Mechanisms for Generating Power-Law Size Distributions, Part 2

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Extra

These slides are brought to you by:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization Minimal Cost

Model

And the winner is...?

Nutshell

Extra

Outline

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

And the winner is...?

Nutshell

Extra

References

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Outline

Rich-Get-Richer Mechanism Simon's Model

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Model

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model
Analysis
And the winner is...?

And the winner

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

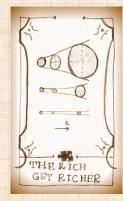
Minimal Cost
Mandelbrot vs. Simor

Model Analysis

And the winner is...?

Nutshell

Extra



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

Random walks represent additive aggregation

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

Random walks represent additive aggregation

Mechanism: Random addition and subtraction

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Random walks represent additive aggregation

Mechanism: Random addition and subtraction

Compare across realizations, no competition.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

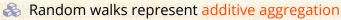
Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?


Nutshell

Extra

Mechanism: Random addition and subtraction

Compare across realizations, no competition.

Next: Random Additive/Copying Processes involving Competition.

Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ... Competing mechanisms (trickiness)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

otimization

Minimal Cost

Assumptions

Analysis

And the winner is...?

Nutshell

Extra

- Random walks represent additive aggregation
- Mechanism: Random addition and subtraction
- Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)

Competing mechanisms (trickiness)

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words

Catchphrases

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model Analysis

And the winner is...?

Extra

- Random walks represent additive aggregation
- Mechanism: Random addition and subtraction
- Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
- Competing mechanisms (trickiness)

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

ntimization

Minimal Cost

Assumptions Vodel

Analysis

And the winner is...?

Nutshell

Extra

Extra

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

1910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [11].

Rich-Get-Richer

Simon's Model

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

3 1910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup (11).

♣ 1910s: Felix Auerbach pointed out the Zipfitude of city sizes in "Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") [1].

1924

Species per Genus

1926:

Scientific papers per author (Lotka's law)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

3 1910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup (2 111).

⇒ 1910s: Felix Auerbach pointed out the Zipfitude of city sizes in
"Das Gesetz der Bevölkerungskonzentration"
("The Law of Population Concentration")

[1].

3 1924: G. Udny Yule [28]: # Species per Genus

Scientific papers per author (Lotka's law

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Optimization

Minimal Cost

Catchphrases

Assumptions
Model

And the winner is...?

Nutshell

Extra

3 1910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup (2 111).

№ 1910s: Felix Auerbach pointed out the Zipfitude of city sizes in "Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") [1].

3 1924: G. Udny Yule [28]: # Species per Genus

4 1926: Lotka [15]:
Scientific papers per author (Lotka's law)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Optimization

Minimal Cost

Catchphrases

Assumptions Model

And the winner is...?

Nutshell

Extra

4 1953: Mandelbrot [17]:

Optimality argument for Zipf's law; focus on language.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

4 1953: Mandelbrot [17]:

Optimality argument for Zipf's law; focus on language.

4 1955: Herbert Simon [24, 30]:

Zipf's law for word frequency, city size, income, publications, and species per genus.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

1953: Mandelbrot [17]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [24, 30]:
Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [7, 8]: Network of Scientific Citations.

1999: Barabasi and Albert :
The World Wide Web, networks-at-large

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

1953: Mandelbrot [17]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [24, 30]:
Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [7, 8]: Network of Scientific Citations.

1999: Barabasi and Albert [2]: The World Wide Web, networks-at-large. PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

Herbert Simon 2 (1916-2001):

Political scientist (and much more)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Herbert Simon (1916-2001):

Political scientist (and much more)

Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

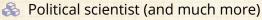
Simon's Model Catchphrases

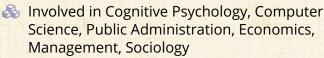
Minimal Cost

And the winner is...?

Nutshell

Extra





Herbert Simon (1916–2001):

Coined 'bounded rationality' and 'satisficing'

Nearly 1000 publications (see

An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.

1978 Nobel Laureate in Economics (his Nobel bio is in the Laureate in Economics).

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis

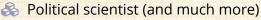
Optimization
Minimal Cost
Mandelbrot vs. Simon

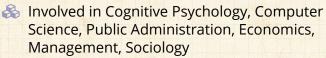
Catchphrases

Analysis
And the winner is...?

Nutshell

Extra





Herbert Simon (1916-2001):

Coined 'bounded rationality' and 'satisficing'

Power-Law Mechanisms, Pt. 2

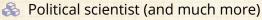
Rich-Get-Richer Simon's Model

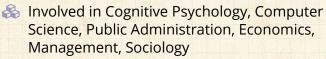
Catchphrases Minimal Cost

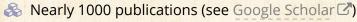
And the winner is...?

Nutshell

Extra






Herbert Simon ☐ (1916-2001):

Coined 'bounded rationality' and 'satisficing'

An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.

1978 Nobel Laureate in Economics (his Nobel bio is here 2).

Power-Law Mechanisms, Pt. 2

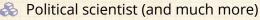
Rich-Get-Richer Mechanism Simon's Model Analysis Words Catchohrases

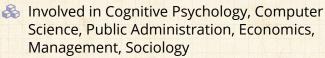
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

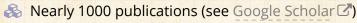
Analysis
And the winner is...?

Nutshell

Extra






Herbert Simon ☐ (1916-2001):

Coined 'bounded rationality' and 'satisficing'

An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.

3 1978 Nobel Laureate in Economics (his Nobel bio is here ☑). Pocs | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words Catchohrases

Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor

With probability $1 - \rho$, randomly choose from all existing elephants, and make a copy.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.
 - P Elephants of the same flavor form a group

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor
 - = Mutation/Innovation
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.
 - Elephants of the same flavor form a group

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor
 - = Mutation/Innovation
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.
 - = Replication/Imitation
 - Elephants of the same flavor form a group

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

Consider words as they appear sequentially. With probability ρ , the next word has not previously appeared

With probability $1 + \rho$, randomly choose one word from all words that have come before, and reuse this word

Note: This is a terrible way to write a novel.

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Words Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

Consider words as they appear sequentially.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

Consider words as they appear sequentially.

 \clubsuit With probability ρ , the next word has not previously appeared

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

& Consider words as they appear sequentially.

 \ref{Mith} With probability ho, the next word has not previously appeared

With probability $1 - \rho$, randomly choose one word from all words that have come before, and reuse this word

Note: This is a terrible way to write a novel.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

ptimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

& Consider words as they appear sequentially.

 \ref{Mith} With probability ho, the next word has not previously appeared

= Mutation/Innovation

With probability $1 - \rho$, randomly choose one word from all words that have come before, and reuse this word

Note: This is a terrible way to write a novel

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchohrases

Ontimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

- Consider words as they appear sequentially.
- \triangle With probability ρ , the next word has not previously appeared
 - = Mutation/Innovation
- \Leftrightarrow With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word
 - = Replication/Imitation

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Example: Words appearing in a language

- & Consider words as they appear sequentially.
- \ref{Mith} With probability ho, the next word has not previously appeared
 - = Mutation/Innovation
- With probability 1ρ , randomly choose one word from all words that have come before, and reuse this word
 - = Replication/Imitation

Note: This is a terrible way to write a novel.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Simon's Mode Analysis Words

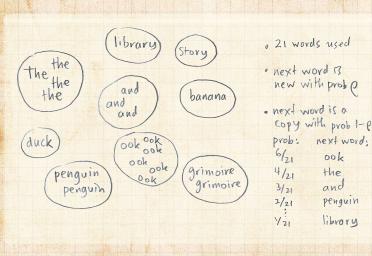
Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell


Extra

For example:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases Optimization

Minimal Cost

Analysis And the winner is...?

Nutshell

Fundamental Rich-get-Richer story;

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Fundamental Rich-get-Richer story;

Competition for replication between individual elephants is random;

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Fundamental Rich-get-Richer story;

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- 🙈 Selection on groups is biased by size;

Possible that no great knowledge of system

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchohrases

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- 🙈 Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchohrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

Related to Palya's Um Mode CI, a special case of

Sampling with super-duper replacement and sneaky sheaking in of new colors.

Pocs | @pocsvox

Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis
Words
Catchphrases

Optimizatio

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

Related to Pólya's Urn Model , a special case of problems involving urns and colored balls . Sampling with super-duper replacement and sneaky sneaking in of new colors.

Pocs | @pocsvox

Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Catchphrases

Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

And the winner is...?

Extra

Extra

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

- Related to Pólya's Urn Model , a special case of problems involving urns and colored balls .
- Sampling with super-duper replacement and sneaky sneaking in of new colors.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
And the winner is...?

Nutshell

Extra

Some observations:

Steady growth of system: +1 elephant per unit time.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

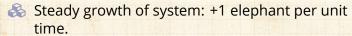
Simon's Model

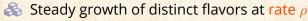
Catchphrases

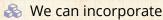
Minimal Cost

And the winner is...?

Nutshell


Extra





Some observations:

1. Elephant elimination

2. Elephants moving between groups

3. Variable innovation rate

4. Different selection based on group size

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

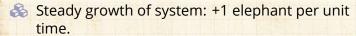
ptimization

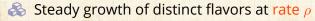
Minimal Cost Mandelbrot vs. Simon

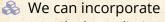
Model

And the winner is...?

Nutshell


Extra





Some observations:

- 1. Elephant elimination

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

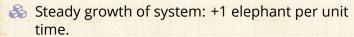
Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Minimal Cost

And the winner is...? Nutshell


Extra

Some observations:

- 🚳 We can incorporate
 - 1. Elephant elimination
 - 2. Elephants moving between groups
 - 3. Variable innovation rate ρ
 - 4. Different selection based on group size

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

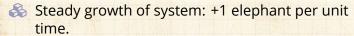
Catchphrases

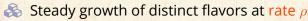
ptimization

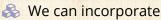
Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell


Extra





Some observations:

- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ
- 4. Different selection based on group size

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

Ontinginatio

Minimal Cost

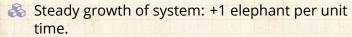
Assumptions

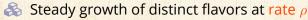
Model

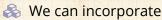
Analysis

And the winner is...?

Nutshell


Extra





Some observations:

- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ
- 4. Different selection based on group size

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model
Analysis

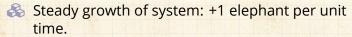
Catchphrases

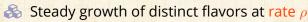
ptimization

Minimal Cost Mandelbrot vs. Simon

Model Analysis

And the winner is...?


Extra



Some observations:

- & We can incorporate
 - 1. Elephant elimination
 - 2. Elephants moving between groups
 - 3. Variable innovation rate ρ
 - 4. Different selection based on group size (But mechanism for selection is not as simple...)

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

1 2 3

Extra

"The Self-Organizing Economy" **3**. 2 by Paul Krugman (1996). [14]

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be "1,2"

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

Nutshell

Extra

"The Self-Organizing Economy" **3**. 2 by Paul Krugman (1996). [14]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."1,2

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

"The Self-Organizing Economy" **3** C by Paul Krugman (1996). [14]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."^{1, 2}

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

atchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

Nutshell

Extra

¹Krugman's book was handed to the Deliverator by a certain Alvaro Cartea many years ago at the Santa Fe Institute Summer School.

"The Self-Organizing Economy" **3** 2 by Paul Krugman (1996). [14]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."^{1, 2}

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

ptimization

Minimal Cost

Assumptions
Model

And the winner is...?

Nutshell

Extra

¹Krugman's book was handed to the Deliverator by a certain Alvaro Cartea many years ago at the Santa Fe Institute Summer School.

²Let's use π for probability because π 's not special, right guys?

Outline

Rich-Get-Richer Mechanism

Simon's Mode

Analysis

Catchibras

Optimizațio

Minimal Cost Mandellacet vs. Simon

Assumptions Model

Analysis |

And the winner is

Neishell

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

Definitions:

 $k_i =$ size of a group i

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Definitions:

 \aleph $N_{k,t}$ = # groups containing k elephants at time t.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Definitions:

 $k_i =$ size of a group i

 $\aleph_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Definitions:

 $k_i =$ size of a group i

 $\aleph_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

First: $\sum kN_{k,t}=t=$ number of elephants at time t

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $N_{k,t}$ size k groups $\Rightarrow kN_{k,t}$ elephants in size k groups t elephants overall

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Assumptions Model

Analysis

And the winner is...?

Nutshell

Extra

 $P_{k}(t)$ = Probability of choosing an elephant that belongs to a group of size k:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

 $P_{k}(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Leftrightarrow kN_{k,t}$ elephants in size k groups

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

 $P_{k}(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Longrightarrow kN_{k,t}$ elephants in size k groups

& t elephants overall

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Longrightarrow kN_{k,t}$ elephants in size k groups

& t elephants overall

$$P_k(t) = \frac{kN_{k,t}}{t}.$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words Catchphrases

Ontimization

Optimization

Minimal Cost Mandelbrot vs. Simon

Model

And the winner is...?

Nutshell

7123

Extra

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

2. An elephant belonging to a group with elephants is replicated:

PoCS | @pocsvox
Power-Law

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

And the winner is...?

Nutshell

Extra

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

2. An elephant belonging to a group with k-1 elephants is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Ontimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

And the willier is...

Nutshell

Extra

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

$$N_{k,t+1} = N_{k,t} - 1$$

2. An elephant belonging to a group with k-1 elephants is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Ontimization

Minimal Cost Mandelbrot vs. Simon

Nodel

Analysis

And the winner is...?

Nutshell

Extra

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

$$\begin{split} N_{k,\,t+1} &= N_{k,\,t} - 1 \\ \text{Happens with probability } & (1-\rho)kN_{k,\,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions Model

Analysis

And the winner is...?

Nutshell

Extra

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

$$\begin{split} N_{k,\,t+1} &= N_{k,\,t} - 1 \\ \text{Happens with probability } (1-\rho)kN_{k,\,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$N_{k,t+1} = N_{k,t} + 1$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

.....

Minimal Cost

Assumptions

Analysis

And the winner is...?

Nutshell

Extra

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated:

$$\begin{split} N_{k,\,t+1} &= N_{k,\,t} - 1 \\ \text{Happens with probability } & (1-\rho)kN_{k,\,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} + 1 \\ \text{Happens with probability } (1-\rho)(k-1)N_{k-1,t}/t \end{split}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Ontimizatio

Minimal Cost Mandelbrot vs. Simon

Assumptions Model

Analysis

And the winner is...?

Nutshell

Extra

Special case for $N_{1,t}$:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...? Nutshell

Extra

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

2. A unique elephant is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

And the winner is...?

Nutshell

Extra

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

$$N_{1,t+1} = N_{1,t} + 1$$

2. A unique elephant is replicated:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Nutshell

vutsiiei

Extra

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

$$N_{1,t+1} = N_{1,t} + 1$$

Happens with probability ρ

2. A unique elephant is replicated:

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

D-6

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

$$N_{1,t+1} = N_{1,t} + 1$$

Happens with probability ρ

2. A unique elephant is replicated:

$$N_{1,t+1} = N_{1,t} - 1$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

$$N_{1,t+1} = N_{1,t} + 1$$

Happens with probability ho

2. A unique elephant is replicated:

```
N_{1,t+1} = N_{1,t} - 1 Happens with probability (1-\rho)N_1/t
```

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Putting everything together:

For k > 1:

$$\left< N_{k,t+1} - N_{k,t} \right> = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t} + (-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-1,t}}{t}}{t} \right) = (1 - \rho) \left(\frac{(+1)(k-1) \frac{N_{k-1,t}}{t}}{t} + \frac{(-1)k \frac{N_{k-$$

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

Nutshell

Extra

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Putting everything together:

For k > 1:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1 - \rho) \left((+1)(k-1) \frac{N_{k-1,t}}{t} + (-1)k \frac{N_{k,t}}{t} \right)$$

For k = 1:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = (+1)\rho + (-1)(1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

Rich-Get-Richer Mechanism Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

$$\frac{N_{k,t}}{\rho t} = \frac{n_k t}{\rho t} = \frac{n_k}{\rho}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

$$rac{N_{k,t}}{
ho t} = rac{n_k t}{
ho t} = rac{n_k}{
ho}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

Numbers of elephants now fractional

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

Numbers of elephants now fractional

Okay over large time scales

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales

$$\frac{N_{k,t}}{\rho t} = \frac{n_k t}{\rho t} = \frac{n_k}{\rho}.$$

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

Extra

Stochastic difference equation:

$$\left\langle N_{k,t+1}-N_{k,t}\right\rangle = (1-\rho)\left((k-1)\frac{N_{k-1,t}}{t}-k\frac{N_{k,t}}{t}\right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Stochastic difference equation:

$$\left\langle N_{k,t+1}-N_{k,t}\right\rangle = (1-\rho)\left((k-1)\frac{N_{k-1,t}}{t}-k\frac{N_{k,t}}{t}\right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$n_k({\color{red} t}+1-{\color{red} t}) = (1-\rho)\left((k-1)\frac{n_{k-1}{\color{red} t}}{\color{red} t} - k\frac{n_k t}{\color{red} t}\right)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Ontimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Stochastic difference equation:

$$\left\langle N_{k,t+1}-N_{k,t}\right\rangle = (1-\rho)\left((k-1)\frac{N_{k-1,t}}{t}-k\frac{N_{k,t}}{t}\right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$\begin{split} n_k({\color{red} t} + 1 - {\color{red} t}) &= (1 - \rho) \left((k - 1) \frac{n_{k - 1} {\color{red} t}}{{\color{red} t}} - k \frac{n_k {\color{red} t}}{{\color{red} t}} \right) \\ \\ \Rightarrow n_k &= (1 - \rho) \left((k - 1) n_{k - 1} - k n_k \right) \end{split}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Ontimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is 2

Nutshell

Extra

Stochastic difference equation:

$$\left\langle N_{k,t+1}-N_{k,t}\right\rangle = (1-\rho)\left((k-1)\frac{N_{k-1,t}}{t}-k\frac{N_{k,t}}{t}\right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$\begin{split} n_k({\color{red} t} + 1 - {\color{red} t}) &= (1 - \rho) \left((k - 1) \frac{n_{k-1} {\color{red} t}}{{\color{red} t}} - k \frac{n_k {\color{red} t}}{{\color{red} t}} \right) \\ &\Rightarrow n_k = (1 - \rho) \left((k - 1) n_{k-1} - k n_k \right) \end{split}$$

$$\Rightarrow n_k \left(1 + (1-\rho)k\right) = (1-\rho)(k-1)n_{k-1}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words Catchphrases

Ontimizatio

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is ?

Nutshell

Extra

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Interested in *k* large (the tail of the distribution Can be solved exactly.

Insert (masten from assignment 40

For just the tail: Expand as a series of powers of 1/k

Insert question Rum assignment 4 2

We (okay, you) find

$$n_k \propto k^{-\frac{(2-\rho)}{(1-\rho)}} = k^{-\gamma}$$

$$\frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Ontimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model
Analysis
And the winner is...?

Nutshell

Extra

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

 \mathbb{R} Interested in k large (the tail of the distribution)

$$\frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

 \mathbb{R} Interested in k large (the tail of the distribution)

Can be solved exactly.

$$\frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

 \mathbb{R} Interested in k large (the tail of the distribution)

Can be solved exactly.

Insert question from assignment 4 2

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

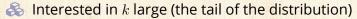
Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra



We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

& Can be solved exactly.

Insert question from assignment 4 4

 $lap{3}{
m For just the tail: Expand as a series of powers of } 1/k$

Insert question from assignment 412

We (okay, you) find

 $\frac{1}{2} \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Ontimization

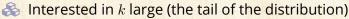
Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

References



We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

& Can be solved exactly.

Insert question from assignment 4 🗷

For just the tail: Expand as a series of powers of 1/k

Insert question from assignment 4 🗷
We (okay) you) find

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

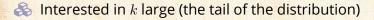
ntimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra



We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Can be solved exactly.

Insert question from assignment 4 2

 $\raise For just the tail: Expand as a series of powers of <math>1/k$

Insert question from assignment 4 We (okay, you) find

$$n_k \propto k^{-\frac{(2-\rho)}{(1-\rho)}} = k^{-\gamma}$$

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon ssumptions Model

Analysis
And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

ℰ Observe 2 < γ < ∞ for 0 < ρ < 1.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \triangle Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

Solution For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

δ Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

Solution For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

る Observe 2 < γ < ∞ for 0 < ρ < 1.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

A For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

δ Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

A For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

All elephants have different flavors.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

- る Observe 2 < γ < ∞ for 0 < ρ < 1.
- A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

- 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- A For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

3 We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\cancel{1} + \frac{1}{(1 - \rho)} - \cancel{1}} = 1 - \rho.$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

3 We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

 $\Rightarrow \gamma = 2$ corresponds to $\alpha = 1$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

3 We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

 $\Rightarrow \gamma = 2$ corresponds to $\alpha = 1$

& We (roughly) see Zipfian exponent [30] of $\alpha = 1$ for many real systems: city sizes, word distributions,

...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

 \Longrightarrow We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

 $\Rightarrow \gamma = 2$ corresponds to $\alpha = 1$

& We (roughly) see Zipfian exponent [30] of $\alpha = 1$ for many real systems: city sizes, word distributions,

& Corresponds to $\rho \to 0$, low innovation.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

 \Leftrightarrow We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\cancel{1} + \frac{1}{(1 - \rho)} - \cancel{1}} = 1 - \rho.$$

We (roughly) see Zipfian exponent [30] of $\alpha=1$ for many real systems: city sizes, word distributions,

& Corresponds to $\rho \to 0$, low innovation.

& Krugman doesn't like it) [14] but it's all good.

Still, other quite different mechanisms are possible...

Must look at the details to see if mechanism makes sense... more later.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Model
Analysis
And the winner is...?

Nutshell

Extra

We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

 \Re $\gamma = 2$ corresponds to $\alpha = 1$

We (roughly) see Zipfian exponent [30] of $\alpha = 1$ for many real systems: city sizes, word distributions,

& Corresponds to $\rho \to 0$, low innovation.

& Krugman doesn't like it) [14] but it's all good.

Still, other quite different mechanisms are possible...

Must look at the details to see if mechanism makes sense, more later.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Extra

 \Leftrightarrow We found $\alpha = 1/(\gamma - 1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\cancel{1} + \frac{1}{(1 - \rho)} - \cancel{1}} = 1 - \rho.$$

- We (roughly) see Zipfian exponent [30] of $\alpha=1$ for many real systems: city sizes, word distributions,
- & Corresponds to $\rho \to 0$, low innovation.
- & Krugman doesn't like it) [14] but it's all good.
- Still, other quite different mechanisms are possible...
- Must look at the details to see if mechanism makes sense... more later.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

We had one other equation:

$$\left\langle N_{1,\,t+1}-N_{1,\,t}\right\rangle = \rho - (1-\rho)1\cdot\frac{N_{1,\,t}}{t}$$

As before, set $N_{1,t} = n_1 t$ and drop expectations

$$n_1(t+1) - n_1 t = \rho - (1-\rho) 1 \cdot \frac{n_1 t}{t}$$

$$n_1 = \rho - (1-\rho)n_1$$

Rearrange

$$n_1 + (1 - \rho)n_1 = \rho$$

$$n_1 = \frac{
ho}{2 -
ho}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

And the winner is...?

Nutshell

Extra

We had one other equation:

$$\left\langle N_{1,\,t+1}-N_{1,\,t}\right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,\,t}}{t}$$

A As before, set $N_{1,t} = n_1 t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1 = \rho + (1-\rho)n_1$$

$$n_1 + (1-\rho)n_1 = \rho$$

$$n_1 = \frac{\nu}{2 - \rho}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

We had one other equation:

$$\left\langle N_{1,\,t+1}-N_{1,\,t}\right\rangle = \rho - (1-\rho)1\cdot\frac{N_{1,\,t}}{t}$$

A As before, set $N_{1,t} = n_1 t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1 = \rho - (1-\rho)n_1$$

$$n_1 + (1-\rho)n_1 = \rho$$

$$n_1=rac{
ho}{2-
ho}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Analysis

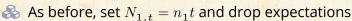
Catchphrases

Minimal Cost

And the winner is...?

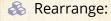
Nutshell

Extra



We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$



$$n_1(t+1) - n_1 t = \rho - (1-\rho)1 \cdot \frac{n_1 t}{t}$$

$$n_1 = \rho - (1 - \rho)n_1$$

$$n_1+(1-\rho)n_1=\rho$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

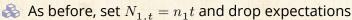
Optimizatio

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

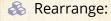
Nutshell

Extra



We had one other equation:

$$\left\langle N_{1,\,t+1}-N_{1,\,t}\right\rangle = \rho - (1-\rho)1\cdot\frac{N_{1,\,t}}{t}$$



$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1 = \rho - (1 - \rho)n_1$$

$$n_1 + (1-\rho)n_1 = \rho$$

$$n_1 = \frac{\rho}{2 - \rho}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

Recall number of distinct elephants = ρt . Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_1,_t = \frac{1}{\rho t} \frac{\rho t}{2 - \rho} = \frac{1}{2 - \rho}$$

(also = fraction of groups of size 1) For ρ small, fraction of unique elephants $\sim 1/2$ Roughly observed for real distributions: ρ increases, fraction increases Can show fraction of groups with two elephants $\sim 1/6$

Model works well for large a housing like #awesome

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

\Leftrightarrow Recall number of distinct elephants = ρt .

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \frac{\rho t}{2 - \rho} = \frac{1}{2 - \rho}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

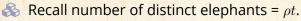
Analysis

Catchphrases

Minimal Cost

And the winner is...?

Nutshell


Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,\,t} = \frac{1}{\rho t} \underbrace{\rho t}_{2-\rho} = \frac{1}{2-\rho}$$

(also = fraction of groups of size 1)

For ρ small, fraction of unique elephants $\sim 1/2$ Roughly observed for real distributions ρ increases, fraction increases Can show fraction of groups with two elephants $\sim 1/6$

Model works well

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Minimal Cost
Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- & Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

For ρ small, fraction of unique elephants $\sim 1/2$ Roughly observed for real distributions

o increases, fraction increases

Can show fraction of groups with two elephants

Model works well

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Cattripinases

Optimizatio

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- & Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- $\red{\&}$ For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

ρ increases, fraction increases

Can show fraction of groups with two elephants $\sim 1/6$

Model works well

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words Catchphrases

Ontinginatio

Optimization
Minimal Cost

ssumptions

Model

And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- \clubsuit Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- $\ref{eq:possible}$ For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

Can show fraction of groups with two elephants

Model works well

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Ontimizatio

Minimal Cost
Mandelbrot vs. Simo

Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- \clubsuit Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- \red{lem} For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions
- $\ensuremath{\mathfrak{S}} \rho$ increases, fraction increases
- $\stackrel{\textstyle \sim}{\sim}$ Can show fraction of groups with two elephants $\sim 1/6$

Model works well

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimizatio

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- $\red{\&}$ For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions
- $\ensuremath{\mathfrak{S}} \rho$ increases, fraction increases
- $\stackrel{\textstyle \sim}{\sim}$ Can show fraction of groups with two elephants $\sim 1/6$
- Model works well for large and small k

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimizatio

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis

And the winner is...?

Nutshell

Extra

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

- \clubsuit Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- \clubsuit For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions
- $\ensuremath{\mathfrak{S}} \rho$ increases, fraction increases
- $\stackrel{\textstyle <}{\sim}$ Can show fraction of groups with two elephants $\sim 1/6$
- Model works well for large and small k #awesome

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

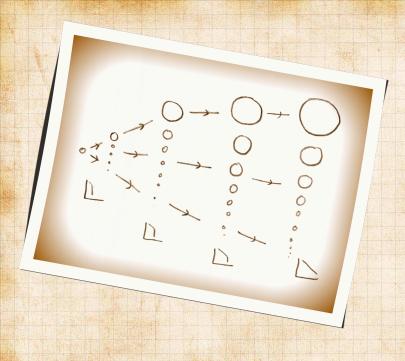
Analysis

Catchphrases

Ontimizatio

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?


Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost Assumptions Model

Analysis And the winner is...?

Nutshell

Extra

Outline

Rich-Get-Richer Mechanism

Words

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Words Catchphrases

Optimization

Minimal Cost

Model Analysis

And the winner is...?

Nutshell

Extra

Words:

From Simon [24]:

Estimate $\rho_{\text{est}} = \#$ unique words/# all words

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases Optimization

Minimal Cost Model

Analysis And the winner is...?

Nutshell

Extra

Words:

From Simon [24]:

Estimate $\rho_{est} = \#$ unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Words

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Words:

From Simon [24]:

Estimate $\rho_{\text{est}} = \#$ unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

N_1 (real)	N_1 (est)	N_2 (real)	N_2 (est)
16,432	15,850	4,776	4,870

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Ontimization

Optimization

Minimal Cost

Assumptions

Model Analysis

And the winner is...?

Nutshell

desire

Evtra

Outline

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimizatio

Minimal Cost
Mandeldrot vs. Simon
Assumptions
Model

And the winner is

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simo

Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

Evolution of catch phrases:

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Yule's paper (1924) [28]: "A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]: "On a class of skew distribution functions" (snore) PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Yule's paper (1924) [28]:
"A mathematical theory

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Vlodel Analysis

And the winner is...?

Nutshell

Extra

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena bave any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimizatio

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis
And the winner is...?

Nutshell

Extra

References

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis

And the winner is...?

7123

Extra

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]: "On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Catchphrases

And the winner is...? Nutshell

Extra

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only

probability mechanisms.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimizatio

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

And the winner is...
Nutshell

7123

Extra

Yule's paper (1924) [28]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [24]: "On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Catchphrases

And the winner is...?

Nutshell

Extra

Derek de Solla Price:

First to study network evolution with these kinds of models.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Derek de Solla Price:

First to study network evolution with these kinds of models.

Citation network of scientific papers

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

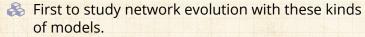
Catchphrases

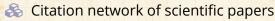
Minimal Cost

And the winner is...?

Nutshell

Extra





Derek de Solla Price:

Price's term: Cumulative Advantage

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing # of citations

Directed network

Two (surmountable) problems:

- 1. New papers have no citations
- 2. Selection mechanism is more complicated

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis Words

Catchphrases

Ontimizatio

Minimal Cost Mandelbrot vs. Simon

Assumptions

Analysis

And the winner is...?

Nutshell

11 2 3

Extra

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing # of citations
- Directed network

Two (surmountable) problems:

- 1. New papers have no citations
 - 2. Selection mechanism is more complicated

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Onlineirati

Optimizati

Minimal Cost Mandelbrot vs. Simo

Assumptions

Analysis

And the winner is...?

Nutshell

Extra

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing # of citations
- Directed network
- Two (surmountable) problems:
 - 1. New papers have no citations
 - 2. Selection mechanism is more complicated

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimizatio

Minimal Cost Mandelbrot vs. Simo

Vlodel

Analysis

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous From the Gospel of Matthew: "For to every one that hath shall be given...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given... (Wait! There's more....)

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given... (Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

And the winner is...? Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given... (Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer

darkness; there men will weep and gnash their teeth."

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer darkness; there men will weep and gnash their

teeth."

(Hath = suggested unit of purchasing power.)

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Catchphrases

And the winner is...?

Nutshell

Extra

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer darkness; there men will weep and gnash their

teeth."

(Hath = suggested unit of purchasing power.)

Matilda effect: women's scientific achievements are often overlooked

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Catchphrases

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview → focus group

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis

Catchphrases

Optimization

Minimal Cost

Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview → focus group

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview → focus group

And just to be clear...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis

And the winner is...?

Nutshell

Extra

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview → focus group

And just to be clear...

Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model

nalysis

And the winner is...?

Nutshell

Extra

Barabasi and Albert [2]—thinking about the Web

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Mechanism

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Mechanism Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

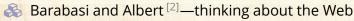
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost


And the winner is...?

Nutshell

Extra

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

Still have selection problem based on size (non-random)

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

- Barabasi and Albert [2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

- Barabasi and Albert [2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- 🙈 Solution: Randomly connect to a node (easy) ...
- ...and then randomly connect to the node's friends (also easy)

= food on the table for

physicists

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Ontimization

Minimal Cost

ssumptions

Analysis

And the winner is...?

Extra

- Barabasi and Albert [2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- 🗞 Solution: Randomly connect to a node (easy) ...
- ...and then randomly connect to the node's friends (also easy)
- "Scale-free networks" = food on the table for physicists

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimizatio

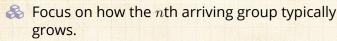
Minimal Cost

Wandelbrot vs. Simon

Assumptions

Analysis
And the winner is...?

Nutshell


Extra

Another analytic approach: [9]

Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} \text{ for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} \text{ for } n \geq 2. \end{array} \right.$$

 \Re First mover is a factor $1/\rho$ greater than expected.

Because ρ is usually close to 0, the first element is truly an elephant in the room.

Appears that this has been missed for 60 years.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Mandelbrot vs. Sin Assumptions

Model

And the winner is...?

Extra

Another analytic approach: [9]

- Focus on how the nth arriving group typically grows.
- Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} \text{ for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} \text{ for } n \geq 2. \end{array} \right.$$

- \Re First mover is a factor $1/\rho$ greater than expected.
- & Because ρ is usually close to 0, the first element is truly an elephant in the room.

Appears that this has been missed for 60 years ..

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis

Catchphrases

Optimizatio

Minimal Cost Mandelbrot vs. Simon Assumptions

Model

And the winner is...?

Extra

Another analytic approach: [9]

- grows.
- Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} \text{ for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} \text{ for } n \geq 2. \end{array} \right.$$

- \clubsuit First mover is a factor $1/\rho$ greater than expected.
- & Because ρ is usually close to 0, the first element is truly an elephant in the room.
- Appears that this has been missed for 60 years ...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

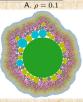
Catchphrases

Minimal Cost

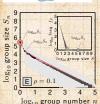
And the winner is...?

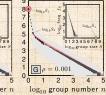
Nutshell

Extra



"Simon's fundamental rich-gets-richer model entails a dominant first-mover advantage"


Dodds et al., Available online at http://arxiv.org/abs/0909.1104, 2016. [9]



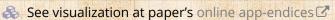
PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases


Minimal Cost

And the winner is...? Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Mandelbrot vs. Simo Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simor

Model Analysis

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simo

Assumption

Analysis
And the winner is...?

Nutshell

Extra

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simo

Assumptions

Model

And the winner is...?

Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

Optimization

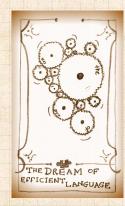
Model

Analysis

And the winner is...?

Nutshell

Extra



THE RICHER

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simo

Model

Analysis

And the winner is...?

Nutshell

Extra

Outline

Simons Model
Analysis
Words
Catchighnases

Optimization Minimal Cost

Mandelbret vs. Simon
Assumptions
Model
Analysis
And the purpose is

Autorea

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Words

Catchphrases

Optimization

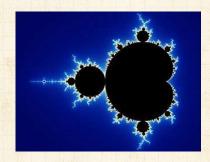
Minimal Cost
Mandelbrot vs. Simu

Assumptions

Analysis

And the winner is...?

Nutshell


Extra

Benoît Mandelbrot

Mandelbrot = father of fractals

Mandelbrot = almond bread

Bonus Mandelbrot set action: here .

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

And the winner is...?

Nutshell

Extra

Benoît Mandelbrot

Derived Zipf's law through optimization [17]

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...? Nutshell

Extra

Benoît Mandelbrot

Derived Zipf's law through optimization [17]

Idea: Language is efficient

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Benoît Mandelbrot

Derived Zipf's law through optimization [17]

Idea: Language is efficient

Communicate as much information as possible for as little cost

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Benoît Mandelbrot

Derived Zipf's law through optimization [17]

Idea: Language is efficient

Communicate as much information as possible for as little cost

 \mathbb{R} Need measures of information (H) and average cost (C)...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

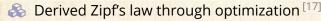
Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell


Extra

Benoît Mandelbrot

🚵 Idea: Language is efficient

Communicate as much information as possible for as little cost

Need measures of information (H) and average cost (C)...

Language evolves to maximize H/C, the amount of information per average cost.

Recurring theme: what role does optimization play in complex systems?

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

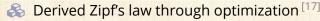
Optimization

Minimal Cost

Nandelbrot vs. Simon Assumptions

Analysis

And the winner is...?


Nutshell

Extra

Benoît Mandelbrot

🚵 Idea: Language is efficient

Communicate as much information as possible for as little cost

Need measures of information (H) and average cost (C)...

& Language evolves to maximize H/C, the amount of information per average cost.

 \Leftrightarrow Equivalently: minimize C/H.

Recurring theme, what role does optimization play in complex systems?

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

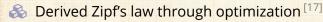
Minimal Cost

Assumptions

Analysis

And the winner is...?
Nutshell

Tracoric


Extra

Benoît Mandelbrot

🙈 Idea: Language is efficient

Communicate as much information as possible for as little cost

Need measures of information (H) and average cost (C)...

A Language evolves to maximize H/C, the amount of information per average cost.

 \Leftrightarrow Equivalently: minimize C/H.

Recurring theme: what role does optimization play in complex systems?

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Sim

Assumptions Model

Analysis

And the winner is...?

Nutshell

Extra

Outline

Simonis Model
Analysis
Words
Catching ases

Optimization

Minimal Cos

Mandelbrot vs. Simon

Assumptions Model

Analysis

And the winner is

Austell

PAUS

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Mandelbrot vs. Simon Assumptions

Model
Analysis

And the winner is...?
Nutshell

vutsne

Extra

The Quickening — Mandelbrot v. Simon:

There Can Be Only One:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost Mandelbrot vs. Simon

And the winner is...?

Nutshell

Extra

References

20 0 45 of 90

The Quickening — Mandelbrot v. Simon:

There Can Be Only One:

Things there should be only one of: Theory, Highlander Films.

Feel free to play Queen's your head (funding remains tight).

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words
Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Model
Analysis
And the winner is...?

Nutshell

Extra

The Quickening — Mandelbrot v. Simon:

There Can Be Only One:

- Things there should be only one of: Theory, Highlander Films.
- Feel free to play Queen's It's a Kind of Magic In your head (funding remains tight).

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

References

9 a ○ 45 of 90

Now let us enjoy the Trailer for Highlander:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model

Analysis And the winner is...?

Nutshell

Extra

Mandelbrot vs. Simon:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Minimal Cost

Mandelbrot vs. Simon

Catchphrases

And the winner is...?

Nutshell

Extra

Mandelbrot vs. Simon:

🙈 Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" [17]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

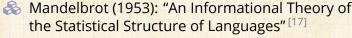
Catchphrases

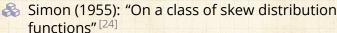
Optimization Minimal Cost Mandelbrot vs. Simon

And the winner is...?

Nutshell

Extra





Mandelbrot vs. Simon:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

Mandelbrot vs. Simon

And the winner is...? Nutshell

Extra

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" [17]
- Simon (1955): "On a class of skew distribution functions" [24]
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon" [18]

Simon (1960): "Some further notes on a class of skew distribution functions"

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions
Model

Analysis

And the winner is...?

Nutshell

Extra

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" [17]
- Simon (1955): "On a class of skew distribution functions" [24]
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon" [18]
- Simon (1960): "Some further notes on a class of skew distribution functions" [25]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Mandelbrot vs. Sime Assumptions

Analysis

And the winner is...?

Nutshell

Extra

Mandelbrot vs. Simon:

Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" [20]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

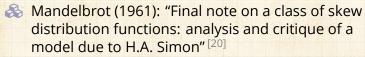
Minimal Cost

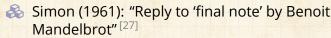
Mandelbrot vs. Simon

And the winner is...?

Nutshell

Extra





Mandelbrot vs. Simon:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

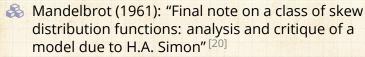
Catchphrases

Minimal Cost Mandelbrot vs. Simon

And the winner is...?

Nutshell

Extra



Mandelbrot vs. Simon:

- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" [27]
- Mandelbrot (1961): "Post scriptum to 'final note" [20]

Simon (1961): "Reply to Dr. Mandelbrot's post scriptum"

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization
Minimal Cost

Mandelbrot vs. Simon Assumptions

Model

And the winner is...?

Nutshell

Extra

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" [20]
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" [27]
- Mandelbrot (1961): "Post scriptum to 'final note" [20]
- Simon (1961): "Reply to Dr. Mandelbrot's post scriptum" [26]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Mandelbrot vs. Simo Assumptions

Analysis

And the winner is...?

Nutshell

Extra

I am immortal, I have inside me blood of kings

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Smon.

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid."

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

I am immortal, I have inside me blood of kings

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon

Analysis
And the winner is...?

Nutshell

Extra

-Xu u

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis
Words

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon

Analysis
And the winner is...?

Nutshell

Extra

References

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

Plankton:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

Catchphrases

Optimization
Minimal Cost

Mandelbrot vs. Simon
Assumptions

Analysis

And the winner is...?

Extra

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

Plankton:

"You can't do this to me, I WENT TO COLLEGE!"

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization
Minimal Cost

Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

And the winner is...?

Extra

References

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

Plankton:

"You can't do this to me, I WENT TO COLLEGE!" "You weak minded fool!"

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions Model

And the winner is...?

Nutshell

Extra

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant." [19]

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [27]

Plankton:

"You can't do this to me, I WENT TO COLLEGE!" "You weak minded fool!" "You just lost your brain privileges," etc.

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization
Minimal Cost

Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Tho theories enter, one theory leaves

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

Outline

Analysis
Words
Catchighnases

Optimization

Minimal Cost
Manidelaper vs. Simon

Assumptions

Analysis And the winner is.

Alushell.

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simo

Model Analysis

And the winner is...?

Nutshell

Extra

Mandelbrot's Assumptions:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Mandelbrot's Assumptions:

 \mathbb{A} Language contains n words: w_1, w_2, \dots, w_n .

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Mandelbrot's Assumptions:

 \mathbb{A} Language contains n words: w_1, w_2, \dots, w_n .

ith word appears with probability p_i

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

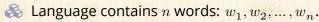
Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell


Extra

Mandelbrot's Assumptions:

sample ith word appears with probability p_i

Words appear randomly according to this distribution (obviously not true...)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Mandelbrot's Assumptions:

- \Leftrightarrow Language contains n words: w_1, w_2, \dots, w_n .
- $\red \gg i$ th word appears with probability p_i
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
 Alphabet contains m letters

Words are ordered by length (shortest first)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

Ontimization

Minimal Cost

Assumptions

Analysis

And the winner is...?

Extra

Mandelbrot's Assumptions:

- \clubsuit Language contains n words: w_1, w_2, \dots, w_n .
- sample ith word appears with probability p_i
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- \triangle Alphabet contains m letters

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Mandelbrot's Assumptions:

- \clubsuit Language contains n words: w_1, w_2, \dots, w_n .
- sample ith word appears with probability p_i
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- \triangle Alphabet contains m letters
- Words are ordered by length (shortest first)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Word Cost

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Assumptions

Analysis

And the winner is...?

Nutshell

Extra

Word Cost

Length of word (plus a space)

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Word Cost

Length of word (plus a space)

Word length was irrelevant for Simon's method

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Word Cost

Length of word (plus a space)

Word length was irrelevant for Simon's method

Objection

Real words don't use all letter sequences

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Optimization

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Word Cost

Length of word (plus a space)

Word length was irrelevant for Simon's method

Objection

Real words don't use all letter sequences

Objections to Objection

Maybe real words roughly follow this pattern (?)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

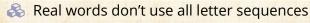
Assumptions

And the winner is...?

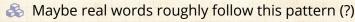
Nutshell

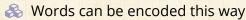
Extra

Word Cost



Length of word (plus a space)




Word length was irrelevant for Simon's method

Objection

Objections to Objection

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

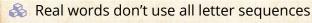
Assumptions

And the winner is...?

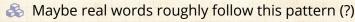
Nutshell

Extra

Word Cost



Length of word (plus a space)



Word length was irrelevant for Simon's method

Objection

Objections to Objection

Words can be encoded this way

Na na na-na naaaaaa...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1 + \log_2 i$	1	2	2.58	3	3.32	3.58	3.81	4

Word length of 2^k th word: = k + 1Word length of ith word $\simeq 1 + \log_2 i$ For an alphabet with m letters, word length of ith word $\simeq 1 + \log_m i$ PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Assumptions Model Analysis

Analysis
And the winner is...?

Nutshell

Extra

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1 + \log_2 i$	1	2	2.58	3	3.32	3.58	3.81	4

3 Word length of 2^k th word: = k + 1

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1 + \log_2 i$	1	2	2.58	3	3.32	3.58	3.81	4

3 Word length of 2^k th word: $= k + 1 = 1 + \log_2 2^k$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1 + \log_2 i$	1	2	2.58	3	3.32	3.58	3.81	4

3 Word length of 2^k th word: $= k + 1 = 1 + \log_2 2^k$

 \bowtie Word length of *i*th word $\simeq 1 + \log_2 i$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost Assumptions

And the winner is...?

Nutshell

Extra

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1 + \log_2 i$	1	2	2.58	3	3.32	3.58	3.81	4

3 Word length of 2^k th word: $= k + 1 = 1 + \log_2 2^k$

 \bowtie Word length of *i*th word $\simeq 1 + \log_2 i$

 \clubsuit For an alphabet with m letters, word length of *i*th word $\simeq 1 + \log_{m} i$. PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Assumptions

And the winner is...?

Nutshell

Extra

Outline

Optimization

Model

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Optimization

Minimal Cost

Model

Analysis And the winner is...?

Nutshell

Extra

Total Cost C

\mathfrak{S} Cost of the *i*th word: $C_i \simeq 1 + \log_m i$

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m}$$

$$C \sim \sum_{i=1}^n p_i C_i' \propto \sum_{i=1}^n p_i \, \square \square (i+1)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost Model

Analysis

And the winner is...?

Nutshell

Extra

Total Cost C

 \mathfrak{S} Cost of the *i*th word: $C_i \simeq 1 + \log_m i$

Cost of the ith word plus space:

$$C_i \simeq 1 + \log_m(i+1)$$

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m}$$

$$C \sim \sum_{i=1}^n p_i C_i' \propto \sum_{i=1}^n p_i \, \square \square (i+1)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

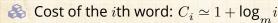
Catchphrases

Minimal Cost

Model Analysis

And the winner is...?

Nutshell


Extra

Total Cost C

Simplify base of logarithm

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m}$$

Total Cost:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Analysis Words

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Model Analysis

And the winner is...?

Nutshell

Extra

Total Cost C

- $\red {\Bbb S}$ Cost of the ith word: $C_i \simeq 1 + \log_m i$

- Simplify base of logarithm:

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m}$$

Total Cost:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

Total Cost C

- $\red {\Bbb S}$ Cost of the ith word: $C_i \simeq 1 + \log_m i$

- Simplify base of logarithm:

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m} \propto \frac{\text{DO}(i+1)}{\text{Volume}}$$

Total Cost:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Words Catchphrases

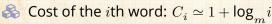
Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Nutshell


Extra

Total Cost C

Simplify base of logarithm:

$$C_i' \simeq \log_m(i+1) = \frac{\log_e(i+1)}{\log_e m} \propto \frac{\text{DO}(i+1)}{\text{Volume}}$$

Total Cost:

$$C \sim \sum_{i=1}^n p_i C_i' \propto \sum_{i=1}^n p_i \, \mathrm{dil}(i+1)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Words Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

Model Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

(allegedly) von Neumann suggested 'entropy'...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Model

Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

(allegedly) von Neumann suggested 'entropy'...

Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

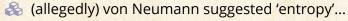
Minimal Cost

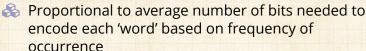
Model Analysis

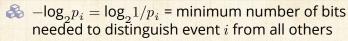
And the winner is...?

Nutshell

Extra






Information Measure

Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Model Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log_2 p_i = \log_2 1/p_i$ = minimum number of bits needed to distinguish event i from all others
- \clubsuit If $p_i = 1/2$, need only 1 bit (log₂ $1/p_i = 1$)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Model Analysis

And the winner is...?

Nutshell

Extra

Information Measure

🙈 Use Shannon's Entropy (or Uncertainty):

$$H = -\sum_{i=1}^n p_i \mathsf{log}_2 p_i$$

- 🙈 (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log_2 p_i = \log_2 1/p_i$ = minimum number of bits needed to distinguish event i from all others
- \clubsuit If $p_i=1/2$, need only 1 bit ($\log_2 1/p_i=1$)
- \implies If $p_i = 1/64$, need 6 bits ($\log_2 1/p_i = 6$)

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use a slightly simpler form:

$$H = -\sum_{i=1}^{n} p_i \log_e p_i / \log_e 2$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Model

Analysis

And the winner is...?

Nutshell

Extra

Information Measure

Use a slightly simpler form:

$$H = -\sum_{i=1}^n p_i \mathrm{log}_e p_i / \mathrm{log}_e 2 = -g \sum_{i=1}^n p_i \, \mathrm{deg} \, p_i$$

where $q = 1/\square\square 2$

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Minimal Cost

Model

Analysis And the winner is...?

Nutshell

Extra

Minimize

$$F(p_1,p_2,\dots,p_n)=C/H$$

subject to constraint

$$\sum_{i=1}^{n} p_i = 1$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Model

Analysis

And the winner is...?

Nutshell

Extra

Minimize

$$F(p_1,p_2,\dots,p_n)=C/H$$

subject to constraint

$$\sum_{i=1}^{n} p_i = 1$$

Tension:

(1) Shorter words are cheaper

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

Optimization

Minimal Cost

Model

Analysis

And the winner is...?

Nutshell

Extra

Minimize

$$F(p_1,p_2,\dots,p_n)=C/H$$

subject to constraint

$$\sum_{i=1}^{n} p_i = 1$$

Tension:

- (1) Shorter words are cheaper
- (2) Longer words are more informative (rarer)

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Model

Analysis

And the winner is...?

Nutshell

Extra

Outline

Simon's Model
Analysis
Words
Catchohrases

Optimization

Minimal Sest
Mandeld et Vs. Simon
Assumptions
Model
Analysis

And the winner is

Batter Bucks

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis

Optimization

Minimal Cost
Mandelbrot vs. Simor
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Time for Lagrange Multipliers:

Minimize

$$\Psi(p_1,p_2,\ldots,p_n) =$$

$$F(p_1,p_2,\ldots,p_n) + \lambda G(p_1,p_2,\ldots,p_n)$$

$$F(p_1, p_2, \dots, p_n) = \frac{C}{H} = 0$$

$$G(p_1,p_2,\dots,p_n) =$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Time for Lagrange Multipliers:

Minimize

$$\begin{split} &\Psi(p_1,p_2,\dots,p_n) = \\ &F(p_1,p_2,\dots,p_n) + \lambda G(p_1,p_2,\dots,p_n) \end{split}$$

where

$$F(p_1,p_2,\dots,p_n) = \frac{C}{H} = \frac{\sum_{i=1}^n p_i \, \square \square(i+1)}{-g \sum_{i=1}^n p_i \, \square \square \, p_i}$$

and the constraint function is

$$G(p_1, p_2, \dots, p_n) = \sum_{i=1}^{n} p_i - 1 (=0)$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is ?

Nutshell Extra

Time for Lagrange Multipliers:

Minimize

$$\begin{split} \Psi(p_1,p_2,\dots,p_n) = \\ F(p_1,p_2,\dots,p_n) + \lambda G(p_1,p_2,\dots,p_n) \end{split}$$

where

$$F(p_1,p_2,\dots,p_n) = \frac{C}{H} = \frac{\sum_{i=1}^n p_i \, \square \square(i+1)}{-g \sum_{i=1}^n p_i \, \square \square p_i}$$

and the constraint function is

$$G(p_1, p_2, \dots, p_n) = \sum_{i=1}^{n} p_i - 1 (=0)$$

Insert question from assignment 3 2

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is ?

Nutshell

Extra

Some mild suffering leads to:

$$p_j = e^{-1-\lambda H^2/gC}(j+1)^{-H/gC}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Some mild suffering leads to:

$$p_j = e^{-1-\lambda H^2/gC}(j+1)^{-H/gC} \propto (j+1)^{-H/gC}$$

A power law appears [applause]:

Next sneakily deduce λ in terms of g, C, and H Find

PoCS | @pocsvox
Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis
Words
Catchohrases

Ontimization

Optimization

Minimal Cost

Mandelbrot vs. Simon Assumptions

Analysis
And the winner is...?

Nutshell

Extra

Some mild suffering leads to:

$$p_j = e^{-1 - \lambda H^2/gC} (j+1)^{-H/gC} \propto (j+1)^{-H/gC}$$

A power law appears [applause]: $\alpha = H/gC$

$$|\alpha = H/gC|$$

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Some mild suffering leads to:

$$p_{j} = e^{-1-\lambda H^{2}/gC}(j+1)^{-H/gC} \propto (j+1)^{-H/gC}$$

 \triangle A power law appears [applause]: $\alpha = H/gC$

 \aleph Next: sneakily deduce λ in terms of g, C, and H.

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

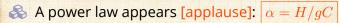
Catchphrases

Minimal Cost

Analysis And the winner is ?

Nutshell

Extra



Some mild suffering leads to:

$$p_{j} = e^{-1-\lambda H^{2}/gC}(j+1)^{-H/gC} \propto (j+1)^{-H/gC}$$

 \aleph Next: sneakily deduce λ in terms of g, C, and H.

🚜 Find

$$p_j = (j+1)^{-H/gC}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchohrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

- $As n \to \infty$, we end up with $\zeta(H/qC) = 2$ where ζ is the Riemann Zeta Function

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

- $As n \to \infty$, we end up with $\zeta(H/qC) = 2$ where ζ is the Riemann Zeta Function
- \Leftrightarrow Gives $\alpha \simeq 1.73$ (> 1, too high) or $\gamma = 1 + \frac{1}{\alpha} \simeq 1.58$ (very wild)

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

- As $n \to \infty$, we end up with $\zeta(H/gC) = 2$ where ζ is the Riemann Zeta Function
- Gives $\alpha \simeq 1.73$ (> 1, too high) or $\gamma = 1 + \frac{1}{\alpha} \simeq 1.58$ (very wild)
- A lf cost function changes $(j+1 \rightarrow j+a)$ then exponent is tunable

Increase a, decrease α

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Words Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Analysis

And the winner is...?

Nutshell

Extra

Extra

Finding the exponent

Now use the normalization constraint:

$$1 = \sum_{j=1}^{n} p_j = \sum_{j=1}^{n} (j+1)^{-H/gC} = \sum_{j=1}^{n} (j+1)^{-\alpha}$$

- $As n \to \infty$, we end up with $\zeta(H/qC) = 2$ where ζ is the Riemann Zeta Function
- \Leftrightarrow Gives $\alpha \simeq 1.73$ (> 1, too high) or $\gamma = 1 + \frac{1}{\alpha} \simeq 1.58$ (very wild)
- A If cost function changes $(j+1 \rightarrow j+a)$ then exponent is tunable
- \triangle Increase a, decrease α

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

All told:

Reasonable approach: Optimization is at work in evolutionary processes

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

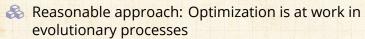
Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell


Extra

All told:

But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness,...

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

All told:

- Reasonable approach: Optimization is at work in evolutionary processes
- But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness,...
- Mandelbrot's argument is not super convincing

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

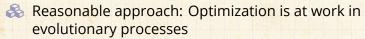
Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell


Extra

All told:

- But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness,...
- Mandelbrot's argument is not super convincing
- Exponent depends too much on a loose definition of cost

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

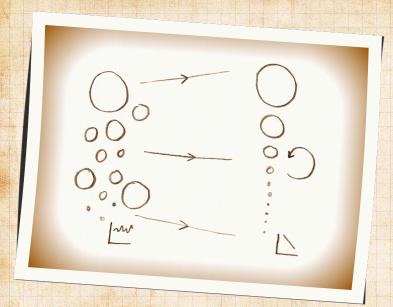
Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?


Nutshell

Extra

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchphrases

Optimization

Minimal Cost Assumptions Model

Analysis And the winner is...?

Nutshell

Extra

From the discussion at the end of Mandelbrot's paper:

A. S. C. Ross: "M. Mandelbrot states that 'the actual direction of evolution (sc. of language) is, in fact, towards fuller and fuller utilization of places'. We are, in fact, completely without evidence as to the existence of any 'direction of evolution' in language, and it is axiomatic that we shall remain so. Many philologists would deny that a 'direction of evolution' could be theoretically possible; thus I myself take the view that a language develops in what is essentially a purely random manner."

Mandelbrot: "As to the 'fundamental linguistic units being the least possible differences between pairs of utterances' this is a logical consequence of the fact that two is the least integer greater than one."

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Analysis

And the winner is ?

Nutshell

Extra

Reconciling Mandelbrot and Simon

Mixture of local optimization and randomness

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

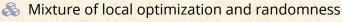
Rich-Get-Richer Simon's Model

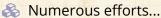
Catchphrases

Minimal Cost

Analysis And the winner is...?

Nutshell


Extra



Reconciling Mandelbrot and Simon

- 1. Carlson and Doyle, 1999: Highly Optimized Tolerance (HOT)—Evolved/Engineered Robustness [5, 6]

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

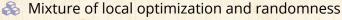
Catchphrases

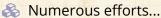
Minimal Cost

Analysis

And the winner is...?

Nutshell


Extra



Reconciling Mandelbrot and Simon

- 1. Carlson and Doyle, 1999: Highly Optimized Tolerance (HOT)—Evolved/Engineered Robustness [5, 6]
- 2. Ferrer i Cancho and Solé, 2002: Zipf's Principle of Least Effort [13]

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Reconciling Mandelbrot and Simon

Mixture of local optimization and randomness

Numerous efforts...

- 1. Carlson and Doyle, 1999: **Highly Optimized Tolerance** (HOT)—Evolved/Engineered Robustness [5, 6]
- 2. Ferrer i Cancho and Solé, 2002: Zipf's Principle of Least Effort [13]
- 3. D'Souza et al., 2007: Scale-free networks [10]

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

More

Other mechanisms:

Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) [21]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

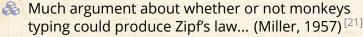
Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra



More

Other mechanisms:

Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" [22, 29]

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) [21]
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" [22, 29]
- Let us now slap Miller around by simply reading his words out (see next slides):

Extra

References

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...? Nutshell

More

Other mechanisms:

Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) [21]

Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" [22, 29]

Let us now slap Miller around by simply reading his words out (see next slides):

Side note: Miller mentions "Genes of Language."

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Analysis And the winner is...?

Nutshell

Extra

More

Other mechanisms:

Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) [21]

Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" [22, 29]

Let us now slap Miller around by simply reading his words out (see next slides):

Side note: Miller mentions "Genes of Language."

Still fighting: "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution" [12] by Ferrer-i-Cancho and Elvevåg, 2010.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

Nutshell

Extra

What Shannon said about meaning in his 1948 paper "A mathematical theory of communication": [23]

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis Words

Catchphrases

ptimization

Minimal Cost Mandelbrot vs. Simon Assumptions

Analysis

And the winner is...?

Nutshell

Extra

INTRODUCTION

The Psycho-Biology of Language is not calculated to please every taste. Zipf was the kind of man who would take roses apart to count their petals; if it violates your sense of values to tabulate the different words in a Shakespearean sonnet, this is not a book for you. Zipf took a scientist's view of language — and for him that meant the statistical analysis of language as a biological, psychological, social process. If such analysis repels you, then leave your language alone and avoid George Kingsley Zipf like the plague. You will be much happier reading Mark Twain: "There are liars, damned liars, and statisticians." Or W. H. Auden: "Thou shalt not sit with statisticians nor commit a social science."

However, for those who do not flinch to see beauty murdered in a good cause, Zipf's scientific exertions yielded some wonderfully unexpected results to boggle the mind and tease the imagination. Language is — among other things — a biological, psychological, social process; to apply statistics to it merely acknowledges its essential unpredictability, without which it would be useless. But who would have thought that in the very heart of all the freedom language allows us Zipf would find an invariant as solid and reliable as the law of gravitation?

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simor

Model Analysis

And the winner is...?

Nutshell

7 2 3

Put it this way. Suppose that we acquired a dozen monkeys and chained them to typewriters until they had produced some very long and random sequence of characters. Suppose further that we defined a "word" in this monkeytext as any sequence of letters occurring between successive spaces. And suppose finally that we counted the occurrences of these "words" in just the way Zipf and others counted the occurrences of real words in meaningful texts. When we plot our results in the same manner, we will find exactly the same "Zipf curves" for the monkeys as for the human authors. Since we are not likely to argue that the poor monkeys were searching for some equilibrium between uniformity and diversity in expressing their ideas, such explanations seem equally inappropriate for human authors.

A mathematical rationalization for this result has been provided by Benoit Mandelbrot. The crux of it is that if we assume that word-boundary markers (spaces) are scattered randomly through a text, then there will necessarily be more occurrences of short than long words. Add to this fact the further observation that the variety of different words available increases exponentially with their length and the phenomenon Zipf reported becomes inescapable: a few short words will be used an enormous number of times while a vast number of longer words will occur infrequently or not at all.

So Zipf was wrong. His facts were right enough, but not his explanations. In a broader sense he was right, however, for he called attention to a stochastic process that is frequently seen in the social sciences, and by accumulating statistical data that cried out for some better explanation he challenged his colleagues and his successors to explore an important new type of probability distribution. Zipf belongs among those rare but stimulating men whose failures are more profitable than most men's successes.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Assumptions

Analysis

And the winner is...?

Nutshell

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

Show Simon's model fares well.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

Show Simon's model fares well.

 \aleph Recall ρ = probability new flavor appears.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

Show Simon's model fares well.

Recall ρ = probability new flavor appears.

Alta Vista C crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

- Show Simon's model fares well.
- Recall $\rho =$ probability new flavor appears.
- Alta Vista C crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$
- \Leftrightarrow Leads to $\gamma = 1 + \frac{1}{1-\alpha} \simeq 2.1$ for in-link distribution.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

Analysis

And the winner is...?

Nutshell

Extra

Power-Law Mechanisms, Pt. 2

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon's 1955 model" [4].

- Show Simon's model fares well.
- & Recall ρ = probability new flavor appears.
- Alta Vista \square crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$
- \Leftrightarrow Leads to $\gamma=1+rac{1}{1ho}\simeq 2.1$ for in-link distribution.
- $\ref{eq:condition}$ Cite direct measurement of γ at the time: 2.1 ± 0.1 and 2.09 in two studies.

Rich-Get-Richer

PoCS | @pocsvox

Rich-Get-Richer Mechanism Simon's Model

Analysis

Words Catchphrases

Ontimizatio

Optimization

Minimal Cost Mandelbrot vs. Simon

Model

Analysis

And the winner is...?

Nutshell

Extra

Outline

Optimization

And the winner is...?

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Catchphrases Optimization

Minimal Cost

Analysis And the winner is ...?

Nutshell

Extra

Recent evidence for Zipf's law...

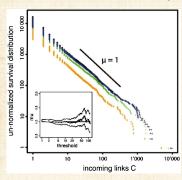


FIG. 1 (color online). (Color Online) Log-log plot of the number of packages in four Debian Linux Distributions with more than C in-directed links. The four Debian Linux Distributions are Woody (19.07.2002) (orange diamonds), Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue circles), Lenny (15.12.2007) (black+'s). The inset shows the maximum likelihood estimate (MLE) of the exponent μ together with two boundaries defining its 95% confidence interval (approximately given by $1 \pm 2/\sqrt{n}$, where n is the number of data points using in the MLE), as a function of the lower threshold, The MLF has been modified from the standard Hill estimator to take into account the discreteness of C.

Maillart et al., PRL, 2008: "Empirical Tests of Zipf's Law Mechanism in Open Source Linux Distribution" [16]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Catchphrases

Minimal Cost

And the winner is ...?

Nutshell

Extra

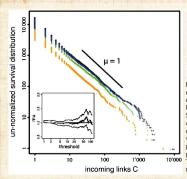


FIG. 1 (color online). (Color Online) Log-log plot of the number of packages in four Debian Linux Distributions with more than C in-directed links. The four Debian Linux Distributions are Woody (19.07.2002) (orange diamonds), Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue circles), Lenny (15.12.2007) (black+'s). The inset shows the maximum likelihood estimate (MLE) of the exponent μ together with two boundaries defining its 95% confidence interval (approximately given by $1 \pm 2/\sqrt{n}$, where n is the number of data points using in the MLE), as a function of the lower threshold, The MLE has been modified from the standard Hill estimator to take into account the discreteness of C.

Maillart et al., PRL, 2008: "Empirical Tests of Zipf's Law Mechanism in Open Source Linux Distribution" [16]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model

Catchphrases

And the winner is ?

Nutshell

Extra

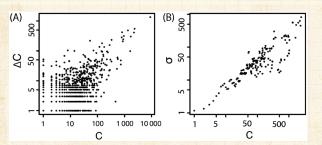


FIG. 2. Left panel: Plots of ΔC versus C from the Etch release (15.08.2007) to the latest Lenny version (05.05.2008) in double logarithmic scale. Only positive values are displayed. The linear regression $\Delta C = R \times C + C_0$ is significant at the 95% confidence level, with a small value $C_0 = 0.3$ at the origin and R =0.09. Right panel: same as left panel for the standard deviation of AC.

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Catchphrases

Ш

Minimal Cost

And the winner is ?

Nutshell Extra

Rough, approximately linear relationship between C number of in-links and ΔC .

Nutshell:

Simonish random 'rich-get-richer' models agree in detail with empirical observations.

PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

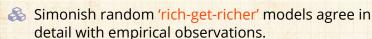
Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is ?

Nutshell


Extra

Nutshell:

Power-lawfulness: Mandelbrot's optimality is still apparent.

Optimality arises for free in Random Competitive Replication models.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words Catchphrases

0-11-11

Optimization

Minimal Cost Mandelbrot vs. Simon

Assumptions

Analysis

And the winner is...?

Nutshell

Extra

Nutshell:

- Simonish random 'rich-get-richer' models agree in detail with empirical observations.
- Power-lawfulness: Mandelbrot's optimality is still apparent.
- Optimality arises for free in Random Competitive Replication models.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is ? Nutshell

Extra

Neural reboot (NR):

Walking with a baby robin:

https://www.youtube.com/v/CxiDTwvsLbA?rel=0

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model Analysis

And the winner is...?

Nutshell

Extra

Krugman and Simon

"The Self-Organizing Economy" (Paul Krugman, 1996)[14]

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

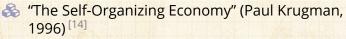
Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell


Extra

Krugman and Simon

Krugman touts Zipf's law for cities, Simon's model

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

Krugman and Simon

- "The Self-Organizing Economy" (Paul Krugman, 1996) [14]
- & Krugman touts Zipf's law for cities, Simon's model
- 🚓 "Déjà vu, Mr. Krugman" (Berry, 1999)

Substantial work done by Urban Geographers

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model Analysis

Words

Catchphrases

Optimization

Minimal Cost Mandelbrot vs. Simon

Model Model

Analysis

And the winner is...?

Nutshell

Extra

Krugman and Simon

- "The Self-Organizing Economy" (Paul Krugman, 1996) [14]
- 🚓 Krugman touts Zipf's law for cities, Simon's model
- 🚵 "Déjà vu, Mr. Krugman" (Berry, 1999)
- Substantial work done by Urban Geographers

PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

From Berry [3]

Déjà vu, Mr. Krugman. Been there, done that. The Simon-Ijiri model was introduced to geographers in 1958 as an explanation of city size distributions, the first of many such contributions dealing with the steady states of random growth processes, ...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

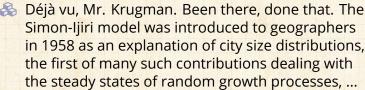
Catchphrases

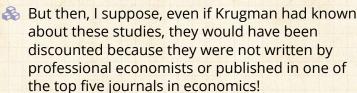
Optimization

Minimal Cost

And the winner is...?

Nutshell


Extra



PoCS | @pocsvox Power-Law Mechanisms, Pt. 2

From Berry [3]

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

From Berry [3]

🚵 ... [Krugman] needs to exercise some humility, for his world view is circumscribed by folkways that militate against recognition and acknowledgment of scholarship beyond his disciplinary frontier.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer

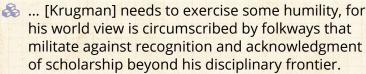
Simon's Model

Catchphrases

Minimal Cost

And the winner is ?

Nutshell


Extra

From Berry [3]

Urban geographers, thank heavens, are not so afflicted.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model Analysis

Words

Catchphrases

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

And the winner is...?

Nutshell

Extra

References I

- [1] F. Auerbach.

 Das gesetz der bevölkerungskonzentration.

 Petermanns Geogr. Mitteilungen, 59:73–76, 1913.
- [2] A.-L. Barabási and R. Albert.
 Emergence of scaling in random networks.
 Science, 286:509–511, 1999. pdf
- [3] B. J. L. Berry.
 Déjà vu, Mr. Krugman.
 Urban Geography, 20:1–2, 1999. pdf
- [4] S. Bornholdt and H. Ebel.
 World Wide Web scaling exponent from Simon's
 1955 model.
 Phys. Rev. E, 64:035104(R), 2001. pdf

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Optimization

Catchphrases

Minimal Cost Mandelbrot vs. Simon Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

References II

[5] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf

[6] J. M. Carlson and J. Doyle.

Complexity and robustness.

Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

[7] D. J. de Solla Price.

Networks of scientific papers.

Science, 149:510–515, 1965. pdf

[8] D. J. de Solla Price.
A general theory of bibliometric and other cumulative advantage processes.

J. Amer. Soc. Inform. Sci., 27:292-306, 1976. pdf

PoCS | @pocsvox
Power-Law
Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Optimization

Catchphrases

Minimal Cost Mandelbrot vs. Simon Assumptions Model

And the winner is...?

Extra

References III

[9] P. S. Dodds, D. R. Dewhurst, F. F. Hazlehurst, C. M. Van Oort, L. Mitchell, A. J. Reagan, J. R. Williams, and C. M. Danforth.

Simon's fundamental rich-gets-richer model entails a dominant first-mover advantage, 2016.

Available online at http://arxiv.org/abs/0909.1104. pdf

[10] R. M. D'Souza, C. Borgs, J. T. Chayes, N. Berger, and R. D. Kleinberg. Emergence of tempered preferential attachment

from optimization.

Proc. Natl. Acad. Sci., 104:6112-6117, 2007. pdf

[11] J.-B. Estoup.

Gammes sténographiques: méthode et exercices pour l'acquisition de la vitesse.

Institut Sténographique, 1916.

PoCS | @pocsvox

Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Mechanism

Simon's Model
Analysis

Words Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions Model

Analysis
And the winner is...?

Nutshell

Extra

LXUU

References

2 0 € 84 of 90

References IV

[12] R. Ferrer-i Cancho and B. Elvevåg. Random texts do not exhibit the real Zipf's law-like rank distribution.

PLoS ONE, 5:e9411, 03 2010.

[13] R. Ferrer-i Cancho and R. V. Solé. Zipf's law and random texts. Advances in Complex Systems, 5(1):1-6, 2002.

[14] P. Krugman. The Self-Organizing Economy. Blackwell Publishers, Cambridge, Massachusetts, 1996.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

References V

[15] A. J. Lotka.

The frequency distribution of scientific productivity.

Journal of the Washington Academy of Science, 16:317–323, 1926.

[16] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh.

Empirical tests of Zipf's law mechanism in open source Linux distribution.

Phys. Rev. Lett., 101(21):218701, 2008. pdf

[17] B. B. Mandelbrot.

An informational theory of the statistical structure of languages.

In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth, Woburn, MA, 1953. pdf 🖸

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model Analysis Words

Catchphrases Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Analysis
And the winner is...?

Nutshell

Extra

References

少 Q ← 86 of 90

References VI

Power-Law Mechanisms, Pt. 2

[18] B. B. Mandelbrot.

A note on a class of skew distribution function. Analysis and critique of a paper by H. A. Simon. Information and Control, 2:90-99, 1959.

[19] B. B. Mandelbrot.

Final note on a class of skew distribution functions: analysis and critique of a model due to H. A. Simon.

Information and Control, 4:198-216, 1961.

[20] B. B. Mandelbrot. Post scriptum to 'final note'. Information and Control, 4:300-304, 1961. Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is ?

Nutshell

Extra

References VII

[21] G. A. Miller.

Some effects of intermittent silence.

American Journal of Psychology, 70:311–314,

1957. pdf

[23] C. E. Shannon.
A mathematical theory of communication.
The Bell System Tech. J., 27:379–423,623–656, 1948. pdf

On a class of skew distribution functions.
Biometrika, 42:425–440, 1955. pdf

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Mechanism Simon's Model

Analysis Words

Words Catchphrases

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

And the winner is...?

Nutshell

Extra

References VIII

[25] H. A. Simon. Some further notes on a class of skew distribution functions. Information and Control, 3:80-88, 1960.

[26] H. A. Simon. Reply to Dr. Mandelbrot's post scriptum. Information and Control, 4:305-308, 1961.

[27] H. A. Simon. Reply to 'final note' by Benoît Mandelbrot. Information and Control, 4:217-223, 1961.

[28] G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21-87, 1925. pdf

Power-Law Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Optimization

Catchphrases

Minimal Cost

And the winner is...?

Nutshell Extra

References IX

[29] G. K. Zipf. The Psycho-Biology of Language. Houghton-Mifflin, New York, NY, 1935.

[30] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. PoCS | @pocsvox Power-Law

Mechanisms, Pt. 2

Rich-Get-Richer Simon's Model

Catchphrases

Minimal Cost

And the winner is...?

Nutshell

Extra

