Scale-free networks

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Principles of Complex Systems @pocsvox What's the Story?

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Krappsky & Redners medel Generalized model Analysis Universality? Sublinear attachment kernels Nucshell

References

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

200 1 of 56

These slides are brought to you by:

Sealie & Lambie Productions

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Koppusky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Nucshell

References

VNIVERSITY OF VERMONT

2 0f 56

Outline

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Krapivsky & Redner's model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels Nutshell

References

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Anarysis A more plausible mechanism Robustness Kraptvsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels

References

200 3 of 56

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plauble mechanism Robustness Krapnosky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment Kernels

References

VERMONT

200 4 of 56

Scale-free networks

Networks with power-law degree distributions have become known as scale-free networks.
 Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

lone of the seminal works in complex networks:

"Emergence of scaling in random networks" Barabási and Albert, Science, **286**, 509–511, 1999.^[2]

Times cited: $\sim 23,532$ C (as of October 8, 2015) Somewhat misleading nomenclature...

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Analysis Universality2

Sublinear attachment

Superlinear attachment kernels

References

VERMONT 8

Scale-free networks

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

seneralized mode

nalysis

Sublinear attachmen

kernels Superlinear attachme

kernels Nutshell

References

VERMONT

Scale-free networks are not fractal in any sense.
 Usually talking about networks whose links are abstract, relational, informational, ...(non-physical)
 Primary example: hyperlink network of the Web
 Much arguing about whether or networks are 'scale-free' or not...

Some real data (we are feeling brave):

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Universality?

C Allesses and a

kernels

Superlinear attachment kernels

Nutshell

References

THE NETWORKS

✓ VERMONT
 ✓ VERMONT
 ✓ Q (~ 8 of 56

From Barabási and Albert's original paper^[2]:

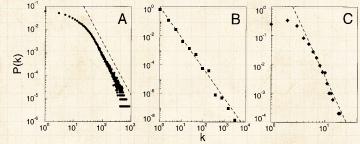


Fig. 1. The distribution function of connectivities for various large networks. **(A)** Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. **(B)** WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). **(C)** Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{www} = 2.1$ and (C) $\gamma_{power} = 4$.

Random networks: largest components



 γ = 2.5 $\langle k \rangle$ = 1.8

 $\begin{array}{c} \gamma = 2.5 \\ \langle k \rangle = 2.05333 \end{array}$

 γ = 2.5 $\langle k \rangle$ = 1.66667 γ = 2.5 $\langle k \rangle$ = 1.92

X

 $\gamma = 2.5$ $\langle k \rangle = 1.6$

667

 $\gamma = 2.5$ $\langle k \rangle = 1.62667$ $\gamma = 2.5$ $\langle k \rangle = 1.8$

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Analysis

Universality?

Sublinear attachment

Superlinear attachment kernels

Nutshell

References

VERMONT

Scale-free networks

The big deal:

We move beyond describing networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

How does the exponent γ depend on the mechanism?

Do the mechanism details matter?

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story Model details

Analysis

A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized model

Analysis

Sublinear attachment kernels

Superlinear attachment kernels

References

VERMONT

na (~ 10 of 56

BA model

Barabási-Albert model = BA model.
Key ingredients: Growth and Preferential Attachment (PA).
Step 1: start with m₀ disconnected nodes.
Step 2:

Growth—a new node appears at each time step t = 0, 1, 2,

- 2. Each new node makes *m* links to nodes already present.
- 3. Preferential attachment—Probability of connecting to *i*th node is $\propto k_i$.

ln essence, we have a rich-gets-richer scheme.

🚳 Yes, we've seen this all before in Simon's model.

PoCS | @pocsvox

Scale-free networks

Scale-free networks

Main story

Model details Analysis

A more plausible mechanism

Robustness Krapivsky & Redner's

Generalized model

Analysis

Universality? Sublinear attachmen

Superlinear attachment kernels Nutshell

References

→ Q (~ 12 of 56

BA model

 \bigotimes Definition: A_k is the attachment kernel for a node with degree k.

For the original model:

$$A_k = k$$

 \bigotimes Definition: $P_{\text{attach}}(k,t)$ is the attachment probability.

For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=0}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Nutshell

References

29 P 14 of 56

Approximate analysis

When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N}) \simeq m \frac{k_{i,N}}{\sum_{j=1}^{N(t)} k_j(t)}.$$

Assumes probability of being connected to is small.

Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.

Approximate $k_{i,N+1} - k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)}$$

where $t = N(t) - m_0$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Amore plausible mechanism Robustness Krapusky & Redners model Generalized model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

♦ UNIVERSITY VERMONT S

 \clubsuit Deal with denominator: each added node brings mnew edges.

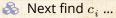
$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

Rearrange and solve:

$$\frac{\mathsf{d}k_i(t)}{k_i(t)} = \frac{\mathsf{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i \, t^{1/2}.}$$



PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Nutshell

References

NIVERSITY 29 P 16 of 56

Approximate analysis

Know ith node appears at time

$$t_{i,\text{start}} = \left\{ \begin{array}{ll} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \leq m_0 \end{array} \right.$$

So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m\left(rac{t}{t_{i,\text{start}}}
ight)^{1/2} \text{ for } t \ge t_{i,\text{start}}.$$

All node degrees grow as $t^{1/2}$ but later nodes have larger $t_{i,\text{start}}$ which flattens out growth curve. First-mover advantage: Early nodes do best. Clearly, a Ponzi scheme C.

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's

Approximate analysis

We are already at the Zipf distribution:

Degree of node *i* is the size of the *i*th ranked node:

$$k_i(t) = m \left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \text{ for } t \geq t_{i,\text{start}}.$$

\lambda From before:

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

so $t_{i,\text{start}} \sim i$ which is the rank. We then have:

$$k_i \propto i^{-1/2} = i^{-\alpha}.$$

Solution $\alpha = 1/(\gamma - 1)$ or $\gamma = 1 + 1/\alpha$ then gives

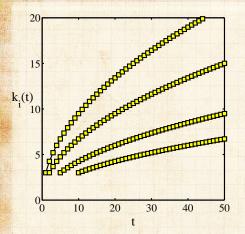
PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model deails Analysis A more plausible mechanism Robustness Kraphstyk Redners model Generalized model Universality? Sublinear attachment kernels Nutshell

References

Approximate analysis:



m = 3

 $\underset{1,2,5, \text{ and } 10. }{\bigotimes} t_{i,\text{start}} =$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausibl

mechanism Robustness Kraptisky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

VINVERSITY S

na (~ 19 of 56

Degree distribution

So what's the degree distribution at time t?
Use fact that birth time for added nodes is distributed uniformly between time 0 and t:

$$\mathbf{Pr}(t_{i,\text{start}})\mathsf{d}t_{i,\text{start}} \simeq \frac{\mathsf{d}t_{i,\text{start}}}{t}$$

$$k_i(t) = m \left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

Transform variables—Jacobian:

$$\frac{\mathrm{d}t_{i,\mathrm{start}}}{\mathrm{d}k_i} = -2\frac{m^2t}{k_i(t)^3}.$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis

A more plausible methanism Robustness Krapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment

References

S UNIVERSITY S VERMONT
S Q C 20 of 56

Degree distribution

2

2

2

2

2

$$\mathbf{Pr}(k_i) \mathsf{d}k_i = \mathbf{Pr}(t_{i, \text{start}}) \mathsf{d}t_{i, \text{start}}$$

$$= \mathbf{Pr}(t_{i,\text{start}}) \mathsf{d}k_i \left| \frac{\mathsf{d}t_{i,\text{start}}}{\mathsf{d}k_i} \right|$$

$$=\frac{1}{t}\mathsf{d}k_i 2\frac{m^2t}{k_i(t)^3}$$

$$=2\frac{m^2}{k_i(t)^3}\mathsf{d}k_i$$

$$\propto k_i^{-3} \mathrm{d}k_i$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis

A more plausible mechanism Robustness

Krapivsky & Redner's model Generalized model Analysis Universality? Sublinear attachment

kernels Superlinear attachment kernels Nutshell

References

VERMONT

Degree distribution

Solution We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = 3$.

- \clubsuit Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.

 $rac{2}{2} < \gamma < 3$: finite mean and 'infinite' variance (wild)

- ln practice, $\gamma < 3$ means variance is governed by upper cutoff.
- $rightarrow \gamma > 3$: finite mean and variance (mild)

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details

Analysis A more plausible mechanism Robustness Krapusky & Redners Model Generalized model Analysis Universality? Sublinear attachment kernels

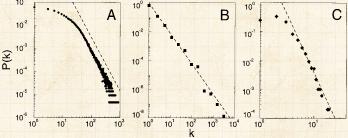
VERMONT O

Back to that real data:

101 10⁰ 10[°] В C A 10-2 10-2 10-1 (k) H(k) 104 10-2 10.6 10-3 10-5 104 10-8 10-6 10⁰ 10¹ 10² 10³ 10 101 10 10³ 10⁴ 100 10¹

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (B) WWW, N = 325,729, $\langle k \rangle = 5.46$ (G). (C) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{www} = 2.1$ and (C) $\gamma_{power} = 4$.

From Barabási and Albert's original paper^[2]:



PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Universality? Nutshell

References

23 of 56

Examples

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Kraphysky & Redners

model

Generalized model

Universality?

Sublinear attachmen

Superlinear attachment kernels

Nutshell

References

VERMONT 8

 $\begin{array}{ll} \mbox{Web} & \gamma\simeq 2.1 \mbox{ for in-degree} \\ \mbox{Web} & \gamma\simeq 2.45 \mbox{ for out-degree} \\ \mbox{Movie actors} & \gamma\simeq 2.3 \\ \mbox{Words (synonyms)} & \gamma\simeq 2.8 \end{array}$

The Internets is a different business...

Things to do and questions

🚳 Vary attachment kernel. A Vary mechanisms: 1. Add edge deletion 2. Add node deletion 3. Add edge rewiring Deal with directed versus undirected networks. lmportant Q.: Are there distinct universality classes for these networks? \mathfrak{Q} .: How does changing the model affect γ ? 🗞 Q.: Do we need preferential attachment and growth? 🚳 Q.: Do model details matter? Maybe ...

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis

mechanism Robustness Krapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachmen kernels

POR NOTARIA

シ マ C 25 of 56

Preferential attachment

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- Solution For example: If $P_{\text{attach}}(k) \propto k$, we need to determine the constant of proportionality.
- 🙈 We need to know what everyone's degree is...
- PA is .. an outrageous assumption of node capability.
- 🚳 But a very simple mechanism saves the day...

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Kraptvsky & Redners model Generalized model

Analysis Universality? Sublinear attachment kernels Superlinear attachme kernels

Nutshell

Preferential attachment through randomness

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- 🚳 Can also do this at random.
- Assuming the existing network is random, we know probability of a random friend having degree k is

$$Q_k \propto k P_k$$

So rich-gets-richer scheme can now be seen to work in a natural way.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Amore plausible mechanism Robustness Krapusky & Redners model

seneralized model

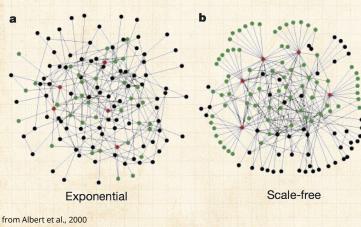
Howersality?

Sublinear attachment

Superlinear attachment kernels

References

- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]
- Standard random networks (Erdős-Rényi) versus Scale-free networks:



PoCS | @pocsvox

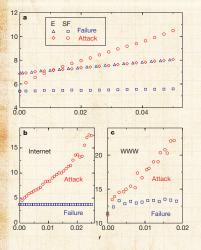
Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism

Robustness Krapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

VERMONT SITY



from Albert et al., 2000

Plots of network diameter as a function of fraction of nodes removed 🚳 Erdős-Rényi versus scale-free networks blue symbols =

2

24

3

random removal red symbols = targeted removal (most connected first)

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis

Robustness Krapivsky & Redner's

References

DQ C 31 of 56

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
 - 🗞 All very reasonable: Hubs are a big deal.
 - But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- line connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
 - Need to explore cost of various targeting schemes.

PoCS | @pocsvox

Scale-free networks

- Scale-free networks Main story Model details Analysis A more plausible mechanism
- Robustness Krapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels Nutshell

Nermont 32 of 56

Not a robust paper:

"The "Robust yet Fragile" nature of the Internet" Doyle et al., Proc. Natl. Acad. Sci., **2005**, 14497–14502, 2005. ^[3]

- lot networks versus scale-free networks
- Same degree distributions, different arrangements.
- look at the actual Internet.
- 🚳 Excellent project material.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism

Robustness Krapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Superinear attachment kernels Nutshell

VERMONT 8

Fooling with the mechanism:

2001: Krapivsky & Redner (KR)^[4] explored the general attachment kernel:

 $\mathbf{Pr}(\text{attach to node } i) \propto A_k = k_i^{\nu}$

🚓 KR model will be fully studied in CoNKS.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Krapusky & Redners model Generalized model Analysis Universality? Sublinear attachmen kernels Superlinear attachmen kernels

We'll follow KR's approach using rate equations C.
 Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A}\left[A_{k-1}N_{k-1} - A_kN_k\right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. One node with one link is added per unit time.
- 2. The first term corresponds to degree k 1 nodes becoming degree k nodes.
- 3. The second term corresponds to degree k nodes becoming degree k 1 nodes.
- 4. *A* is the correct normalization (coming up).
- 5. Seed with some initial network (e.g., a connected pair)
- 6. Detail: $A_0 = 0$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Amore plausible mechanism Robustness Krapiekyk & Redners model Ceneralized model Analysis Universality? Sublinear attachmen kernels Nutshell References

ln general, probability of attaching to a specific node of degree k at time t is

 $\mathbf{Pr}(\text{attach to node } i) = \frac{A_k}{A(t)}$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$. \bigotimes E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} k N_k(t)$. $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time. Detail: we are ignoring initial seed network's edges.

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Analysis Nutshell References

UNIVERSITY 0

29 CP 39 of 56

🙈 So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

As for BA method, look for steady-state growing solution: $N_{\mu} = n_{\mu}t$.

 \bigotimes We replace dN_k/dt with $dn_kt/dt = n_k$. We arrive at a difference equation:

$$n_{k} = \frac{1}{2t} \left[(k-1)n_{k-1}t - kn_{k}t \right] + \delta_{k1}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Analysis Universality? Nutshell References

> NIVERSITY 2 9 P 40 of 56

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}t$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, we're asking if the result $\gamma = 3$ universal \mathbb{Z} ?
- \Im KR's natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Krapivsky/Redner^[4]
- \mathfrak{F} Keep A_k linear in k but tweak details.
- \Im Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main stoy Model details Analysis A more plausible mechanism Robustness Krapussky & Redners model Generalized model Analysis Universality? Scalinear attachment Vernes Superlinear attachment Kernels Nucshell References

2 9 P 42 of 56

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

🙈 We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of Ak.

A We assume that $A = \mu t$

& We'll find μ later and make sure that our assumption is consistent.

As before, also assume $N_k(t) = n_k t$.

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's

Universality?

References

29 A 43 of 56

5

For
$$A_k = k$$
 we had

$$n_{k} = \frac{1}{2} \left[(k-1)n_{k-1} - kn_{k} \right] + \delta_{k1}$$

🚳 This now becomes

$$n_{k} = \frac{1}{\mu} \left[A_{k-1} n_{k-1} - A_{k} n_{k} \right] + \delta_{k1}$$

$$\Rightarrow (A_k+\mu)n_k = A_{k-1}n_{k-1}+\mu\delta_{k1}$$

🚳 Again two cases:

$$k = 1: n_1 = \frac{\mu}{\mu + A_1}; \qquad k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$$

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible Robustness Krapivsky & Redner's Analysis Universality? Sublinear attachment kernels Nutshell References

Time for pure excitement: Find asymptotic behavior of n_k given A_k \rightarrow k as k $\rightarrow \infty$.
 For large k, we find:

$$n_k = \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \propto k^{-\mu - 1}$$

Since μ depends on A_k , details matter...

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism

Robustness

Krapivsky & Redner's model

Generalized mode

Analysis

Universality? Sublinear attachmen kernels

Superlinear attachment kernels Nutshell

References

VERMONT

20 45 of 56

- \circledast Now we need to find μ .
- Solution again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- \aleph Now subsitute in our expression for n_k :

$$\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$$

Closed form expression for μ.
We can solve for μ in some cases.
Our assumption that A = μt looks to be not too horrible.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Man stoy Model details Analysis A more plausible mechanism Robustness Knouvsky & Redners model Generalized model Analysis Universality? Sublinear attachmen kernels Superlinear attachmen kernels

シ Q C 46 of 56

Solution Consider tunable $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$. Solution Again, we can find $\gamma = \mu + 1$ by finding μ . Solution Closed form expression for μ :

$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

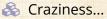
#mathisfun

R

$$\mu(\mu - 1) = 2\alpha \Rightarrow \mu = \frac{1 + \sqrt{1 + 8\alpha}}{2}$$

Since $\gamma = \mu + 1$, we have

$$0 \le \alpha < \infty \Rightarrow 2 \le \gamma < \infty$$



PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Kraptivsky & Redners model Generalized model Analysis Universality?

Sublinear attachment kernels Superlinear attachmen kernels

Nutshell

References

A Creation And Cr

Sublinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

line and Redner: [4] General finding by Krapivsky and Redner:

 $n_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}$

🚳 Stretched exponentials (truncated power laws). 🚳 aka Weibull distributions.

locality: now details of kernel do not matter.

Bistribution of degree is universal providing $\nu < 1$.

Scale-free networks

Scale-free networks Main story Model details Analysis Krapivsky & Redner's Sublinear attachment kerr References

Sublinear attachment kernels

Details:

Solve
$$1/2 < \nu < 1$$
:

$$n_k \sim k^{-\nu} e^{-\mu \left(\frac{k^{1-\nu}-2^{1-\nu}}{1-\nu}\right)}$$

So For
$$1/3 < \nu < 1/2$$
:

$$n_k \sim k^{-\nu} e^{-\mu \frac{k^{1-\nu}}{1-\nu} + \frac{\mu^2}{2} \frac{k^{1-2\nu}}{1-2\nu}}$$

And for $1/(r+1) < \nu < 1/r$, we have r pieces in exponential.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis Robustness Krapivsky & Redner's Universality? Sublinear attachment kerne Nutshell References

Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- line a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- So For $\nu > 2$, all but a finite # of nodes connect to one node.

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Krapusky & Redners mödel Generalized model Universality? Sublinea attachment kernels

Superlinear attachment ker

References

Nutshell:

Overview Key Points for Models of Networks:

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- 🚳 Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story \Rightarrow Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics... #excitement

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible mechanism Robustness Krapusky & Redners model Generalized model Generalized model Universality? Sublinear attachment kernels

Nutshell

References

Neural reboot (NR):

Turning the corner:

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plautible mechanism Robustness (ripapivsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels

Nutshell

References

https://www.youtube.com/v/axrTxEVQqN4?rel=0

VERMONT

References I

[1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378–382, 2000. pdf 7

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf

 J. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. S., R. Tanaka, and W. Willinger. The "Robust yet Fragile" nature of the Internet. Proc. Natl. Acad. Sci., 2005:14497–14502, 2005. pdf C

[4] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf 2

PoCS | @pocsvox

Scale-free networks

Scale-free networks Main story Model details Analysis A more plausible methanism Robustness Krapicsky & Redners model Generalized model Analysis Universality? Sublinear attachment kernels Sugerlinear attachment kernels

References

