
PoCS|@pocsvox

System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References

e

y

pertur-

these

trade-

the

trade-

which

distinguish

studied

chaos”

possible

percolation

fea-

study

1)

sites

ires,

asso-

to

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for and

.
.
.
.
.

.
1 of 43

System Robustness
Principles of Complex Systems | @pocsvox
CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center
Vermont Advanced Computing Core | University of Vermont

What's the Story?

Principles of
Complex Systems

@pocsvox

PoCS

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300
http://www.twitter.com/@pocsvox
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References

e

y

pertur-

these

trade-

the

trade-

which

distinguish

studied

chaos”

possible

percolation

fea-

study

1)

sites

ires,

asso-

to

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for and

.
.
.
.
.

.
2 of 43

These slides are brought to you by:

http://www.uvm.edu
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References

e

y

pertur-

these

trade-

the

trade-

which

distinguish

studied

chaos”

possible

percolation

fea-

study

1)

sites

ires,

asso-

to

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for and

.
.
.
.
.

.
3 of 43

Outline

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

References

http://www.uvm.edu
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References

e

y

pertur-

these

trade-

the

trade-

which

distinguish

studied

chaos”

possible

percolation

fea-

study

1)

sites

ires,

asso-

to

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for and

.
.
.
.
.

.
4 of 43

http://www.uvm.edu
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References

e

y

pertur-

these

trade-

the

trade-

which

distinguish

studied

chaos”

possible

percolation

fea-

study

1)

sites

ires,

asso-

to

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for and

.
.
.
.
.

.
6 of 43

Robustness

 Many complex systems are prone to cascading
catastrophic failure: exciting!!!
 Blackouts
 Disease outbreaks
 Wildfires
 Earthquakes

 But complex systems also show persistent
robustness (not as exciting but important...)

 Robustness and Failure may be a power-law
story...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Our emblem of Robust-Yet-Fragile:

http://www.uvm.edu
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“Trouble ...”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Robustness

 System robustness may result from
1. Evolutionary processes
2. Engineering/Design

 Idea: Explore systems optimized to perform under
uncertain conditions.

 The handle:
‘Highly Optimized Tolerance’ (HOT) [4, 5, 6, 10]

 The catchphrase: Robust yet Fragile
 The people: Jean Carlson and John Doyle
 Great abstracts of the world #73: “There aren’t

any.” [7]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.cds.caltech.edu/~doyle/
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Robustness

Features of HOT systems: [5, 6]

 High performance and robustness
 Designed/evolved to handle known stochastic

environmental variability
 Fragile in the face of unpredicted environmental

signals
 Highly specialized, low entropy configurations
 Power-law distributions appear (of course...)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Robustness

HOT combines things we’ve seen:
 Variable transformation
 Constrained optimization

 Need power law transformation between
variables: (� = �− )

 Recall PLIPLO is bad...
 MIWO is good: Mild In, Wild Out
 � has a characteristic size but � does not

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Robustness

Forest fire example: [5]

 Square � × � grid
 Sites contain a tree with probability � = density
 Sites are empty with probability � − �
 Fires start at location (�, �) according to some

distribution ���
 Fires spread from tree to tree (nearest neighbor

only)
 Connected clusters of trees burn completely
 Empty sites block fire
 Best case scenario:

Build firebreaks to maximize average # trees left
intact given one spark

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Robustness

Forest fire example: [5]

 Build a forest by adding one tree at a time
 Test � ways of adding one tree
 � = design parameter
 Average over ��� = spark probability
 � = �: random addition
 � = � 2: test all possibilities
Measure average area of forest left untouched
 ( ) = distribution of fire sizes (= cost)
 Yield = � = � − ⟨ ⟩

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Robustness

Specifics:
 ��� = ��; �, ���; �, �

where ��; , ∝ −[(�+ )/ ]2
 In the original work, � > �
 Distribution has more width in � direction.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT Forests
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FIG. 1. Sample configurations at peak yield for and

[5]

� = 6�
(a) � = �
(b) � = �
(c) � = �
(d) � = �2��� has a
Gaussian decay

 Optimized forests do well on average (robustness)
 But rare extreme events occur (fragility)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT Forests
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !

1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves. [5]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT Forests:

 � = ‘the average density of trees left unburned in a
configuration after a single spark hits.’ [5]
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N

2 with N ! 64, and (b) for D !

N
2, and N ! 64 at equal density increments of 0.1, ranging at

r ! 0.1 (bottom curve) to r ! 0.9 (top curve).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Narrative causality:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random Forests

� = �: Random forests = Percolation [11]

 Randomly add trees.
 Below critical density �c, no fires take off.
 Above critical density �c, percolating cluster of

trees burns.
 Only at � , the critical density, is there a power-law

distribution of tree cluster sizes.
 Forest is random and featureless.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT forests nutshell:

 Highly structured
 Power law distribution of tree cluster sizes for� > �
 No specialness of �
 Forest states are tolerant
 Uncertainty is okay if well characterized
 If ��� is characterized poorly, failure becomes

highly likely

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT forests—Real data:

“Complexity and Robustness,” Carlson & Dolye [6]

izing,

theoretical Fig. 1. Log–log (base 10) comparison of DC, WWW, CF, and FF data (symbols)

with PLR models (solid lines) (for $ % 0, 0.9, 0.9, 1.85, or " % 1!$ % &, 1.1,1.1, 0.054,

respectively) and the SOC FF model (" % 0.15, dashed). Reference lines of " % 0.5,

1 (dashed) are included. The cumulative distributions of frequencies !(l ! li) vs. li

describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the

U.S. Fish and Wildlife Service Lands (FF) (17), the '10,000 largest California

brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston

University during 1994 and 1995 (WWW) (19), and code words from DC. The size

units [1,000 km2 (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-

rithmic decimation of the data are chosen for visualization.

 PLR = probability-loss-
resource.

 Minimize cost subject to
resource (barrier)
constraints:� = ∑� ����
given�� = (��) and ∑ �� ≤ �.

 DC = Data Compression.
 Horror: log. Screaming:

“The base! What is the
base!? You monsters!”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT theory:

The abstract story, using figurative forest fires:
 Given some measure of failure size �� and

correlated resource size �� with relationship�� = �−� , � = �, … , �sites.
 Design system to minimize ⟨�⟩

subject to a constraint on the ��.
 Minimize cost: � = �sites∑�=1 � �(��)��

Subject to ∑�sites�=1 �� = constant.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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1. Cost: Expected size of fire:�fire ∝ �sites∑�=1 ����.�� = area of �th site’s region, and �� = avg. prob. of fire
at �th site over some time frame.

2. Constraint: building and maintaining firewalls.
Per unit area, and over same time frame:�firewalls ∝ �sites∑�=1 �1/2� �−1� .
 We are assuming isometry.
 In � dimensions, 1/2 is replaced by (� − 1)/�

3. Insert question from assignment 6 to find:��(��) ∝ �−� .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment6.pdf
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Continuum version:
1. Cost function: ⟨�⟩ = ∫ �( ⃗�)�( ⃗�)d ⃗�

where � is some cost to be evaluated at each
point in space ⃗� (e.g., � ( ⃗�) ), and �( ⃗�) is the
probability an Ewok jabs position ⃗� with a
sharpened stick (or equivalent).

2. Constraint: ∫ �( ⃗�)d( ⃗�) = c

where is a constant.

 Claim/observation in is that typically [4]�( ⃗�) ∼ �− ( ⃗�)
 For spatial systems with barriers: � = .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The Emperor’s Robust-Yet-Fragileness:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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SOC theory

SOC = Self-Organized Criticality
 Idea: natural dissipative systems exist at ‘critical

states’;
 Analogy: Ising model with temperature somehow

self-tuning;
 Power-law distributions of sizes and frequencies

arise ‘for free’;
 Introduced in 1987 by Bak, Tang, and

Weisenfeld [3, 2, 8]:
“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987);

 Problem: Critical state is a very specific point;
 Self-tuning not always possible;
 Much criticism and arguing...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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“How Nature Works: the Science of
Self-Organized Criticality”
by Per Bak (1997). [2]

Avalanches of Sand and Rice …

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/dp/038798738X/
http://www.amazon.com/dp/038798738X/
http://www.amazon.com/dp/038798738X/
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the thermodynamic limit, translational invariance of the ensem-
ble renders the choice of P(i, j) irrelevant (Table 1.11), and the
density # is a priori the only tunable parameter (Table 1.9). Site
percolation exhibits a continuous phase transition at density #c

! 0.592, associated with the emergence of an infinite connected
cluster. The probability that any given site is on the infinite
cluster defines the percolation probability !#(#), which is zero
for # ( #c and increases continuously and monotonically to one
for # " #c. At the critical density, the infinite cluster is fractal and
an infinitesimal fraction of the total density.

We define yield, Y, to be the remaining density after one
spark:Y & # " (l'. Here # is the density before the spark, and (l'
is the average loss in density because of the fire, computed over the
distribution of sparks P(i, j) as well the configurations in the
ensemble. For a given strategy (i.e., configuration or ensemble of
configurations), yield is a measure of the mean survival, which may
be viewed as profit or biological fitness. Optimization of yield can
occur through deliberate design, or via evolutionary selection
pressure, for a given distribution of sparks P(i, j).

The only time a spark leads to macroscopic loss is when # ' #c

and the infinite cluster is hit, in which case the loss is given by
the density fraction associated with the infinite cluster:

Y % P#)p*)p & P#)p** ' )1 & P#)p**p % p & P#)p*2 [1]

The maximum yield corresponds to the critical density #c (see Fig.
2), which is the maximum density for which (l' & 0. At #c the
distribution of cluster sizes is a power law, reflecting the fractal
self-similarity of the critical state (Table 1.5 and 1.6). A sample
configuration at the critical density is illustrated in Fig. 3a. The
power law in the cluster size distribution leads to a power law in the
fire size distribution, which written cumulatively takes the form:
!(l) $ l"!. For site percolation on a two-dimensional square lattice,
the exponent ! !0.05, which is significantly smaller than the power
laws in Fig. 1. As the dimension increases toward the upper critical
dimension, the power laws become increasingly steep (see Fig. 4
and Table 1.8), reflecting the fact that large fluctuations that arise
through chance aggregation in random systems become increas-
ingly unlikely with increased dimension.

In equilibrium statistical mechanics, criticality is a necessary
and sufficient condition for power laws and universality. There
are two quite different ways that this can be and has been
interpreted. Physicists see complexity emerging between order
and disorder at the critical point. When physicists find power
laws in the statistics of some phenomena and say that this is
‘‘suggestive of criticality,’’ they are implicitly (i) referring to the

necessity results, (ii) assuming that some appropriate model
system is relevant, and (iii) assuming that some mechanism has
tuned the density to the critical point. SOC addresses the third
issue, replacing tuning with feedback dynamics that creates a
stable equilibrium at a critical point.

Engineers and many mathematicians would tend to have an
opposite interpretation of the same theoretical results about
criticality. They would tend to approach the problem in terms of
tuning rather than phase transitions, and power laws would be
viewed as arising from tuning and optimization, with criticality
a rare and extreme special case when only one parameter—
density—is used. Introducing feedback dynamics as in SOC to
replace tuning would be one design alternative among many that

Fig. 2. Yield vs. density curves for 64 % 64 random and HOT lattices. Here and

in Fig. 3, we take P(i,j) & exp("((i + j)!N) with ( & 24. The heavy solid line

illustrates the percolation forest fire model, with maximum yield at #c. The

light solid line illustrates the results generated by the local incremental

algorithm, where the maximum yield point corresponds to Fig. 3c. The +

marks the result for grid design (Fig. 3d).

Fig. 3. Sample lattices contrasting criticality and HOT: (a) The percolation

forest fire model at #c and HOT configurations obtained by (b) Darwinian

evolution, (c) local incremental algorithm, and (d) grid design. Empty sites are

black, and occupied clusters are grayscale (percolation) or white (HOT). Sim-

ulation parameters are as in Fig. 2.

Fig. 4. Exponent ! versus dimension d for percolation and HOT. The results

for percolation (dots) are taken from ref. 11, and the fit ! !(d"1)!10 is

approximate.

Carlson and Doyle PNAS " February 19, 2002 " vol. 99 " suppl. 1 " 2541

“Complexity and Robustness”
Carlson and Doyle,
Proc. Natl. Acad. Sci., 99, 2538–2545,
2002. [6]

HOT versus SOC
 Both produce power laws
 Optimization versus self-tuning
 HOT systems viable over a wide range of high

densities
 SOC systems have one special density
 HOT systems produce specialized structures
 SOC systems produce generic structures

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/carlson2002a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/carlson2002a.pdf
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HOT theory—Summary of designed
tolerance [6]

engineering,

general

Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data

1 Internal

configuration

Generic,

homogeneous,

self-similar

Structured,

heterogeneous,

self-dissimilar

2 Robustness Generic Robust, yet

fragile

3 Density and yield Low High

4 Max event size Infinitesimal Large

5 Large event shape Fractal Compact

6 Mechanism for

power laws

Critical internal

fluctuations

Robust

performance

7 Exponent ! Small Large

8 ! vs. dimension d ! ! (d " 1)!10 ! ! 1!d

9 DDOFs Small (1) Large (#)

10 Increase model

resolution

No change New structures,

new sensitivities

11 Response to

forcing

Homogeneous Variable

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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COLD forests

Avoidance of large-scale failures
 Constrained Optimization with Limited

Deviations [9]

 Weight cost of larges losses more strongly
 Increases average cluster size of burned trees...
 ... but reduces chances of catastrophe
 Power law distribution of fire sizes is truncated
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Cutoffs

Observed:
 Power law distributions often have an exponential

cutoff �(�) ∼ �− −�/�
where � is the approximate cutoff scale.

 May be Weibull distributions:�(�) ∼ �− − �− +1
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Robustness

We’ll return to this later on:
 Network robustness.
 Albert et al., Nature, 2000:

“Error and attack tolerance of complex
networks” [1]

 General contagion processes acting on complex
networks. [13, 12]

 Similar robust-yet-fragile stories ...
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The Emperor’s Robust-Yet-Fragileness:
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