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Mechanisms:

A powerful story in the rise of complexity:
 structure arises out of randomness.
 Exhibit A: Random walks.

The essential random walk:
 One spatial dimension.
 Time and space are discrete
 Random walker (e.g., a drunk) starts at origin� = 0.
 Step at time � is ��:�� = { +� with probability 1/2−� with probability 1/2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Random_walk
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A few random random walks:
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Random walks:

Displacement after � steps:�� = �∑�=1 ��
Expected displacement:⟨��⟩ = ⟨ �∑�=1 ��⟩ = �∑�=1 ⟨��⟩ = 0
 At any time step, we ‘expect’ our drunkard to be

back at the pub.
 Obviously fails for odd number of steps...
 But as time goes on, the chance of our drunkard

lurching back to the pub must diminish, right?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Variances sum:∗
Var(��) = Var( �∑�=1 ��)
= �∑�=1 Var (��) = �∑�=1 � = �

∗ Sum rule = a good reason for using the variance to
measure spread; only works for independent distributions.

So typical displacement from the origin scales as:� = �1/2
 A non-trivial scaling law arises out of

additive aggregation or accumulation.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Variance#Variance_of_the_sum_of_uncorrelated_variables
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Stock Market randomness:

Also known as the bean machine, the quincunx
(simulation), and the Galton box.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Bean_machine
http://www.mathsisfun.com/data/quincunx.html
http://www.mathsisfun.com/data/quincunx.html
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Great moments in Televised Random Walks:

Plinko! from the Price is Right.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Plinko
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Random walk basics:

Counting random walks:
 Each specific random walk of length � appears

with a chance �/��.
 We’ll be more interested in how many random

walks end up at the same place.
 Define ( , , �) as # distinct walks that start at� = and end at � = after � time steps.
 Random walk must displace by +( − ) after �

steps.
 Insert question from assignment 3( , , �) = ( �(� + − )/�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment3.pdf
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How does (� ) behave for large �?
 Take time � = �� to help ourselves.
 �2� ∈ {0, ±�, ±�, … , ±��}
 �2� is even so set �2� = � .
 Using our expression ( , , �) with = 0, = � ,

and � = ��, we have��(�2� ≡ � ) ∝ ( ��� + )
 For large �, the binomial deliciously approaches

the Normal Distribution of Snoredom:��(�� ≡ �) ≃ �√��� − �22� .
Insert question from assignment 3

 The whole is different from the parts. #nutritious
 See also: Stable Distributions

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment3.pdf
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Universality is also not left-handed:

 This is Diffusion: the most essential kind of
spreading (more later).

 View as Random Additive Growth Mechanism.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)
http://en.wikipedia.org/wiki/Diffusion
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Random walks are even weirder than you might
think...
 ��,� = the probability that by time step �, a random

walk has crossed the origin � times.
 Think of a coin flip game with ten thousand tosses.
 If you are behind early on, what are the chances

you will make a comeback?
 The most likely number of lead changes is...

0.

 In fact: �0,� > �1,� > �2,� > ⋯
 Even crazier:

The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I [3]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Applied knot theory:

➞ ✶��� ✁✂✄☎✆✝✝✂✞ ✁✂✟✂✠✆✞✡☛ ☞✌✍

❤❡ s✐♠♣❧❡st ♦❢ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡ ❦♥♦ts✱
t❤❡ ❢♦✉r✲✐♥✲❤❛♥❞✱ ❤❛s ✐ts ♦r✐❣✐♥s ✐♥ ❧❛t❡✲

♥✐♥❡t❡❡♥t❤✲❝❡♥t✉r② ❊♥❣❧❛♥❞✳ ❚❤❡ ❉✉❦❡ ♦❢
❲✐♥❞s♦r✱ ❛s ❑✐♥❣ ❊❞✇❛r❞ ❱■■■ ❜❡❝❛♠❡ ❛❢t❡r
❛❜❞✐❝❛t✐♥❣ ✐♥ ✎✾✸✻✱ ✐s ❝r❡❞✐t❡❞ ✇✐t❤ ✐♥tr♦✲
❞✉❝✐♥❣ ✇❤❛t ✐s ♥♦✇ ❦♥♦✇♥ ❛s t❤❡ ❲✐♥❞s♦r
❦♥♦t✱ ❢r♦♠ ✇❤✐❝❤ ✐ts s♠❛❧❧❡r ❞❡r✐✈❛t✐✈❡✱ t❤❡
❤❛❧❢✲❲✐♥❞s♦r✱ ❡✈♦❧✈❡❞✳ ■♥ ✎✾✽✾✱ t❤❡ Pr❛tt
❦♥♦t✱ t❤❡ ❢✐rst ♥❡✇ ❦♥♦t t♦ ❛♣♣❡❛r ✐♥ ❢✐❢t②
②❡❛rs✱ ✇❛s r❡✈❡❛❧❡❞ ♦♥ t❤❡ ❢r♦♥t ♣❛❣❡ ♦❢ ✏✑✒
◆✒✓ ❨✔✕✖ ✏✗✘✒✙✳
❘❛t❤❡r t❤❛♥ ✇❛✐t ❛♥♦t❤❡r ❤❛❧❢✲❝❡♥t✉r②

❢♦r t❤❡ ♥❡①t s❛rt♦r✐❛❧ ❛❞✈❛♥❝❡✱ ✇❡ ❤❛✈❡
t❛❦❡♥ ❛ ♠♦r❡ ❢♦r♠❛❧ ❛♣♣r♦❛❝❤✳ ❲❡ ❤❛✈❡
❞❡✈❡❧♦♣❡❞ ❛ ♠❛t❤❡♠❛t✐❝❛❧ ♠♦❞❡❧ ♦❢ t✐❡
❦♥♦ts✱ ❛♥❞ ♣r♦✈✐❞❡ ❛ ♠❛♣ ❜❡t✇❡❡♥ t✐❡
❦♥♦ts ❛♥❞ ♣❡rs✐st❡♥t r❛♥❞♦♠ ✇❛❧❦s ♦♥ ❛
tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡✳ ❲❡ ❝❧❛ss✐❢② ❦♥♦ts ❛❝❝♦r❞✲
✐♥❣ t♦ t❤❡✐r s✐③❡ ❛♥❞ s❤❛♣❡✱ ❛♥❞ q✉❛♥t✐❢②
t❤❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts ✐♥ ❡❛❝❤ ❝❧❛ss✳ ❚❤❡
♦♣t✐♠❛❧ ❦♥♦t ✐♥ ❛ ❝❧❛ss ✐s s❡❧❡❝t❡❞ ❜② t❤❡
♣r♦♣♦s❡❞ ❛❡st❤❡t✐❝ ❝♦♥❞✐t✐♦♥s ♦❢ s②♠♠❡✲
tr② ❛♥❞ ❜❛❧❛♥❝❡✳ ❖❢ t❤❡ ✽✺ ❦♥♦ts t❤❛t ❝❛♥
❜❡ t✐❡❞ ✇✐t❤ ❛ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡✱ ✇❡ r❡❝♦✈❡r
t❤❡ ❢♦✉r ❦♥♦ts t❤❛t ❛r❡ ✐♥ ✇✐❞❡s♣r❡❛❞ ✉s❡
❛♥❞ ✐♥tr♦❞✉❝❡ s✐① ♥❡✇ ❛❡st❤❡t✐❝❛❧❧② ♣❧❡❛s✲
✐♥❣ ❦♥♦ts✳
❆ t✐❡ ❦♥♦t ✐s st❛rt❡❞ ❜② ❜r✐♥❣✐♥❣ t❤❡ ✇✐❞❡

✭❛❝t✐✈❡✮ ❡♥❞ t♦ t❤❡ ❧❡❢t ❛♥❞ ❡✐t❤❡r ♦✈❡r ♦r
✉♥❞❡r t❤❡ ♥❛rr♦✇ ✭♣❛ss✐✈❡✮ ❡♥❞✱ ❞✐✈✐❞✐♥❣
t❤❡ s♣❛❝❡ ✐♥t♦ r✐❣❤t ✭❘✮✱ ❝❡♥tr❡ ✭❈✮ ❛♥❞ ❧❡❢t
✭▲✮ r❡❣✐♦♥s ✭❋✐❣✳ ✎❛✮✳ ❚❤❡ ❦♥♦t ✐s ❝♦♥t✐♥✉❡❞
❜② s✉❜s❡q✉❡♥t ❤❛❧❢✲t✉r♥s✱ ♦r ♠♦✈❡s✱ ♦❢ t❤❡
❛❝t✐✈❡ ❡♥❞ ❢r♦♠ ♦♥❡ r❡❣✐♦♥ t♦ ❛♥♦t❤❡r ✭❋✐❣✳
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“Designing tie knots by random walks”
Fink and Mao,
Nature, 398, 31–32, 1999. [4]

FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 

a, The two ways of beginning a knot, L! and L". For knots beginning with L!, the tie must begin 

inside-out. b, The four-in-hand, denoted by the sequence L"  R!  L"  C! T. c, A knot may be represented 

by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the

walk ll
^̂
rr^̂ ll

^̂
cc^̂.
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Applied knot theory:
Table 1 Aesthetic tie knots

h # #/h K(h, #) s b Name Sequence

3 1 0.33 1 0 0 L! R" C! T

4 1 0.25 1 $1 1 Four-in-hand L" R! L" C! T

5 2 0.40 2 $1 0 Pratt knot L! C" R! L" C! T

6 2 0.33 4 0 0 Half-Windsor L" R! C" L! R" C! T

7 2 0.29 6 $1 1 L! R" L! C" R! L" C! T

7 3 0.43 4 0 1 L! C" R! C" L! R" C! T

8 2 0.25 8 0 2 L" R! L" C! R" L! R" C! T

8 3 0.38 12 $1 0 Windsor L" C! R" L! C" R! L" C! T

9 3 0.33 24 0 0 L! R" C! L" R! C" L! R" C! T

9 4 0.44 8 $1 2 L! C" R! C" L! C" R! L" C! T

Knots are characterized by half-winding number h, centre number #, centre fraction #/h, knots per class K(h, #),

symmetry s, balance b, name and sequence.

 ℎ = number of
moves

 � = number of
center moves

 �(ℎ,�) =2 −1(ℎ− −2−1 )
 = ∑ℎ�=1 �� where � = -1

for � and +1 for �.

 � = 12 ∑ℎ−1�=2 |��+��−1|
where � = ±1
represents winding
direction.

http://www.uvm.edu
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Random walks #crazytownbananapants

The problem of first return:
 What is the probability that a random walker in

one dimension returns to the origin for the first
time after � steps?

 Will our drunkard always return to the origin?
 What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an

interesting exponent.
2. Some physical structures may result from random

walks.
3. We’ll start to see how different scalings relate to

each other.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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For random walks in 1- :

0 5 10 15 20
−4

−2

0

2

4

t

x

 A return to origin can only happen when � = ��.
 In example above, returns occur at � = �, 10, and

14.
 Call fr(2�) the probability of first return at � = ��.
 Probability calculation ≡ Counting problem

(combinatorics/statistical mechanics).
 Idea: Transform first return problem into an

easier return problem.

http://www.uvm.edu
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0 2 4 6 8 10 12 14 16
0
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x

 Can assume drunkard first lurches to � = 1.
 Observe walk first returning at = 16 stays at or above� = 1 for 1 ≤ ≤ 15 (dashed red line).

 Now want walks that can return many times to � = 1.
 �fr(2�) =2 ⋅ 12 � (�� ≥ 1, 1 ≤ ≤ 2� − 1, and �1 = �2�−1 = 1)
 The 12 accounts for �2� = 2 instead of 0.

 The 2 accounts for drunkards that first lurch to � = −1.
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Counting first returns:

Approach:
 Move to counting numbers of walks.
 Return to probability at end.
 Again, ( , , �) is the # of possible walks between� = and � = taking � steps.
 Consider all paths starting at � = � and ending at� = � after � = �� − � steps.
 Idea: If we can compute the number of walks that

hit � = 0 at least once, then we can subtract this
from the total number to find the ones that
maintain � ≥ �.

 Call walks that drop below � = � excluded walks.
 We’ll use a method of images to identify these

excluded walks.
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Key observation for excluded walks:
 For any path starting at �=� that hits 0, there is a

unique matching path starting at �=−�.
 Matching path first mirrors and then tracks after

first reaching �=0.
 # of �-step paths starting and ending at �=� and

hitting �=0 at least once

= # of �-step paths starting at �=−1 and ending at�=� = (−�, �, �)

 So first return(��) = (�, �, �� − �) − (−�, �, �� − �)
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Probability of first return:
Insert question from assignment 3 :
 Find

fr(��) ∼ �2�−3/2√���3/2 .
 Normalized number of paths gives probability.
 Total number of possible paths = �2�.


fr(��) = ��2� fr(��)
≃ ��2� �2�−3/2√���3/2= �√��(��)−3/2 ∝ �−3/2.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2016-08UVM-300/docs/{2016-08UVM-300}assignment3.pdf
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 We have �( ) ∝ −3/2, � = 3/2.
 Same scaling holds for continuous space/time walks.

 �( ) is normalizable.

 Recurrence: Random walker always returns to origin

 But mean, variance, and all higher moments are
infinite. #totalmadness

 Even though walker must return, expect a long wait...

 One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions:

 Walker in � = 2 dimensions must also return

 Walker may not return in � ≥ 3 dimensions

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Random_walk#Higher_dimensions
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Random walks

On finite spaces:
 In any finite homogeneous space, a random

walker will visit every site with equal probability
 Call this probability the Invariant Density of a

dynamical system
 Non-trivial Invariant Densities arise in chaotic

systems.

On networks:
 On networks, a random walker visits each node

with frequency ∝ node degree #groovy
 Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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 Non-trivial Invariant Densities arise in chaotic

systems.

On networks:
 On networks, a random walker visits each node

with frequency ∝ node degree #groovy
 Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy
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Outline

Random Walks
The First Return Problem
Examples

Variable transformation
Basics
Holtsmark’s Distribution
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Scheidegger Networks [9, 2]

 Random directed network on triangular lattice.
 Toy model of real networks.
 ‘Flow’ is southeast or southwest with equal

probability.
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Scheidegger networks

 Creates basins with random walk boundaries.
 Observe that subtracting one random walk from

another gives random walk with increments:

�� = ⎧{⎨{⎩ +� with probability �/�0 with probability �/�−� with probability �/�
 Random walk with probabilistic pauses.
 Basin termination = first return random walk

problem.
 Basin length ℓ distribution: (ℓ) ∝ ℓ−3/2
 For real river networks, generalize to (ℓ) ∝ ℓ− .
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Connections between exponents:

 For a basin of length ℓ, width ∝ ℓ1/2
 Basin area � ∝ ℓ ⋅ ℓ1/2 = ℓ3/2
 Invert: ℓ ∝ � 2/3
 dℓ ∝ d(�2/3) = �/��−1/3d�
 ��(basin area = �)d�= ��(basin length = ℓ)dℓ∝ ℓ−3/2dℓ∝ (�2/3)−3/2�−1/3d�= �−4/3d�= �−�d�
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Connections between exponents:

 Both basin area and length obey power law
distributions

 Observed for real river networks
 Reportedly: �.� < � < �.5 and �.5 < � < �
Generalize relationship between area and length:
 Hack’s law [5]: ℓ ∝ �ℎ.
 For real, large networks ℎ ≃ 0.5
 Smaller basins possibly ℎ > �/� (see: allometry).
 Models exist with interesting values of ℎ.
 Plan: Redo calc with �, � , and ℎ.
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Connections between exponents:
 Given ℓ ∝ �ℎ, (�) ∝ �−�, and (ℓ) ∝ ℓ−
 dℓ ∝ d(�ℎ) = ℎ�ℎ−1d�
 Find � in terms of � and ℎ.
 ��(basin area = �)d�= ��(basin length = ℓ)dℓ∝ ℓ− dℓ∝ (�ℎ)− �ℎ−1d�= �−(1+ℎ ( −1))d�
 � = � + ℎ(� − �)
 Excellent example of the Scaling Relations found

between exponents describing power laws for
many systems.
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Connections between exponents:

With more detailed description of network
structure, � = � + ℎ(� − �) simplifies to: [1]� = � − ℎ
and � = �/ℎ
 Only one exponent is independent (take ℎ).
 Simplifies system description.
 Expect Scaling Relations where power laws are

found.
 Need only characterize Universality class with

independent exponents.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)
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Other First Returns or First Passage Times:

Failure:
 A very simple model of failure/death: [11]

 �� = entity’s ‘health’ at time �
 Start with �0 > 0.
 Entity fails when � hits 0.

Streams
 Dispersion of suspended sediments in streams.
 Long times for clearing.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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More than randomness

 Can generalize to Fractional Random Walks [7, 8, 6]

 Levy flights, Fractional Brownian Motion
 See Montroll and Shlesinger for example: [6]

“On �/ noise and other distributions with long
tails.”
Proc. Natl. Acad. Sci., 1982.

 In 1-d, standard deviation � scales as� ∼ �

� = �/� — diffusive� > �/� — superdiffusive� < �/� — subdiffusive

 Extensive memory of path now matters...
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Neural reboot (NR):

Desert rain frog/Squeaky toy:

https://www.youtube.com/v/cBkWhkAZ9ds?rel=0

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://www.youtube.com/v/cBkWhkAZ9ds?rel=0
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Outline

Random Walks
The First Return Problem
Examples

Variable transformation
Basics
Holtsmark’s Distribution
PLIPLO

References
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Variable Transformation

Understand power laws as arising from
1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

 Random variable � with known distribution �
 Second random variable � with � = (�).
 � (�)d� =∑�|�(�)=� �(�)d�=∑�|�(�)=� �( −1(�)) d�|�′(�−1(�))|
 Often easier to do by

hand...
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General Example
 Assume relationship between � and � is 1-1.
 Power-law relationship between variables:� = �− , � > 0
 Look at � large and � small


d� = d ( �− )

= (−�)�− −1d�
invert: d� = −�� � +1d�
d� = −�� (�)−( +1)/

d�
d� = − 1/� �−1−1/ d�

http://www.uvm.edu
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Now make transformation:�(�)d� = �(�)d�

�(�)d� = �
(�)⏞⏞⏞⏞⏞((�)−1/ ) d�⏞⏞⏞⏞⏞⏞⏞1/� �−1−1/ d�

 If �(�) → non-zero constant as � → 0 then
�(�) ∝ �−1−1/ as � → ∞.

 If �(�) → � as � → 0 then
�(�) ∝ �−1−1/ − / as � → ∞.
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Example

Exponential distribution
Given �(�) = 1� −�/� and � = �− , then(�) ∝ �−1−1/ + (�−1−2/ )
 Exponentials arise from randomness (easy)...
 More later when we cover robustness.
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Outline
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Gravity

 Select a random point in the
universe ⃗�

 Measure the force of gravity�( ⃗�)
 Observe that� (�) ∼ � −5/2.
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Matter is concentrated in stars: [10]

 � is distributed unevenly
 Probability of being a distance � from a single star

at ⃗� = ⃗0: �(�)d� ∝ �2d�
 Assume stars are distributed randomly in space

(oops?)
 Assume only one star has significant effect at ⃗�.
 Law of gravity: � ∝ �−2
 invert: � ∝ � −1/2
 Also invert:

d� ∝ d(�−2) ∝ �−3d� → d� ∝ �3d� ∝ � −3/2d� .
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Transformation:

Using � ∝ � −1/2 , d� ∝ � −3/2d� , and �(�) ∝ �2
 � (�)d� = �(�)d�
 ∝ �(const × � −1/2)� −3/2d�
 ∝ (� −1/2)2 � −3/2d�
 = � −1−3/2d�
 = � −5/2d� .
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Gravity:

� (�) = � −5/2d�
 � = 5/�
 Mean is finite.
 Variance = ∞.
 A wild distribution.
 Upshot: Random sampling of space usually safe

but can end badly...
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Doctorin’ the Tardis
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Outline
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Extreme Caution!

 PLIPLO = Power law in, power law out
 Explain a power law as resulting from another

unexplained power law.
 Yet another homunculus argument...
 Don’t do this!!! (slap, slap)
 MIWO = Mild in, Wild out is fine.
 In general: We need mechanisms!

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Homunculus_argument


PoCS|@pocsvox

Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

References

.
.
.
.
.

.
56 of 60

Extreme Caution!

 PLIPLO = Power law in, power law out
 Explain a power law as resulting from another

unexplained power law.
 Yet another homunculus argument...
 Don’t do this!!! (slap, slap)
 MIWO = Mild in, Wild out is fine.
 In general: We need mechanisms!

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Homunculus_argument


PoCS|@pocsvox

Power-Law
Mechanisms, Pt. 1

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

References

.
.
.
.
.

.
56 of 60

Extreme Caution!

 PLIPLO = Power law in, power law out
 Explain a power law as resulting from another

unexplained power law.
 Yet another homunculus argument...
 Don’t do this!!! (slap, slap)
 MIWO = Mild in, Wild out is fine.
 In general: We need mechanisms!

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Homunculus_argument
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Neural reboot (NR):

Zoomage in slow motion

https://www.youtube.com/v/axrTxEVQqN4?rel=0
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