System Robustness

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

200 1 of 43

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality

These slides are brought to you by:

Sealie & Lambie Productions

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

990 2 of 43

Outline

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

200 3 of 43

OF PERCOLATION

PoCS | @pocsvox

System Robustness

Robustness

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

200 4 of 43

2

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticali COLD theory Network robustness

References

Many complex systems are prone to cascading catastrophic failure: exciting!!!

- Blackouts
- Disease outbreaks
- Vildfires
- Earthquakes
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...

Our emblem of Robust-Yet-Fragile:

System Robustness

Robustness HOT theory Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

References

DQ @ 7 of 43

"Trouble ..."

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

200 8 of 43

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

References

 The handle: 'Highly Optimized Tolerance' (HOT)^[4, 5, 6, 10]

 The catchphrase: Robust yet Fragile
 The people: Jean Carlson and John Doyle

System robustness may result from

1. Evolutionary processes

2. Engineering/Design

uncertain conditions.

Great abstracts of the world #73: "There aren't any." ^[7]

ldea: Explore systems optimized to perform under

200 9 of 43

Features of HOT systems: ^[5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental signals
- lighly specialized, low entropy configurations
- Power-law distributions appear (of course...)

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Critical COLD theory

Network robustness

200 10 of 43

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Forest fire example: ^[5]

- \mathfrak{S} Square $N \times N$ grid
- & Sites contain a tree with probability ρ = density
- rightarrow Sites are empty with probability 1ho
- Sires start at location (i, j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- 🗞 Connected clusters of trees burn completely
- 🚳 Empty sites block fire
- Best case scenario: Build firebreaks to maximize average # trees left intact given one spark

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Forest fire example: ^[5]

- 🚳 Build a forest by adding one tree at a time
- Test D ways of adding one tree
- D = design parameter
- \bigotimes Average over P_{ij} = spark probability
- $\bigcirc D = 1$: random addition
- $\bigotimes D = N^2$: test all possibilities

Measure average area of forest left untouched f(c) = distribution of fire sizes c (= cost) $\text{Yield} = Y = \rho - \langle c \rangle$

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Specifics:

2

$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

Solution In the original work, $b_y > b_x$ Solution has more width in y direction.

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

Dac 14 of 43

HOT Forests

N = 64

(a) D = 1(b) D = 2(c) D = N(d) $D = N^2$

P_{ij} has a Gaussian decay

Optimized forests do well on average (robustness) But rare extreme events occur (fragility)

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

HOT Forests

PoCS | @pocsvox

System Robustness

FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D = 1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N = 64, and (b) for D = 2 and $N = 2, 2^2, \dots, 2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L = \log[\langle f \rangle / (1 - \langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

29 CP 16 of 43

HOT Forests:

Y = 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for $D = N^2$, and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Narrative causality:

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness

na 19 of 43

Random Forests

D = 1: Random forests = Percolation^[11]

- 🚳 Randomly add trees.
- \clubsuit Below critical density ρ_{c} , no fires take off.
- Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.
- Solution of the critical density, is there a power-law distribution of tree cluster sizes.
- least is random and featureless.

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

29 c 21 of 43

HOT forests nutshell:

🚳 Highly structured

- Power law distribution of tree cluster sizes for
 - $\rho > \rho_c$
- \clubsuit No specialness of ρ_c
- 🚓 Forest states are tolerant
- 🚳 Uncertainty is okay if well characterized
- If P_{ij} is characterized poorly, failure becomes highly likely

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye^[6]

PLR = probability-lossresource. Minimize cost subject to 1 resource (barrier) constraints: $C = \sum_{i} p_{i} l_{i}$ given $l_i = f(r_i)$ and $\sum r_i \leq R$. DC = Data Compression. Horror: log. Screaming: "The base! What is the base!? You monsters!"

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

23 of 43

HOT theory:

The abstract story, using figurative forest fires:

- Siven some measure of failure size y_i and correlated resource size x_i with relationship $y_i = x_i^{-\alpha}$, $i = 1, ..., N_{\text{sites}}$.
- Besign system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- 🚳 Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} Pr(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

1. Cost: Expected size of fire:

$$C_{ ext{fire}} \propto \sum_{i=1}^{N_{ ext{sites}}} p_i a_i.$$

 a_i = area of *i*th site's region, and p_i = avg. prob. of fire at *i*th site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

We are assuming isometry.
 In *d* dimensions, 1/2 is replaced by (*d*−1)/*d*

3. Insert question from assignment 6 🖸 to find:

$$\mathbf{Pr}(a_i) \propto a_i^{-\gamma}.$$

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

Continuum version:

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) \mathsf{d}\vec{x}$$

where *C* is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$R(\vec{x})\mathsf{d}(\vec{x}) = \mathsf{c}$$

where c is a constant.

laim/observation in is that typically [4]

$$A(\vec{x}) \sim R^{-\beta}(\vec{x})$$

So For spatial systems with barriers: $\beta = d$.

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

シュ へ 26 of 43

The Emperor's Robust-Yet-Fragileness:

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

na ? 27 of 43

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

na @ 29 of 43

SOC theory

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld^[3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- 🚳 Much criticism and arguing...

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

DQ @ 31 of 43

"How Nature Works: the Science of Self-Organized Criticality" **3** C by Per Bak (1997). ^[2]

Avalanches of Sand and Rice ...

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

"Complexity and Robustness" Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. ^[6]

HOT versus SOC

- 🚳 Both produce power laws
- 🚳 Optimization versus self-tuning
- HOT systems viable over a wide range of high densities
- 🗞 SOC systems have one special density
- HOT systems produce specialized structures
- SOC systems produce generic structures

HOT theory—Summary of designed tolerance^[6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal configuration	Generic, homogeneous, self-similar	Structured, heterogeneous, self-dissimilar
2	Robustness	Generic	Robust, yet fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for power laws	Critical internal fluctuations	Robust performance
7	Exponent α	Small	Large
8	α vs. dimension d	lpha pprox (d-1)/10	lpha pprox 1/d
9	DDOFs	Small (1)	Large (∞)
10	Increase model resolution	No change	New structures, new sensitivities
11	Response to forcing	Homogeneous	Variable

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

References

VERMONT 8

20 33 of 43

COLD forests

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations^[9]
- Weight cost of larges losses more strongly
- lncreases average cluster size of burned trees...
- 🚳 ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticali

COLD theory Network robustness

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

 $P(x) \sim x^{-\gamma} e^{-x/x_c}$

where x_c is the approximate cutoff scale. May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality

COLD theory

We'll return to this later on:

- 🚳 Network robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]
- General contagion processes acting on complex networks.^[13, 12]
- 🚳 Similar robust-yet-fragile stories ...

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness

The Emperor's Robust-Yet-Fragileness:

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness

References

20 39 of 43

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378–382, 2000. pdf
- [2] P. Bak. How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag, New York, 1997.
- [3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality - an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987. pdf
- J. M. Carlson and J. Doyle.
 Highly optimized tolerance: A mechanism for power laws in designed systems.
 Phys. Rev. E, 60(2):1412–1427, 1999. pdf

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

うへ ~ 40 of 43

References II

 J. M. Carlson and J. Doyle.
 Highly optimized tolerance: Robustness and design in complex systems.
 Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf

[6] J. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

 J. Doyle.
 Guaranteed margins for LQG regulators.
 IEEE Transactions on Automatic Control, 23:756–757, 1978. pdf

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

20 Al of 43

References III

[8] H. J. Jensen. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge, UK, 1998.

[9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.

[10] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.

[11] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, Washington, D.C., Second edition, 1992.

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticali COLD theory Network robustness

References

Dac 42 of 43

References IV

PoCS | @pocsvox

System Robustness

Robustness HOT theory Narrative causality Random forests Self-Organized Criticali COLD theory Network robustness

References

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007. pdf C

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf

