& Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- $\red{\$}$ We assume that $A = \mu t$
- \clubsuit As before, also assume $N_k(t) = n_k t$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plau

nechanism

bustness

Krapivsky & Redner's model

eneralized mode

nalysis

Universality?

Sublinear attachme

Superlinear attachmen kernels

 \Re For $A_k = k$ we had

$$n_k = \frac{1}{2} \left[(k-1) n_{k-1} - k n_k \right] + \delta_{k1}$$

$$n_k = \frac{1}{\mu} [A_{k-1} n_{k-1} - A_k n_k] + \delta_k$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$n_k = \frac{1}{2} \left[(k-1) n_{k-1} - k n_k \right] + \delta_{k1}$$

This now becomes

$$n_k = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_k n_k \right] + \delta_{k1}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

$$n_k = \frac{1}{2} \left[(k-1) n_{k-1} - k n_k \right] + \delta_{k1}$$

This now becomes

$$n_k = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_k n_k \right] + \delta_{k1}$$

$$\Rightarrow (A_k + \mu)n_k = A_{k-1}n_{k-1} + \mu\delta_{k1}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

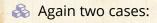
Universality?

$$n_k = \frac{1}{2} \left[(k-1) n_{k-1} - k n_k \right] + \delta_{k1}$$

This now becomes

$$n_k = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_k n_k \right] + \delta_{k1}$$

$$\Rightarrow (A_k + \mu)n_k = A_{k-1}n_{k-1} + \mu\delta_{k1}$$



$$\frac{k}{k} = 1 : n_1 = \frac{\mu}{\mu + A_1};$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

$$n_k = \frac{1}{2} \left[(k-1) n_{k-1} - k n_k \right] + \delta_{k1}$$

This now becomes

$$n_k = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_k n_k \right] + \delta_{k1}$$

$$\Rightarrow (A_k + \mu)n_k = A_{k-1}n_{k-1} + \mu\delta_{k1}$$

Again two cases:

$$\frac{k=1}{\mu+A_1}; \qquad \frac{k}{k}>1: n_k=n_{k-1}\frac{A_{k-1}}{\mu+A_k}.$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

Robustness Krapivsky & Redner's

Universality?

Time for pure excitement: Find asymptotic behavior of n_k given $A_k \to k$ as $k \to \infty$.

$$\hat{n_k} = \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \circ$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

Time for pure excitement: Find asymptotic behavior of n_k given $A_k \to k$ as $k \to \infty$.

$$n_k = \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \propto k^{-\mu - 1}$$

Since μ depends on A_k , details matter

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausible echanism

Robustness

Krapivsky & Redner's model

serieralized mode

Analysis

Universality?

kernels

Superlinear attachmen kernels

Nutshell

Time for pure excitement: Find asymptotic behavior of n_k given $A_k \to k$ as $k \to \infty$.

$$n_k = \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \propto k^{-\mu - 1}$$

 $\mbox{\&}$ Since μ depends on A_k , details matter...

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

more plausibl

Robustness

Krapivsky & Redner's

oneralized model

Analysis

Universality?

Sublinear attachm

Superlinear attachment

kernels Nutshell

& Now we need to find μ .

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

 \triangle Now we need to find μ .

 \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

 \triangle Now we need to find μ .

 \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$

 \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

- \triangle Now we need to find μ .
- \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

Scale-free

networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

- & Now we need to find μ .
- $\mbox{ Our assumption again: } A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

- & Now we need to find μ .
- \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$\mu = \sum_{k=1}^{\infty} \frac{\mu}{\mathcal{A}_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \mathcal{A}_k$$

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

- \triangle Now we need to find μ .
- $\mbox{ Our assumption again: } A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{\mathcal{A}_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \mathcal{A}_k$$

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

- \triangle Now we need to find μ .
- \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{\mathcal{A}_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \mathcal{A}_k$$

- & Closed form expression for μ .

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

& Now we need to find μ .

 $\mbox{ Our assumption again: } A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$

 \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$

 \aleph Now subsitute in our expression for n_k :

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{\mathcal{A}_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \mathcal{A}_k$$

- & Closed form expression for μ .
- & We can solve for μ in some cases.

Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

- \triangle Now we need to find μ .
- \Re Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- \Re Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{\mathcal{A}_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \mathcal{A}_k$$

- & Closed form expression for μ .
- & We can solve for μ in some cases.
- \triangle Our assumption that $A = \mu t$ looks to be not too horrible.

Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Universality?

$A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}$$

$$0 \le \alpha < \infty \Rightarrow 2 \le \gamma < \infty$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

 $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

 \Longrightarrow Again, we can find $\gamma = \mu + 1$ by finding μ .

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

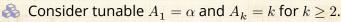
Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?



 \clubsuit Again, we can find $\gamma = \mu + 1$ by finding μ .

& Closed form expression for μ :

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

#mathisfun

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}$$

Since $\gamma = \mu + 1$, we have

 $0 \le \alpha < \infty \Rightarrow 2 \le \gamma < \infty$

Craziness

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

echanism

Robustness

Krapivsky & Redner's model

eneralized model

Analysis
Universality?

Universali

kernels

Superlinear attachment kernels

 \triangle Consider tunable $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

 \clubsuit Again, we can find $\gamma = \mu + 1$ by finding μ .

& Closed form expression for μ :

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

#mathisfun

$$\mu(\mu-1) = 2\alpha \Rightarrow \mu = \frac{1+\sqrt{1+8\alpha}}{2}.$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

 $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

 \Longrightarrow Again, we can find $\gamma = \mu + 1$ by finding μ .

& Closed form expression for μ :

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

#mathisfun

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}.$$

 \Longrightarrow Since $\gamma = \mu + 1$, we have

$$0 \le \alpha < \infty \Rightarrow 2 \le \gamma < \infty$$

PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

 $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.

Again, we can find $\gamma = \mu + 1$ by finding μ .

& Closed form expression for μ :

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

#mathisfun

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}.$$

Since $\gamma = \mu + 1$, we have

$$0 \le \alpha < \infty \Rightarrow 2 \le \gamma < \infty$$

Craziness...

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Outline

Scale-free networks

Sublinear attachment kernels

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Universality?

Sublinear attachment kerne

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Sublinear attachment kerne

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

General finding by Krapivsky and Redner: [4]

$$n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + {\rm correction\ terms}}$$
 .

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Sublinear attachment kerne

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

General finding by Krapivsky and Redner: [4]

$$n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + {\rm correction\ terms}}$$
 .

Stretched exponentials (truncated power laws).

aka Welbull distributions.

Universality: now details of kernel do not matter. Distribution of degree is universal providing v <

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

A more plausibl

echanism

Robustness

Krapivsky & Redner's

nodel

Analysis

Universalit

Sublinear attachment kerne

kernels

Nutshell

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

General finding by Krapivsky and Redner: [4]

$$n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}.$$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.

Universality: now details of kernel do not matter. Distribution of degree is universal providing $\nu < 1$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

A more plausit

echanism

Robustness

Krapivsky & Redner's

iodel

Analysis

Universal

Sublinear attachment kerne

kernels

Nutshell

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

General finding by Krapivsky and Redner: [4]

$$n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + {\rm correction\ terms}}$$
 .

- Stretched exponentials (truncated power laws).
- & aka Weibull distributions.
- Universality: now details of kernel do not matter.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model det Analysis

more plausible

echanism

Robustiess

Krapivsky & Redner's model

Analysis

Universali

Superlinear attachment kerne Superlinear attachment

kernels Nutshell

References

Rich-get-somewhat-richer:

$$A_k \sim k^{\nu}$$
 with $0 < \nu < 1$.

General finding by Krapivsky and Redner: [4]

$$n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}.$$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- & Distribution of degree is universal providing $\nu < 1$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Analysis

more plausible

Robustness

Krapivsky & Redner's model

Analysis

Universalit

Sublinear attachment kerne Superlinear attachment

Nutshell

Details:

Solution For $1/2 < \nu < 1$:

$$n_k \sim k^{-\nu} e^{-\mu \left(\frac{k^{1-\nu}-2^{1-\nu}}{1-\nu}\right)}$$

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1+\nu} + \frac{\mu^2}{2} \frac{k^{1-2}}{1+2\nu}}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Analysis

Universality?

Sublinear attachment kerne

Details:

 \Re For $1/2 < \nu < 1$:

$$n_k \sim k^{-\nu} e^{-\mu \left(\frac{k^{1-\nu}-2^{1-\nu}}{1-\nu}\right)}$$

 \Leftrightarrow For $1/3 < \nu < 1/2$:

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1-\nu} + \frac{\mu^2}{2} \frac{k^{1-2\nu}}{1-2\nu}}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

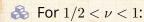
Analysis

Robustness

Krapivsky & Redner's

Universality? Sublinear attachment kerne

Details:



$$n_k \sim k^{-\nu} e^{-\mu \left(\frac{k^{1-\nu}-2^{1-\nu}}{1-\nu}\right)}$$

Solution For $1/3 < \nu < 1/2$:

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1-\nu} + \frac{\mu^2}{2} \frac{k^{1-2\nu}}{1-2\nu}}$$

 $And for 1/(r+1) < \nu < 1/r$, we have r pieces in exponential.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

Robustness

Krapivsky & Redner's

Sublinear attachment kerne

Outline

Scale-free networks

Main story

Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's mode

Generalized mode

Analysis

Universality

Sublinear attachment kernel

Superlinear attachment kernels

Nutshel

References

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story
Model details

lodel detail:

Analysis

more plausible

Robustness

Krapivsky & Redner's

Generalized model

Analysis

Universality?

Sublinear attachm kernels

Superlinear attachment ker

References

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Superlinear attachment ker

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

Now a winner-take-all mechanism.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Superlinear attachment ker

Rich-get-much-richer:

 $A_{\nu} \sim k^{\nu}$ with $\nu > 1$.

Now a winner-take-all mechanism.

One single node ends up being connected to almost all other nodes.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Robustness

Krapivsky & Redner's

Superlinear attachment ker

Rich-get-much-richer:

 $A_{\nu} \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- \Rightarrow For $\nu > 2$, all but a finite # of nodes connect to one node.

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

Krapivsky & Redner's

Superlinear attachment ker

Outline

Scale-free networks

Nutshell

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details

Analysis

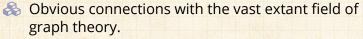
Robustness

Krapivsky & Redner's

Universality?

Nutshell

Overview Key Points for Models of Networks:



PoCS | @pocsvox Scale-free

networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Universality?

Nutshell

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story Model details

Analysis

Robustness

Krapivsky & Redner's

Nutshell

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story ⇒ Macro features

Scale-free networks

Scale-free networks

Main story Model details

Analysis

Krapivsky & Redner's

Nutshell

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...

Still much work to be done, especially with respect to dynamics.

PoCS | @pocsvox Scale-free networks

Scale-free networks

Main story

Model details Analysis

Analysis

echanism

Robustness

Krapivsky & Redner's

Generalized mode

nalysis

Iniversality?

ernels

ernels

Nutshell

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure....
- Still much work to be done, especially with respect to dynamics...

Scale-free networks

Scale-free networks

> Main story Model details

Analysis

Krapivsky & Redner's

Nutshell

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure....
- Still much work to be done, especially with respect to dynamics... #excitement

Scale-free networks

Scale-free networks

> Main story Model details

Analysis

Krapivsky & Redner's

Universality?

Nutshell

Neural reboot (NR):

Turning the corner:

https://www.youtube.com/v/axrTxEVQqN4?rel=0 2

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

A more plausible

Robustness

Krapivsky & Redner's

Analysis

Universality?

Nutshell

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378-382, 2000. pdf
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-511, 1999. pdf
- [3] J. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. S., R. Tanaka, and W. Willinger. The "Robust yet Fragile" nature of the Internet. Proc. Natl. Acad. Sci., 2005:14497-14502, 2005. pdf
- [4] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf

PoCS | @pocsvox Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's

