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Models

Some important models:
1. Generalized random networks;

. Small-world networks;

. Generalized affiliation networks;
. Scale-free networks;

. Statistical generative models (p*).
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Random network generator for N = 3:

& Get your own exciting generator here(.

& As N 7, polyhedral die rapidly becomes a ball...

networks

Definit
Hol

build theoretically

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Fandor m fiends are
strar

Largest component

References

UNIVEKSI'IY |0|
" VERMONT

Da e 50f69

PoCS | @pocsvox

Random
Networks

Pure random

Degree distributions

Generalized
Random
Networks

Largest component

References

L [
0
2 NERvoNT

Da 60f69


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300
http://www.twitter.com/@pocsvox
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/2011-02-26random-network-generator.png

Random networks

Pure, abstract random networks:

Consider set of all networks with N labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd6s-Rényi random networks or ER
graphs.

Random networks—basic features:
Number of possible edges:

(N) N(N —1)

<m< =
Osms(, 2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.
Number of possible networks with N labelled
nodes:

2(%’) ~ eLr2hN2,

Given m edges, there are ((%)) different possible
networks.

Crazy factorial explosion for 1 < m < ().

Real world: links are usually costly so real
networks are almost always sparse.

Random networks

How to build standard random networks:
Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes ¢ and
j, 1 # j, and connect if unconnected; repeat until
all m edges are allocated.
Best for adding relatively small numbers of links
(most cases).
1 and 2 are effectively equivalent for large N.
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Random networks

A few more things:
For method 1, # links is probablistic:

3)

1
—p=N(N -1
5) =P3 ( )

(m) =p(

So the expected or average degree is

_2(m)
W =5
= %p%N(N—l) :;{p%N(N—l) =p(N —1).

Which is what it should be...

If we keep (k) constant then p x 1/N — 0 as
N — oo.

Random networks: examples for N=500

Random networks: largest components

m =230
ZZ):}&g Ty —002 /)\{K %{

m =100 m =250
- m =240
(k) =0.96
m =260
(k) =1.04
m =280 _
~ m =500 m =1000
(ky=1.12 o2 lky=a
m =300
(k)=12
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Random networks: examples for N=500

m =250
(k) =1

m =250
(k)=1

Random networks: largest components

i
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Clustering in random networks:
< For construction method 1, what is the clustering
coefficient for a finite network?
<& Consider triangle/triple clustering coefficient: !
3 x #triangles
27 #triples

) & Recall: C, = probability that

Ly two friends of a node are
also friends.

=C, & Or: C, = probability that a
triple is part of a triangle.

: &% For standard random

' networks, we have simply
h that
3 02 =Dp.

Clustering in random networks:

&% So for large random
networks (N — o0),
clustering drops to zero.

&> Key structural feature of
random networks is that
they locally look like
pure branching networks

<> No small loops.

Degree distribution:

& Recall P, = probability that a randomly selected
node has degree k.

&% Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

<> Now consider one node: there are ‘N — 1 choose '
ways the node can be connected to & of the other
N — 1 nodes.

< Each connection occurs with probability p, each
non-connection with probability (1 — p).
<> Therefore have a binomial distribution (£
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Limiting form of P(k;p, N):
Our degree distribution:
Plk;p, N) = (N hp* (1 —p) N1k,
What happens as N — oo?
We must end up with the normal distribution
right?
If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — co.
But we want to keep (k) fixed...

So examine limit of P(k;p, N) whenp — 0 and
N — oo with (k) = p(IN — 1) = constant.

k N-1-k k
P(k;p,N) =~ % (1 - N<L—>1) — %e’“">

This is a Poisson distribution (' with mean (k).

AR A>0
P(k;\) = Zre ™
k! k=0,1,2,3,...
0.40 Classic use: probability
0.351 7 o A=l that an event occurs k
E ST times in a given time
o period, given an
o1 4 % average rate o
ool /| gt occurrence.
0,05 ‘,? b\g.opi‘h Qn% : eg:
0.00 fa - .
° s 1w phone calls/minute,
horse-kick deaths.
o
D ‘Law of small numbers’

Poisson basics:

Normalization: we must have

Checking:
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Poisson basics:

Mean degree: we must have

=" kP (R)
k=0

Checking:
N (k
ZkP(k )) = Zok% —{k)

==} k k

= e (k) I; (k<jl)!

B oo <k>k—l

= (k)e— (k)
— (kye-0) Z <i!> — (k) ®el® = (k)

In CocoNuTs, we get to a better and crazier way of
doing this...

Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k)% + (k).
Variance is then

= () = (2 = ()2 + () = (12 = (B

So standard deviation ¢ is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...

General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P,, and form links with probability

P(link between i and j) oc w;w;.

But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.
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Arbitrary degree distribution P,

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.
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Building random networks: Stubs

Phase 1:
Idea: start with a soup of unconnected nodes with

IT .
%4 Trobt botin

Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

A (B) ><>é
Being careful: we can't change the degree of any

node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a
time.

General random rewiring algorithm

iy

stubs (half-edges):

e

1

T

b

Riaate

-+
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Initially allow self- and
repeat connections.
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Node degrees do not change.
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Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and
repeat loops.

Phase 3:

Randomize network wiring by applying rewiring
algorithm liberally.
Rule of thumb: # Rewirings =~ 10 x # edges /.

Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) %!
(a) (b)

PoCS | @pocsvox

Random
Networks

Pure random
networks

Degree distributions

Generalized
Random
Networks

UNIVERSITY |o|
o VERMONT

> 410f69

PoCS | @pocsvox

Random
Networks

Pure random
networks
Definitior

'

stributions

Generalized
Random
V\urworl«

% frequency of occurrence
T

1 configuration 90 configurations

Sampling random networks

What if we have P, instead of NV,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.

Easy to do exactly numerically since k is discrete.

Note: not all P, will always give nodes that can be
wired together.

How to build in practice
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0 build theoretically

Network motifs

Idea of motifs [°]
al. in 2002.
Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected

introduced by Shen-Orr, Alon et

Network motifs

feedforward loop

X a _-inpu( 1 oputx
| Sos
X o
Y 0 F W e 6 0 2 T W W 2

0 2 4 6 8 10 12 1 16 18 20
o

z 1 output Z
v S E——_—

\ I I I

araBAD

Z only turns on in response to sustained activity in
X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.

Network motifs

single input module (SIM)

argCBH
argD
arg
argF
argl

Master switch.
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Network motifs

dense overlapping regulons (DOR)

Xy Xo Xg . Xp

2y 2, Z3 2.2,

poS
ada

oxyR
nhaR

%

ihf
P
hns

rcsA

nhaA
proP

alkA
katG
dps
osmC
ftsQAZ

Network motifs

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

For more, see work carried out by Wiggins et al. at
Columbia.

The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define Q,, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:

Or - PP kP
YR KB, (k)

Big deal: Rich-get-richer mechanism is built into this
selection process.
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Probability of randomly
selecting a node of degree k&
by choosing from nodes:

P, =3/7,P,=2/7, P, =1/7,
Ps=1/7.

Probability of landing on a

ez Y e node of degree k after
. 'V randomly selecting an edge
¢ and then randomly choosing
' one direction to travel:
Q1 =3/16,Q, = 4/16,

Qs =3/16, Qs = 6/16.
Probability of finding #

c outgoing edges = k after

J randomly selecting an edge
and then randomly choosing
one direction to travel:

Ry =3/16 R, = 4/16,
=3/16, R; = 6/16.

The edge-degree distribution:

For random networks, Q,, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,,:

R,, = probability that a friend of a random node
has k other friends.

(k+1)Py 4 _ (k+1)Py.q
Yok + 1) Py (k)

Ry, =

Equivalent to friend having degree & + 1.

Natural question: what's the expected number of
other friends that one friend has?

The edge-degree distribution:

Given R, is the probability that a friend has & other
friends, then the average number of friends’ other
friends is

=%§((k+1>2—<k+1>>mﬂ

(where we have sneakily matched up indices)

- % S )P; (usingj= k)

= o (k%) = (k)
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The edge-degree distribution:

<> Note: our result, k) =15 ((k%) — (k)), is true for

all random networks, independent of degree
distribution.

& For standard random networks, recall
(k%) = (k) + (k).

& Therefore:

&> Again, neatness of results is a special property of
the Poisson distribution.

&% So friends on average have (k) other friends, and
(k) + 1 total friends...

The edge-degree distribution:

&% Infact, R,, is rather special for pure random
networks ...

& Substituting

k k
P, = %G%M
into (k4 1P
G O e
Be ="
we have
R, = BEDEED ety D

& (k+1)° K DR

k k
= —< k>' e k) = p,.

& #samesies.

Two reasons why this matters

Reason #1:

&> Average # friends of friends per node is

(ka) = () % (k) g = <k>% ((K2) = (k) = (k%) — (k).

& Key: Average depends on the 1st and 2nd moments of
P,, and not just the 1st moment.

&% Three peculiarities:

1. We might guess (k,) = (k)((k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... % “!

4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

More on peculiarity #3:

Pure random
networks

<> A node's average # of friends: (k)

<% Friend's average # of friends: <<’f>>

<> Comparison:

Generalized
Random

0_2

= 0 (1 i

<> So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

<& Intuition: for random networks, the more
connected a node, the more likely it is to be

chosen as a friend. ?@&%"N‘T’ ]

> 580f69
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Random
Networks

“Generalized friendship paradox in

Pure random
networks

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014.1"]

Generalized

Your friends really are monsters #winners:' Koo

Networks

& Go on, hurt me: Friends have more coauthors,
citations, and publications.

&% Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

< The hope: Maybe they have more enemies and
diseases too.
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Related disappointment:

<% Nodes see their friends’
color choices.

&> Which color is more
popular?’

<& Again: thinking in edge
space changes everything.

Generalized
Random
Networks
Confi mode
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Two reasons why this matters
(Big) Reason #2:

(k) r is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as

N — oo.

Note: Component = Cluster

Giant component

0.8

0.6

0.4

0.2

Structure of random networks
Giant component:

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.

Giant component condition (or percolation
condition):

(k?) — (k)
(k)

Again, see that the second moment is an essential
part of the story.

Equivalent statement: (k%) > 2(k)

(k) r = >1
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Giant component for standard random networks:

Recall (k2) = (k)2 + (k).
Determine condition for giant component:
(k2) — (k)

e T

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (4.

We say (k) = 1 marks the critical point of the
system.

Random networks with skewed P,:
e.g if P, =ck 7 with2 <~ <3,k >1, then

(k) =c> Kk
k=1

oo
~ / 22 7dx
=1

0% :c3"7|:;1 =00 (> (k)).

So giant component always exists for these kinds
of networks.

Cutoff scaling is £73: if v > 3 then we have to look
harder at (k) .

How about Py, = &y, ?

CocoNuTs: We figure out the final size and
complete dynamics.
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