Power-Law Size Distributions

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDEs Zipf's law Zipf ⇔ CCDF Appendix References

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's law Zipf ⇔ CCDF Appendix References

P(x)~x-8

UNIVERSITY VERMONT

少 q (~ 4 of 53

PoCS | @pocsvox

Power-Law Size Distributions

Our Intuition

Definition

Examples

Zipf's law

7inf ⇔ CCDE

Appendix

References

Wild vs. Mild CCDFs

These slides are brought to you by:

PoCS | @pocsvox Power-Law Size Distributions

P(x)~x-8

UNIVERSITY VERMONT

•9 q (> 1 of 53

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's law 7inf ⇔ CCDF Appendix References

Our Intuition

Definition

Examples

CCDFs

7inf's law

Zipf ⇔ CCDF

Appendix

References

P/x)~x-8

UNIVERSITY OF VERMONT

少 q (~ 3 of 53

Wild vs. Mild

Two of the many things we struggle with cognitively:

- 1. Probability.
 - Ex. The Monty Hall Problem.
 - Ex. Daughter/Son born on Tuesday. (see next two slides; Wikipedia entry here ☑.)
- 2. Logarithmic scales.

On counting and logarithms:

Listen to Radiolab's 2009 piece: "Numbers." ☑.

Also to be enjoyed: the magnificence of the Dunning-Kruger effect ☑

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition

Examples

CCDFs

7inf's law

Appendix

References

Wild vs. Mild

Zipf ⇔ CCDF

Outline

Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Zipf's law

 $Zipf \Leftrightarrow CCDF$

Appendix

References

PoCS | @pocsvox Homo probabilisticus? Power-Law Size Distributions

The set up:

A parent has two children.

Simple probability question:

What is the probability that both children are girls?

The next set up:

- A parent has two children.
- We know one of them is a girl.

The next probabilistic poser:

What is the probability that both children are girls?

Try this one:

- A parent has two children.
- We know one of them is a girl born on a Tuesday.

Simple question #3:

What is the probability that both children are girls?

Last:

- A parent has two children.
- We know one of them is a girl born on December

And ...

What is the probability that both children are girls?

Let's test our collective intuition:

Money Belief

Two questions about wealth distribution in the **United States:**

- 1. Please estimate the percentage of all wealth owned by individuals when grouped into quintiles.
- 2. Please estimate what you believe each quintile should own, ideally.
- 3. Extremes: 100, 0, 0, 0, 0 and 20, 20, 20, 20, 20

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition Examples Wild vs. Mild CCDEs Zipf's law Zipf ⇔ CCDF Appendix References

少 Q ← 7 of 53

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition Examples Wild vs. Mild CCDFs Zipf's lav 7inf ⇔ CCDF Appendix References

PoCS | @pocsvox

Power-Law Size Distributions

Our Intuition

Wild vs. Mild CCDFs

7inf's law

Zipf ⇔ CCDF

Appendix

References

UNIVERSITY VERMONT

ჟიდ 9 of 53

Definition Examples

Wealth distribution in the United States: [12]

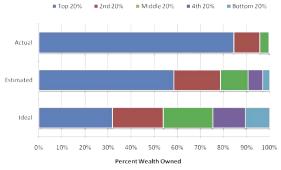


Fig. 2. The actual United States wealth distribution plotted against the estimated and ideal distributions across all respondents. Because of their small percentage share of total wealth, both the "4th 20%" value (0.2%) and the "Bottom 20%" value (0.1%) are not visible in the "Actual" distribution.

"Building a better America—One wealth quintile at a time" Norton and Ariely, 2011. [12]

Wealth distribution in the United States: [12] ■ Top 20% ■ 2nd 20% ■ Middle 20% ■ 4th 20% ■ Bottom 20%

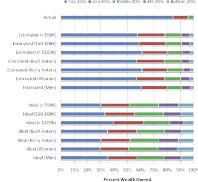


Fig. 3. The actual United States wealth distribution plotted against the estimated and ideal distributions of respondents of different income levels, political affiliations, and genders. Because of their small percentage share of total vealth, both the "4th 20%" value (0.2%) and the "Bottom 20%" value (0.1%) are not visible in the "Actual" distribution.

A highly watched video based on this research is here.

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P({\rm Size} = x) \sim c \, x^{-\gamma}$$
 where $0 < x_{\rm min} < x < x_{\rm max}$ and $\gamma > 1.$

- x_{min} = lower cutoff, x_{max} = upper cutoff
- Negative linear relationship in log-log space:

$$\log_{10}P(x) = \log_{10}c - \frac{\gamma}{\log_{10}}x$$

- We use base 10 because we are good people.
- power-law decays in probability: The Statistics of Surprise.

Size distributions:

Usually, only the tail of the distribution obeys a power law:

$$P(x) \sim c \, x^{-\gamma}$$
 for x large.

- Still use term 'power-law size distribution.'
- Other terms:
 - Fat-tailed distributions.
 - Heavy-tailed distributions.

Beware:

Inverse power laws aren't the only ones: lognormals ☑, Weibull distributions ☑, ... PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples Wild vs. Mild CCDEs Zipf's law Zipf ⇔ CCDF Appendix References

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition Examples Wild vs. Mild

CCDFs Zipf's law 7inf ⇔ CCDF Appendix References

PoCS | @pocsvox

Power-Law Size Distributions Our Intuition

Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References

Size distributions:

Many systems have discrete sizes *k*:

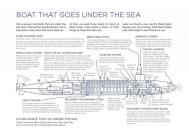
- Word frequency
- Node degree in networks: # friends, # hyperlinks, etc.
- # citations for articles, court decisions, etc.

$$P(k) \sim c \, k^{-\gamma} \label{eq:problem}$$
 where $k_{\min} \leq k \leq k_{\max}$

- Obvious fail for k=0.
- Again, typically a description of distribution's tail.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples


Wild vs. Mild CCDEs Zipf's law Zipf ⇔ CCDF Appendix References

Up goer five ☑

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples

Wild vs. Mild CCDFs Zipf's law Zipf ⇔ CCDF Appendix

References

•9 q (~ 16 of 53

The statistics of surprise—words:

Brown Corpus \Box ($\sim 10^6$ words):

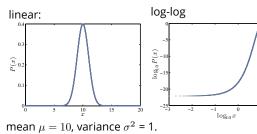
rank word % q 1. the 6.8872 2. of 3.5839 3. and 2.8401 4. to 2.5744 5. a 2.2996 6. in 2.1010 7. that 1.0428 8. is 0.9943 9. was 0.9661 10. he 0.9392 11. for 0.9340 12. it 0.8623 13. with 0.7176 14. as 0.7137 15. his 0.6886 1959. intensity 0.0055	biowireorpase (* 10 Words).							
2. of 3.5839	rank	word	% q		rank	word	% q	
3. and 2.8401	1.	the	6.8872		1945.	apply	0.0055	
4. to 2.5744 1948. review 0.0055 5. a 2.2996 1949. wage 0.0055 6. in 2.1010 1950. motor 0.0055 7. that 1.0428 1951. fifteen 0.0055 8. is 0.9943 1952. regarded 0.0055 9. was 0.9661 1953. draw 0.0055 10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	2.	of	3.5839		1946.	vital	0.0055	
5. a 2.2996 1949. wage 0.0055 6. in 2.1010 1950. motor 0.0055 7. that 1.0428 1951. fifteen 0.0055 8. is 0.9943 1952. regarded 0.0055 9. was 0.9661 1953. draw 0.0055 10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	3.	and	2.8401		1947.	September	0.0055	
6. in 2.1010 1950. motor 0.0055 7. that 1.0428 1951. fifteen 0.0055 8. is 0.9943 1952. regarded 0.0055 9. was 0.9661 1953. draw 0.0055 10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	4.	to	2.5744		1948.	review	0.0055	
7. that 1.0428	5.	a	2.2996		1949.	wage	0.0055	
8. is 0.9943 1952. regarded 0.0055 9. was 0.9661 1953. draw 0.0055 10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	6.	in	2.1010		1950.	motor	0.0055	
9. was 0.9661 1953. draw 0.0055 10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	7.	that	1.0428		1951.	fifteen	0.0055	
10. he 0.9392 1954. wheel 0.0055 11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	8.	is	0.9943		1952.	regarded	0.0055	
11. for 0.9340 1955. organized 0.0055 12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	9.	was	0.9661		1953.	draw	0.0055	
12. it 0.8623 1956. vision 0.0055 13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	10.	he	0.9392		1954.	wheel	0.0055	
13. with 0.7176 1957. wild 0.0055 14. as 0.7137 1958. Palmer 0.0055	11.	for	0.9340		1955.	organized	0.0055	
14. as 0.7137 1958. Palmer 0.0055	12.	it	0.8623		1956.	vision	0.0055	
	13.	with	0.7176		1957.	wild	0.0055	
15. his 0.6886 1959. intensity 0.0055	14.	as	0.7137		1958.	Palmer	0.0055	
	15.	his	0.6886		1959.	intensity	0.0055	

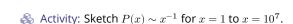
PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's law 7inf ⇔ CCDF

Appendix

References


•9 q (> 14 of 53


UNIVERSITY OF VERMONT

The statistics of surprise—words:

First—a Gaussian example:

$$P(x) \mathrm{d}x \, = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \mathrm{d}x$$

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples

Wild vs. Mild CCDFs Zipf's law

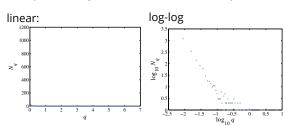
7inf ⇔ CCDF Appendix

References

Jonathan Harris's Wordcount:

A word frequency distribution explorer:

PoCS | @pocsvox Power-Law Size Distributions


Our Intuition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References

The statistics of surprise—words:

Raw 'probability' (binned) for Brown Corpus:

 q_w = frequency of occurrence of word q expressed as a percentage.

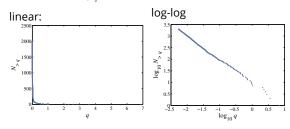
 N_q = number of distinct words that have a frequency of occurrence q.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Examples Wild vs. Mild CCDEs

7inf's law Zipf ⇔ CCDF Appendix References



少 Q (~ 18 of 53

The statistics of surprise—words:

Complementary Cumulative Probability Distribution $N_{>q}$:

Also known as the 'Exceedance Probability.'

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples Wild vs. Mild

CCDFs Zipf's law Zipf ⇔ CCDF Appendix References

•9 q (~ 19 of 53

My, what big words you have...

Test capitalizes on word frequency following a heavily skewed frequency distribution with a decaying power-law tail.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's lav 7inf ⇔ CCDF Appendix

References

•0 9 0 ≥ 20 of 53

PoCS | @pocsvox

Power-Law Size Distributions

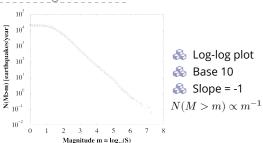
Our Intuition

Examples

CCDFs

7inf's law

Zipf ⇔ CCDF


Appendix

References

Wild vs. Mild

The statistics of surprise:

Gutenberg-Richter law ☑

From both the very awkwardly similar Christensen et al. and Bak et al.:

"Unified scaling law for earthquakes" [3, 1]

The statistics of surprise:

From: "Quake Moves Japan Closer to U.S. and Alters Earth's Spin" by Kenneth Chang, March 13, 2011, NYT:

'What is perhaps most surprising about the Japan earthquake is how misleading history can be. In the past 300 years, no earthquake nearly that large—nothing larger than magnitude eight—had struck in the Japan subduction zone. That, in turn, led to assumptions about how large a tsunami might strike the coast.'

"It did them a giant disservice," said Dr. Stein of the geological survey. That is not the first time that the earthquake potential of a fault has been underestimated. Most geophysicists did not think the Sumatra fault could generate a magnitude 9.1 earthquake, ...'

"Geography and Similarity of Regional

recipes.

 $P_{>}(k)$

"On a class of skew distribution

Biometrika, 42, 425-440, 1955. [14]

"Power laws, Pareto distributions and Zipf's

functions"

law" ☑

2005. [1

Herbert A. Simon,

M. E. J. Newman,

Fraction of ingredients

that appear in at least k

Cumulative Distribution

Oops in notation: P(k) is the Complementary

PLoS ONE, **8**, e79161, 2013. [17]

Cuisines in China"

Zhu et al.,

10² Occurrence of ingredients (k)

M

Ę.

Our Intuition

Definition Examples Wild vs. Mild

CCDEs Zipf's law Zipf ⇔ CCDF Appendix

References

少 Q (~ 22 of 53

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples

Wild vs. Mild CCDFs Zipf's law 7inf ⇔ CCDF Appendix

References

•> q (~ 23 of 53

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition Examples

Wild vs. Mild CCDEs 7inf's law

Zipf ⇔ CCDF Appendix

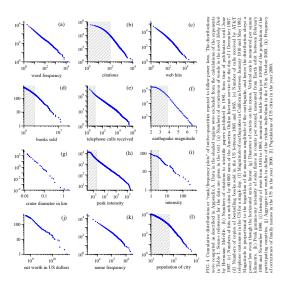
References

LLIA

"Power-law distributions in empirical data"

Contemporary Physics, 46, 323-351,

Clauset, Shalizi, and Newman, SIAM Review, **51**, 661–703, 2009. [4]



UNIVERSITY VERMONT •9 a (~ 21 of 53

UNIVERSITY OF VERMONT

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples

Wild vs. Mild CCDEs Zipf's law

Zipf ⇔ CCDF Appendix

References

PoCS | @pocsvox

Power-Law Size Distributions

Our Intuition Definition

Examples

CCDFs

Zipf's law

7inf ⇔ CCDF

Appendix

References

UNIVERSITY OF •9 q (> 26 of 53

Our Intuition

Examples

CCDFs

Zinf's law

Zipf ⇔ CCDI

Appendix

References

Wild vs. Mild

Wild vs. Mild

We'll explore various exponent measurement techniques in assignments.

Table 3 from Clauset, Shalizi, and Newman [4]:

Basic parameters of the data sets described in section 6, along with their power-law fits and the corresponding p-values (statistically significant values are denoted in bold).

Size distributions:

Some examples:

- 🚓 Earthquake magnitude (Gutenberg-Richter law \square): [8, 1] $P(M) \propto M^{-2}$
- \clubsuit # war deaths: [13] $P(d) \propto d^{-1.8}$
- Sizes of forest fires [7]
- Sizes of cities: [14] $P(n) \propto n^{-2.1}$
- # links to and from websites [2]
- Note: Exponents range in error

power-law size distributions

Gaussians versus power-law size distributions:

- Mediocristan versus Extremistan
- Mild versus Wild (Mandelbrot)
- Example: Height versus wealth.

See "The Black Swan" by Nassim Taleb. [15]

Terrible if successful framing: Black swans are not that surprising ...

Nassim Nicholas Taleh

HIGHLY IMPROBABLE

PoCS | @pocsvox Power-Law Size Distributions

 770 ± 1124 102592 ± 210147 70 ± 14

Definition

Examples Wild vs. Mild CCDFs

Zipf's law 7inf ⇔ CCDE Appendix References


Size distributions:

More examples:

- \clubsuit # citations to papers: [5, 6] $P(k) \propto k^{-3}$.
- A Individual wealth (maybe): $P(W) \propto W^{-2}$.
- \clubsuit Distributions of tree trunk diameters: $P(d) \propto d^{-2}$.
- The gravitational force at a random point in the universe: [9] $P(F) \propto F^{-5/2}$. (See the Holtsmark distribution and stable distributions .)

- \clubsuit # religious adherents in cults: [4] $P(k) \propto k^{-1.8\pm0.1}$.
- # sightings of birds per species (North American Breeding Bird Survey for 2003): [4] $P(k) \propto \tilde{k}^{-2.1 \pm 0.1}.$
- \$ # species per genus: [16, 14, 4] $P(k) \propto k^{-2.4\pm0.2}$.

PoCS | @pocsvox Turkeys... Power-Law Size Distributions

days tells you nothing about what is to happen next. This naïve projection of the future from the past can be applied to anything.

From "The Black Swan" [15]

PoCS | @pocsvox Power-Law Size Distributions Our Intuition

Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix

References

Taleb's table [15]

Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the rare and accidental

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition

Examples
Wild vs. Mild

Zipf's law
Zipf ⇔ CCDF
Appendix
References

少∢(~ 31 of 53

And in general...

Moments:

- All moments depend only on cutoffs.
- & No internal scale that dominates/matters.
- Compare to a Gaussian, exponential, etc.

For many real size distributions: $2 < \gamma < 3$

- mean is finite (depends on lower cutoff)
- $\delta = \sigma^2$ = variance is 'infinite' (depends on upper cutoff)
- Width of distribution is 'infinite'
- \Re If $\gamma>3$, distribution is less terrifying and may be easily confused with other kinds of distributions.

Insert question from assignment 3 2

P~5

PoCS | @pocsvox

Power-Law Size Distributions

Our Intuition

Definition

Examples

CCDFs

Zipf's law

Appendix

References

Zipf ⇔ CCDF

Wild vs. Mild

少 Q (~ 34 of 53

PoCS | @pocsvox

Power-Law Size Distributions

Our Intuition

Definition

Examples

Size distributions:

Power-law size distributions are sometimes called

Pareto distributions ☑ after Italian scholar Vilfredo Pareto. ☑

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule; misleading).
- Term used especially by practitioners of the Dismal Science ♂.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition
Examples

Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF
Appendix
References

•9 q (~ 32 of 53

Moments

Standard deviation is a mathematical convenience:

- Variance is nice analytically...
- Another measure of distribution width:

Mean average deviation (MAD) $=\langle |x-\langle x \rangle| \rangle$

 \clubsuit For a pure power law with $2 < \gamma < 3$:

$$\langle |x - \langle x \rangle| \rangle$$
 is finite.

- But MAD is mildly unpleasant analytically...
- \clubsuit We still speak of infinite 'width' if $\gamma < 3$.

Insert question from assignment 2 2

Wild vs. Mild CCDFs Zipf's law

Zipf ⇔ CCDF Appendix

References

Power-Law Size Distributions

Devilish power-law size distribution details:

Exhibit A:

Given $P(x) = cx^{-\gamma}$ with $0 < x_{\min} < x < x_{\max}$, the mean is $(\gamma \neq 2)$:

$$\langle x \rangle = \frac{c}{2-\gamma} \left(x_{\rm max}^{2-\gamma} - x_{\rm min}^{2-\gamma} \right). \label{eq:expansion}$$

- & Mean 'blows up' with upper cutoff if $\gamma < 2$.
- \Re Mean depends on lower cutoff if $\gamma > 2$.

Insert question from assignment 2 2

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition
Examples

Wild vs. Mild

Zipf's law
Zipf ⇔ CCDF
Appendix
References

少 Q (~ 33 of 53

How sample sizes grow...

Given $P(x) \sim cx^{-\gamma}$:

$$x_1 \gtrsim c' n^{1/(\gamma-1)}$$

- & Sampling from a finite-variance distribution gives a much slower growth with n.
- & e.g., for $P(x) = \lambda e^{-\lambda x}$, we find

$$x_1 \gtrsim \frac{1}{\lambda} \ln n.$$

Insert question from assignment 2 2

Our Intuition Definition

Examples Wild vs. Mild

CCDFs
Zipf's law
Zipf ⇔ CCDF

•9 q (~ 36 of 53

Complementary Cumulative Distribution Function:

CCDF:

$$P_{>}(x) = P(x' \ge x) = 1 - P(x' < x)$$

8

$$= \int_{x'=x}^{\infty} P(x') \mathsf{d}x'$$

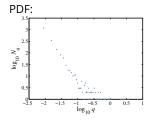
8

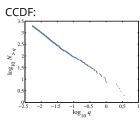
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$

$$= \left. \frac{1}{-\gamma + 1} (x')^{-\gamma + 1} \right|_{x' = x}^{\infty}$$

8

$$\propto x^{-\gamma+1}$$


Complementary Cumulative Distribution Function:


CCDF:

8

$$P_{>}(x) \propto x^{-\gamma+1}$$

- \clubsuit Use when tail of P follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

Complementary Cumulative Distribution Function:

 $\mbox{\&}$ Same story for a discrete variable: $P(k) \sim ck^{-\gamma}$.

$$P_{>}(k) = P(k' \ge k)$$

$$= \sum_{k'=k}^{\infty} P(k)$$

$$\propto k^{-\gamma+1}$$

Use integrals to approximate sums.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs

Zipf's law Zipf ⇔ CCDF Appendix References

•9 q (~ 37 of 53

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild

CCDFs Zipf's law 7inf ⇔ CCDF Appendix References

UNIVERSITY OF VERMONT •9 q (~ 38 of 53

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References

少 q (~ 39 of 53

Zipfian rank-frequency plots

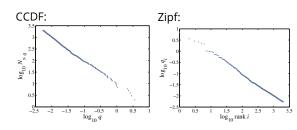
George Kingsley Zipf:

- Noted various rank distributions have power-law tails, often with exponent -1 (word frequency, city sizes...)
- We'll study Zipf's law in depth...

Zipfian rank-frequency plots

Zipf's way:

- Given a collection of entities, rank them by size, largest to smallest.
- r = 1 corresponds to the largest size.
- Example: x_1 could be the frequency of occurrence


$$x_r \propto r^{-\alpha}$$

- x_r = the size of the rth ranked entity.
- of the most common word in a text.
- Zipf's observation:

$$_r \propto r^{-\alpha}$$

Size distributions:

Brown Corpus (1,015,945 words):

- The, of, and, to, a, ... = 'objects'
- 'Size' = word frequency
- & Beep: (Important) CCDF and Zipf plots are related...

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition

Examples Wild vs. Mild CCDFs

Zipf's law $\mathsf{Zipf} \Leftrightarrow \mathsf{CCDF}$

Appendix References

•9 q (~ 40 of 53

PoCS | @pocsvox Power-Law Size Distributions

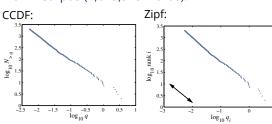
Our Intuition Definition Examples

Wild vs. Mild CCDFs

Zipf's law 7inf ⇔ CCDF Appendix References

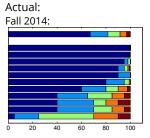
PoCS | @pocsvox Power-Law Size Distributions

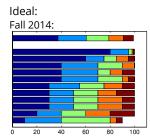
Our Intuition Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References



◆) < (~ 42 of 53

Size distributions:


Brown Corpus (1,015,945 words):



- A The, of, and, to, a, ... = 'objects'
- 'Size' = word frequency
- & Beep: (Important) CCDF and Zipf plots are related...

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDEs Zipf's law $Zipf \Leftrightarrow CCDF$ Appendix References

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's law Zipf ⇔ CCDF Appendix

References

•9 q (~ 47 of 53

Observe:

- $NP_{>}(x) =$ the number of objects with size at least xwhere N = total number of objects.
- \Re If an object has size x_r , then $NP_{>}(x_r)$ is its rank r.
- 🚜 So

$$x_r \propto r^{-\alpha} = (NP_>(x_r))^{-\alpha}$$

$$\propto x_r^{(-\gamma+1)(-\alpha)}$$
 since $P_>(x)\sim x^{-\gamma+1}.$

We therefore have $1=(-\gamma+1)(-\alpha)$ or:

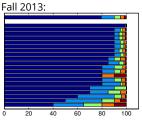
$$\alpha = \frac{1}{\gamma - 1}$$

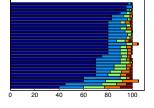
 $\ensuremath{\&}$ A rank distribution exponent of $\alpha=1$ corresponds to a size distribution exponent $\gamma=2$.

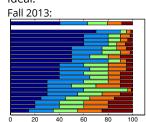
PoCS | @pocsvox Power-Law Size Distributions

UNIVERSITY VERMONT

少 Q (~ 43 of 53


Definition Examples Wild vs. Mild CCDFs Zipf's law $\mathsf{Zipf} \Leftrightarrow \mathsf{CCDF}$ Appendix References



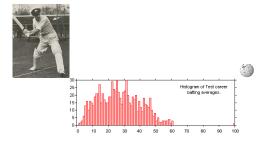

Actual:

Spring 2013:

Ideal:

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs Zipf's law 7inf ⇔ CCDE


Appendix References

The Don.

Extreme deviations in test cricket:

- Don Bradman's batting average 🗹 = 166% next best.
- That's pretty solid.
- Later in the course: Understanding success is the Mona Lisa like Don Bradman?

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References

References I

- [1] P. Bak, K. Christensen, L. Danon, and T. Scanlon. Unified scaling law for earthquakes. Phys. Rev. Lett., 88:178501, 2002. pdf
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-511, 1999. pdf
- [3] K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes. Proc. Natl. Acad. Sci., 99:2509-2513, 2002. pdf
- A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51:661-703, 2009. pdf

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition Definition Examples Wild vs. Mild CCDFs 7inf's law Zipf ⇔ CCDF Appendix References

References II

[7] P. Grassberger.

- [5] D. J. de Solla Price.

 Networks of scientific papers.

 Science, 149:510−515, 1965. pdf ☑
- [6] D. J. de Solla Price. A general theory of bibliometric and other cumulative advantage processes. J. Amer. Soc. Inform. Sci., 27:292–306, 1976. pdf
- Critical behaviour of the Drossel-Schwabl forest fire model.

 New Journal of Physics, 4:17.1–17.15, 2002. pdf 🗗
- [8] B. Gutenberg and C. F. Richter. Earthquake magnitude, intensity, energy, and acceleration. Bull. Seism. Soc. Am., 499:105–145, 1942. pdf

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF
Appendix
References

— •ე q (~ 50 of 53

References III

[9] J. Holtsmark. Über die verbreiterung von spektrallinien. Ann. Phys., 58:577–, 1919.

[10] R. Munroe.
Thing Explainer: Complicated Stuff in Simple Words.
Houghton Mifflin Harcourt, 2015.

[12] M. I. Norton and D. Ariely.

Building a better America—One wealth quintile at a time.

Perspectives on Psychological Science, 6:9–12, 2011. pdf 🗹

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF
Appendix
References

VERMONT S

References IV

[13] L. F. Richardson.

Variation of the frequency of fatal quarrels with magnitude.

J. Amer. Stat. Assoc., 43:523–546, 1949. pdf

[14] H. A. Simon.

On a class of skew distribution functions. Biometrika, 42:425–440, 1955. pdf 🗗

[15] N. N. Taleb.

The Black Swan.

Random House, New York, 2007.

[16] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21–87, 1925. pdf

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF
Appendix
References

References V

[17] Y.-X. Zhu, J. Huang, Z.-K. Zhang, Q.-M. Zhang, T. Zhou, and Y.-Y. Ahn. Geography and similarity of regional cuisines in china.

PLoS ONE, 8:e79161, 2013. pdf ☑

[18] G. K. Zipf.
Human Behaviour and the Principle of Least-Effort.

Addison-Wesley, Cambridge, MA, 1949.

PoCS | @pocsvox Power-Law Size Distributions

Our Intuition

Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf ⇔ CCDF
Appendix
References

