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- Models

i e bl

Generalized random networks;
Small-world networks;
Generalized affiliation networks;
Scale-free networks;

Statistical generative models (p*).
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,
but it is always an assumption.
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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd&s-Rényi random networks or ER
graphs.
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. Random networks—basic features:
< Number of possible edges:

ogmg(2

< Limit of m = 0: empty graph.
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: Random networks—basic features:

< Number of possible edges:

0<m< (N) 8 M

< Limit of m = 0: empty graph.

<% Limit of m = (§): complete or fully-connected
graph.
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Number of possible edges:

N%:N@hd)

O§m§(2 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ BN,
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Number of possible edges:

N%:N@ﬁd)

0§m§(2 2

Limit of m = 0: empty graph.
Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:
o) ~ BN,

Given m edges, there are ((2)) different possible

m

networks.
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Number of possible edges:

N%:N@ﬁd)

O§m§(2 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ BN,

Given m edges, there are ((2)) different possible

m

networks.
Crazy factorial explosion for 1 <« m « ().
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Number of possible edges:

N%:N@ﬁd)

O§m§(2 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

o) ~ BN,

Given m edges, there are ((2)) different possible

m

networks.
Crazy factorial explosion for 1 <« m « ().

Real world: links are usually costly so real
networks are almost always sparse.
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. Random networks
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How to build standard random networks:

i
<& Given N and m.
<% Two probablistic methods
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- Random networks

| How to build standard random networks:
i &> Given N and m.
& Two probablistic methods (we'll see a third later

on)
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (§) pairs with appropriate
probability p.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (§) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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on)
” & i Generalized
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probability p. 2l

o build in practice

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
Algorithm: Randomly choose a pair of nodes 7 and
J. ¢ # j, and connect if unconnected; repeat until
all m edges are allocated.

m friends are
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Two probablistic methods (we'll see a third later éu?'dsvﬁgfsgselrx
on)
1. Connect each of the (§) pairs with appropriate Sﬁfnﬂgﬁim
probability p. skl 81

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
J. ¢ # j, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (§) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
J. ¢ # j, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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- Random networks
= Afew more things:
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- Random networks
A few more things:
< For method 1, # links is probablistic:

1

<% So the expected or average degree is
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- Random networks
A few more things:
For method 1, # links is probablistic:

1
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- Random networks
A few more things:
For method 1, # links is probablistic:
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- Random networks

For method 1, # links is probablistic:
N 1
(m) =p(,) =p5N(N —1)

So the expected or average degree is

21 Z
N

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as
N — oo.

Sp3N(N —1) = ZpaN(N 1) = p(N — 1),
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 Random networks: examples

Next slides:
Example realizations of random networks
& N =500
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- Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
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Average degree (k) runs from 0.4 to 4.
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Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.
Look at full network plus the largest component.
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- Random networks: examples for N=500
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_ Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: ™!

3 x #triangles
20 o dtriples
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- Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?

Consider triangle/triple clustering coefficient: ™!

9 =

3 x #triangles
#triples

Recall: C, = probability that
two friends of a node are
also friends.
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: ™!

3 x #triangles

20 o dtriples
! Recall: C, = probability that
i two friends of a node are
‘ also friends.
’l B0y Or: C, = probability that a
2 r) triple is part of a triangle.
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- Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: ™!
3 x #triangles
20 o dtriples

! Recall: C, = probability that
i two friends of a node are
also friends.
P20y Or: C, = probability that a
,,t) triple is part of a triangle.
| For standard random
! networks, we have simply
: that
“»3 CQ = p
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose k'

ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose k'
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (3"

P(k;p, N) = (
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Our degree distribution:
Rlseg Ml e il ipia p)
What happens as N — oo?

We must end up with the normal distribution
right?
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Our degree distribution:

Bl W= (e p (1 —p)1

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.
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Our degree distribution:

Bl W= (e p (1 —p)1

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...
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Our degree distribution:

Bler = (lmipi(l—p) "

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...

So examine limit of P(k;p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N—-1-k L\
P(k;p,N)QUZ< —N<k_>1) —><l];>‘ ekl
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Our degree distribution:

Bler = (lmipi(l—p) "

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...

So examine limit of P(k;p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N—-1—-k A
P(k;p, N) = UZ ( —N<k_>1> B <’];>' (k)

This is a Poisson distribution (£ with mean (k).
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Poisson basics:
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Classic use: probability

that an event occurs &
times in a given time
period, given an
average rate of
occurrence.

e.g.

phone calls/minute,
horse-kick deaths.

‘Law of small numbers’
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~ Poisson basics:

Normalization: we must have

> Pk (R)) = 1
k=0
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- Poisson basics:
Normalization: we must have

> Pk (k) =1
k=0
Checking:

oo o0 kk:
S Pl = o

k=0 k=0
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 Poisson basics:

Normalization: we must have

" Pk (B)
k=0

Checking:

=
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Poisson basics:

Mean degree: we must have

Checking:
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~ Poisson basics:

Mean degree: we must have

By = kP(k; (k).
k=0

Checking:
i kP(k; (k)) = i k%ﬁ
k=0 k=0
oo k k
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 Poisson basics:

Mean degree: we must have

By = kP(k; (k).
k=0

Checking:
i kP(k; (k)) = i k%—k.
k=0 k=0
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 Poisson basics:

Mean degree: we must have

By = kP(k; (k).
k=0

Checking:
i kP(k; (k)) = i k%ﬁ
k=0 k=0
oo k k
=g (k) I; (k<—>1)'
i e <k,>k71
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 Poisson basics:

Mean degree: we must have
(k) = Y kP(K; (k).
k=0

Checking:

i EP(k; (k)) = i k%’ie‘<k>
k=0 k=0 ¥
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 Poisson basics:

Mean degree: we must have
(k) = Y kP(K; (k).
k=0

Checking:
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Poisson basics:

Mean degree: we must have
(k) = Y kP(K; (k).
k=0

Checking:

i EP(k; (k)) = i k<lli—>'ke*<k>
k=0 k=0 ¥

o

In CocoNuTs, we get to a better and crazier way of

doing this...
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- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.
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 Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k)* + (k).
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- Poisson basics: et
Networks

The variance of degree distributions for random

Pure random

networks turns out to be very important. netvnlis

Definitions

Using calculation similar to one for finding (k) we
find the second moment to be:

Generalized

(%) = (k)2 + (k).
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Variance is then

a® = (k2) = (k)2
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- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:

(k2) = (k)* + (k).

Variance is then

a® = (k2) = (k)2

(B)? + (k) — (k)*
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- Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:

(k2) = (k)* + (k).

Variance is then

a® = (k2) = (k)2
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- Poisson basics:

The variance of degree distributions for random

networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:
e e

Variance is then

0 = (%) = (B)% = (k) + (k) - (b2

So standard deviation ¢ is equal to

(k).
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- Poisson basics:

The variance of degree distributions for random

networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:
(k2 = (k2 (k)
Variance is then

0 = (k%) = (B2 = (B)% + (k) = ()2 =

So standard deviation ¢ is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...
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 General random networks
So... standard random networks have a Poisson
degree distribution
Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !
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- General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

Can generalize construction method from ER
random networks.
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- General random networks

So... standard random networks have a Poisson

degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !
Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P, and form links with probability

P(link between i and j) x w,w

j.
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- General random networks

So... standard random networks have a Poisson

degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !
Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P, and form links with probability

P(link between i and j) x w,w

But we'll be more interested in

j.
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- General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.

Also known as the configuration model. !

Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P, and form links with probability
P(link between i and j) o< w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.

Also known as the configuration model. !

Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P, and form links with probability
P(link between i and j) o< w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
P oxxkpifork = L
Set P, = 0 (no isolated nodes).
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P oxxkpifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P oxxkpifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P oxxkpifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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Random networks: examples for N=1000 . ™
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Outline

Generalized Random Networks

How to build in practice
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Generalized random networks:
<& Arbitrary degree distribution P,
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- Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.
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Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.
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- Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.
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- Building random networks: Stubs

|dea: start with a soup of unconnected nodes with

stubs (half-edges):

S el

ottt Y;;

b1 ¢

i

+

il
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- Building random networks: Stubs

|dea: start with a soup of unconnected nodes with

stubs (half-edges):

S el

:IIII Y;;
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- Building random networks: Stubs el o
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Pure random
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\T/ % Glcmcr‘wzm‘j
Random

I LT

Randomly select stubs

I II Y\T/+ I II I (not nodesl) and ;{e‘fél’grwcgs

! - H} connect them. “ J f

I % H } } } Must have an even ; P\

} number of stubs. =ty

Ly offt -4 ‘

¥ I B B

A 390f 70



http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Building random networks: Stubs el o
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- Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
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- Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
Simplest solution: randomly rewire two edges at a
time.
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.
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- General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
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General random rewiring algorithm

: e
i 1 2

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.

Node degrees do not change.
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General random rewiring algorithm
B

e

o

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.
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General random rewiring algorithm

B

o

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.
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- Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.

Rule of thumb: # Rewirings ~ 10 x # edges ®.
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' Random sampling s apo
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Random sarhpling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) *);

(@)

1 configuration

(b)

90 configurations

% frequency of occurrence

Eo anem s na e ontapinid]

‘g0 with the winners

R T L

switching algorithm

o Sl P Al bvmiis)

matching algorithm
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| Networks
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.
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- Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.

Easy to do exactly numerically since k is discrete.
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 Network motifs

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.
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- Network motifs

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).
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Directed network with 577 interactions (edges)
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Random
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. . Ire random
Idea of motifs ® introduced by Shen-Orr, Alon et b
al. in 2002.
Looked at gene expression within full context of cisas
transcriptional regulation networks. e
. 5 5 g and
Specific example of Escherichia coli. el

onfiguration model

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree

frequency N,,.
Looked for certain subnetworks (motifs) that |
appeared more or less often than expected e
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Network motifs
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Network motifs

single input module (SIM)

Master switch.
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 Outline

Generalized Random Networks

Random friends are strange
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- The edge-degree distribution:
| The degree distribution P,, is fundamental for our
description of many complex networks
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- The edge-degree distribution:
The degree distribution P,, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.
A second very important distribution arises from

choosing randomly on edges rather than on nodes.
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- The edge-degree distribution: gl o
‘ Networks

The degree distribution P, is fundamental for our
description of many complex networks

Pure random

Again: P, is the degree of randomly chosen node. nemworks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

ering

Degree distributions

Define Q,. to be the probability the node at a random 5 ki
end of a randomly chosen edge has degree k. Networks
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How to build in practice
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP,

Qk = x> 1./p
Zk/:o k/Pk/
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- The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP Py
B

Qi =
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- The edge-degree distribution: skt o 0
Networks

The degree distribution P, is fundamental for our

description of many complex networks Tt
ure random

networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random 5 ki
end of a randomly chosen edge has degree k. ﬁftvv§wk?‘ L

Now choosing nodes based on their degree (i.e., size):

Normalized form:

kP, kP, |
Qk = == ’ = T b o )
Zk/:o k Pk:/ < > ‘L‘_‘;,",J“
Big deal: Rich-get-richer mechanism is built into this l‘f@?@“\‘}?{#}i |§|
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<= Probability of randomly
selecting a node of degree k
by choosing from nodes:
P, =3/17, P, =2/7, Py = 1/7,
Py, =1/1.
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

Pl —3/7p ol Pl
Pa—1v/47

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Q5 =3/16,Q; = 6/16,
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

Pl —3/7p ol Pl

Pl

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs = 3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, Rs = 6/16.

PoCS | @poesvox

Random
Networks

Pure random
networks
Definitions

Generalized
Random
Networks

The O
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

A 530f70


http://www.uvm.edu
http://www.uvm.edu/~pdodds

3 ‘The edge-degféé distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.
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 The edge—'de'gre.e distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q;.:

R, = probability that a friend of a random node
has k other friends.
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The edge-'de'gre.e distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q;.:

R, = probability that a friend of a random node
has k other friends.

(k+ 1Py
Zk/:()(k/ = ]‘>Pk/+1

Rk:
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The edge-'de'gre.e distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q;.:

R, = probability that a friend of a random node
has k other friends.

nll (k+1)Py 2 (kBRI
T R LR (k)
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- The edge-degree distribution: alli i e
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For random networks, @, is also the probability Pure random

that a friend (neighbor) of a random node has & i

friends. tor

Useful variant on Q. Berec ot
Generalized

R, = probability that a friend of a random node Networ

Configuration model
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The edge-'delgree distribution:

Random

Networks
For random networks, @, is also the probability Pure random
that a friend (neighbor) of a random node has & Skt

friends.
Useful variant on Q;.:

Generalized
Random

R, = probability that a friend of a random node Networks
has k other friends. P

nll (k+1)Py 2 (kBRI
T R LR (k)

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?
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- The edge-degree distribution: Mialii v 5
Given R, is the probability that a friend has & other

friends, then the average number of friends' other Chiicd i
friends is networks
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- The edge-degree distribution:
Given R, is the probability that a friend has & other

friends, then the average number of friends' other
friends is

% - k:+1Pk+1
= kR
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3 ‘The edge-degféé distribution:

Given R, is the probability that a friend has & other
friends, then the average number of friends' other
friends is

% - k:+1Pk+1
= kR

1

(k) £

Sl

k(k+1)Ppq

~
Il

1
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 The edge—'de'gré.e distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

L] Z kR, = Z k_(f‘:_L)_.ﬁtl
k=0 k=0 <k>

1 o0
Zk: (k+1)Py.;

=1
=%I;«k+1>2—<k+1>>ml

(where we have sneakily matched up indices)
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- The edge-degree distribution:
‘ Given R, is the probability that a friend has k other

friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Ppi1
k=0 k=0 (k)

1 o0
Zk: (k+1)Py.;

=1
=%I;«k+1>2—<k+1>>ml

(where we have sneakily matched up indices)
1 o0

e _j:()(j2 —j)P; (usingj=k+1)
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 The edge—'de'gre.e distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other

friends is

S kR S Rk E VP

v];kka];k: W

1 o0
7 2

1

(k)

—~
~>

o0

k

k(k+1)Py,y

1

> ((k+1)2—(k+1)) Py,

K1
(where we have sneakily matched up indices)

o0

I
]

(72 —4)P; (usingj=k+1)
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The edgé-defgr‘ée distribution: Poes gt

Random
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Note: our result, (k) , = ﬁ ((k2) — (k)), is true for
all random networks, independent of degree el i
distribution.
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j ‘The edge-degféé distribution:

Note: our result, (k) ., = ﬁ ((k2) — (k)), is true for

all random networks, independent of degree
distribution.

For standard random networks, recall

(k2) = (k)* + (k).
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j ‘The edge-degféé distribution:

Networks
Note: our result, (k) ., = <Tlci ((k2) — (k)), is true for
all random networks, independent of degree b e
distribution.
For standard random networks, recall :
(k2) = (k)2 + (k). o
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j ‘The edge-degféé distribution:

Random
Networks
Note: our result, (k) ., = <Tlci ((k2) — (k)), is true for
all random networks, independent of degree s 8 e

distribution. e
For standard random networks, recall

Degree distributions

<k2> S <k>2 + <k> Ssgs;ﬂized
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 The edge—'de'gre.e distribution:

Note: our result, (k) , < > ((k2) — (k)), is true for
all random networks independent of degree
distribution.

For standard random networks, recall
(k?) = (k)? + (k).

Therefore:

Again, neatness of results is a special property of
the Poisson distribution.
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The edge-'delgre.e distribution:

Note: our result, (k) , < > ((k2) — (k)), is true for

all random networks independent of degree
distribution.

For standard random networks, recall
(k?) = (k)? + (k).

Therefore:

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...
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- The edge-degree distribution:
In fact, R,, is rather special for pure random
networks ...

Substituting
_B*
SEETy
into
(k+1)Ppq

B ="
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' The edge-degree distribution:
In fact, R,, is rather special for pure random
networks ...

Substituting
ST
e k!
into (h 1+ 1)P
e = R
e b
- (k)
we have

(k+1) (D

e b
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- The edge-degree distribution:

In fact, R,, is rather special for pure random
networks ...

Substituting

k
g i e
Rk s <k> k+1
we have
g B DEED o G R,
(k) (k+1)! (kY (ATTE!
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- The edge-degree distribution:

In fact, R,, is rather special for pure random
networks ...

Substituting

T
rza i o (k)
into (k1 1P
e = R
B
(k)
we have
B (k<—;€->1> <(2><’“;;e<k> z Lk;;ﬁ m'wm
+1)! !
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- The edge-degree distribution:

In fact, R,, is rather special for pure random
networks ...

Substituting

Tk
S e
into (k1 1P
L)
B
(k)
we have
(k+1) (k+1)
3 (k<_l:>1> <(Z>+ i Wﬁmk'“k)
()
T
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- The edge-degree distribution:

In fact, R,, is rather special for pure random
networks ...

Substituting

S
rza i o (k)
into (k1 1P
e = R
R, = ————
(k)
we have
Rk =& (k<_£>l> <(Z>(k;;:e<k> = Lk’ﬁm'e(m
+ 1)! !
(kg
e Els
#samesies.
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“Two reasons why this matters

'Reason #1:
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Networks

Reason #1:

‘ 0 q P d
& Average # friends of friends per node is et
!

(ka) = (k) x (B)p = (K) s (B%) = () = (K%)= (R). ™
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- Two reasons why this matters
Reason #1:

Average # friends of friends per node is

(ko) = (k) x (k) g = (k) 7= ((K?) — (k) = (k?) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.
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- Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
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- Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
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- Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
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' Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... [ *!
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' Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) g = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... [ *!

4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

3

More on peculiarity #3:

&% Anode’s average # of friends: (k)
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- Two reasons why this matters

More on peculiarity #3:

<% Anode’s average # of friends: (k)
<o Friend’s average # of friends: ﬁ<’f_;>2

< Comparison:

R < R
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“ Two reasons why this matters

More on peculiarity #3:

<% Anode’s average # of friends: (k)
<o Friend’s average # of friends: ﬁ<’f_;>2

< Comparison:

s
P et ad e

R < R
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- Two reasons why this matters e el

Random
Networks
Pure random
A node’s average # of friends: (k) et
. 0 2
Friend's average # of friends: <<";€>>

Comparison:
Generalized
Random

aBh Tl Ml e BE

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

Intuition: for random networks, the more
connected a node, the more likely it is to be |
chosen as a friend. a'r;wm.»[-y 9
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Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. "]

- Your friends really are mensters #winners:'

1Some press I here®@ [MIT Tech Rewew]
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Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. "]

Your friends really are mensters #winners:’

& Go on, hurt me: Friends have more coauthors,
citations, and publications.

'Some press here (4 [MIT Tech Review].
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Your friends really are mrensters #winners:' Random.
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- “Generalized friendship paradox in
2¥ | complexnetworks: The case of scientific
/i | Collaboration” (4
Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. "]
our friends really are mensters #winners:'

Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

The hope: Maybe they have more enemies and
diseases too.

'Some press here (4 [MIT Tech Review].
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. Related disappointment:

Nodes see their friends’

color choices.

"https://www.washingtonpost.com/graphics/business/
wonkblog/majority-illusion/

PoCS | @poesvox

Random
Networks

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration modef
How to build in practice
Motifs

Randcm friends are

component

References

UN‘IVERSIFY I |
n& o VERMONT

“Ha 610f70


http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://www.washingtonpost.com/graphics/business/wonkblog/majority-illusion/
https://www.washingtonpost.com/graphics/business/wonkblog/majority-illusion/

I

Nodes see their friends
color choices.

Which color is more
popular?’

"https://www.washingtonpost.com/graphics/business/
wonkblog/majority-illusion/
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“ Two reasons why this matters
(Big) Reason #2:

(k)  is key to understanding how well random
networks are connected together.
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' Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.
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' Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?
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- TWo reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.
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- TWo reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.
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- TWo reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.

Note: Component = Cluster
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' Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.
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 Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node

number as we move out from a random node.
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 Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.
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 Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.
All of this is the same as requiring (k) g > 1.

Giant component condition (or percolation
condition):
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Random
Networks

A giant component exists if when we follow a Parerandote
networks

random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node -
Generalize:
number as we move out from a random node. R3hdom

Networks
All of this is the same as requiring (k) g > 1.

Giant component condition (or percolation
condition):

{k?) — (k)
(k)

Again, see that the second moment is an essential
part of the story.

(k)r = >
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- Structure of random networks gt

Random
Networks

A giant component exists if when we follow a i
networks

random edge, we are likely to hit a node with at Py
least 1 other outgoing edge.

Equivalently, expect exponential growth in node -
Generalize:
number as we move out from a random node. R3hdom

Networks
All of this is the same as requiring (k) g > 1. :

Giant component condition (or percolation
condition):

{k?) — (k)
(k)

Again, see that the second moment is an essential
part of the story.
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. Giant component for standard random networks:
& Recall (k2) = (k)2 + (k).
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. & Recall (k2) = (k)2 + (k).
<= Determine condition for giant component:

Giant component for standard random networks:
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(k)2 + (k).

Giant component for standard random networks:
| . & Recall (k%) =
<= Determine condition for giant component:
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& Reaall (k2) = (k)2 + (k).
<= Determine condition for giant component:

Giant component for standard random networks:
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Recall (k2?) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.
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Recall (k2?) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
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Recall (k2?) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (£,
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Recall (k2?) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (£,

We say (k) = 1 marks the critical point of the
system.
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eg if P, =ckYwith2<~y<3 k>1,then

e N R
k=1

o0
~ / z2-7dx
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o x3*7|:;1 =00 b

So giant component always exists for these kinds
of networks.

Cutoff scaling is k~3: if v > 3 then we have to look
harder at (k) .
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So giant component always exists for these kinds
of networks.

Cutoff scaling is k~3: if v > 3 then we have to look
harder at (k) .

HOW abOUt Pk; == 5k}k}0?
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