Properties of Complex Networks

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distribution:
Assortativity

Motifs
Concurrency
Branching ratios

Branching ratios
Network distances
Interconnectedness

Nutshell

References

These slides are brought to you by:

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Concurrency Interconnectedness

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios

Network distances

Interconnectedness

Nutshell

References

Pocs | @pocsvox
Properties of
Complex

Networks

Properties of Complex Networks

. A problem

Degree distributions

lustering

Motifs Concurrency

ranching ratios

Interconnectedness

Nutshell

References

Pocs
Principles of
Complex Systems

What's the Street

Properties of Complex Networks

Properties of Complex Networks

A problem

Assortativity

Clustering

Concurrency

Branching ratios
Network distances

Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

problem

Assortativity

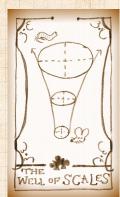
Clustering Motifs

Concurrency

Branching ratios
Network distances

Interconnectedness

Nutshell



Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distribution

Assortativity

Motifs

Concurrency
Branching ratios

Network distances Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distributions
Assortativity

Clustering Motifs

Concurrency

Branching ratios

Network distances Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

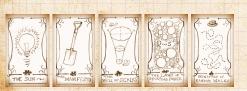
A problem

Assortativity

Motifs

Concurrency

Branching ratios


Network distances Interconnectedness

Nutshell

Properties of Complex Networks

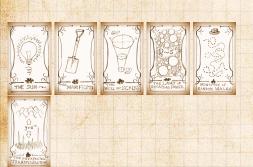
Properties of Complex Networks

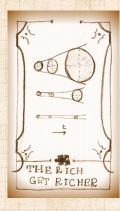
Degree distribution

Assortativity Clustering Motifs

Concurrency

Branching ratios
Network distances


Interconnectedness


Nutshell

Properties of Complex Networks

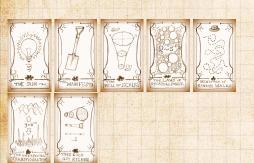
Properties of Complex Networks

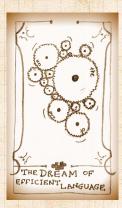
Degree distribution Assortativity

Clustering

Motifs Concurrency

Branching ratios


Network distances Interconnectedness


Nutshell

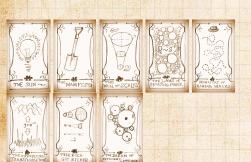
Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency Branching ratios


Network distances Interconnectedness

Nutshell

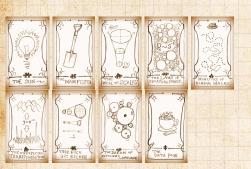
Properties of Complex Networks

Properties of Complex Networks

Degree distribution

Clustering Motifs

Concurrency


Branching ratios

Network distances Interconnectedness

Nutshell

Properties of Complex Networks

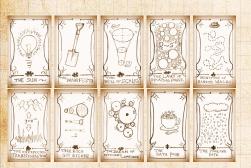
Properties of Complex Networks

Degree distribution

Assortativity

Motifs

Concurrency Branching ratios


Network distances Interconnectedness

Nutshell

Properties of Complex Networks

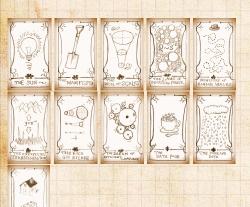
Properties of Complex Networks

Degree distributions

Assortativity

Motifs

Concurrency Branching ratios


Network distances

Nutshell

THE RMIRESHES

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

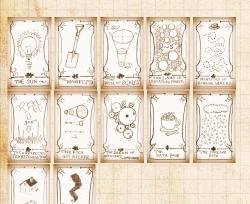
Degree distribution

Assortativity Clustering

Motifs

Concurrency Branching ratios

Network distances


Interconnectedness

Nutshell

THE RMIRESHES

OF DESTRUCTION

PoCS | @pocsvox

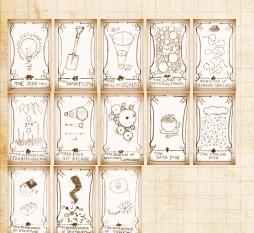
Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency Branching ratios


Interconnectedness

Nutshell

THE EMERGENCE

PoCS | @pocsvox

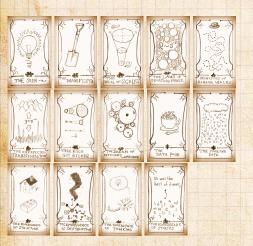
Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency Branching ratios


Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

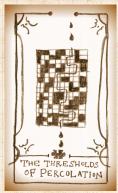
Assortativity

Motifs

Concurrency Branching ratios

Network distances

Interconnectedness


Nutshell

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs Concurrency

Branching ratios

Interconnectedness

Nutshell

PERCOLATION

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distribution

Clustering Motifs

Concurrency

Branching ratios
Network distances

Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency

Branching ratios

Interconnectedness

Nutshell

Properties of Complex Networks

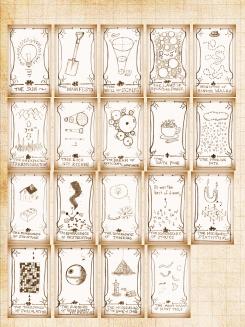
Properties of Complex Networks

Degree distributions Assortativity

Clustering

Motifs Concurrency

Branching ratios


Network distances Interconnectedness

Nutshell

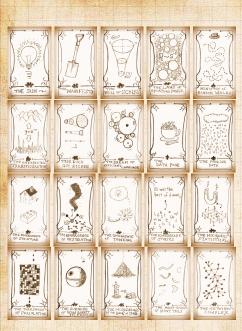
Properties of Complex Networks

Properties of Complex Networks

Degree distribution

Clustering Motifs

Concurrency Branching ratios


Network distances Interconnectedness

Nutshell

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency

Branching ratios

Interconnectedness

Nutshell

Outline

Properties of Complex Networks A problem

Degree distributions
Assortativity
Clustering
Motifs
Concurrency
Branching ratios
Network distances

Hutshel

References

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distributions
Assortativity

Clustering

Concurrency

Branching ratios
Network distances

Interconnectedness

Nutshell

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex

Networks A problem

Assortativity

Motifs Concurrency Branching ratios


Interconnectedness

Nutshell

Graphical renderings are often just a big mess.

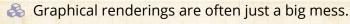
PoCS | @pocsvox Properties of

Complex Networks

Properties of Complex Networks

A problem

Motifs Concurrency


Interconnectedness

Nutshell

← Typical hairball

- \square number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

PoCS | @pocsvox Properties of

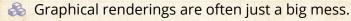
Complex Networks

Properties of Complex Networks

A problem

Concurrency

Interconnectedness


Nutshell References

← Typical hairball

- ightharpoonup number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

Nutshell

And even when renderings somehow look good:

PoCS | @pocsvox Properties of Complex

Properties of Complex Networks

A problem

Networks

Concurrency

Interconnectedness

Graphical renderings are often just a big mess.

← Typical hairball

- ightharpoonup number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] — Making Money, T. Pratchett.

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

A problem

Concurrency

Interconnectedness

Nutshell References

🙈 Graphical renderings are often just a big mess.

← Typical hairball

- \bigcirc number of nodes N = 500
- \bigcirc number of edges m = 1000
- ightharpoonup average degree $\langle k \rangle$ = 4

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] —Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

PoCS | @pocsvox
Properties of
Complex

Properties of Complex

Networks A problem

Degree distrib

Networks

Clustering
Motifs
Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell References

Some key aspects of real complex networks:

& degree distribution*

assortativity

A homophily

clustering

motifs

modularity

concurrency

hierarchical scaling

network distances

centrality

efficiency

interconnectedness

robustness

Plus coevolution of network structure and processes on networks.

 Degree distribution is the elephant in the room that we are now all very aware of...

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

A problem

Degree distributions

Concurrency

Interconnectedness Nutshell

Outline

Properties of Complex Networks

Degree distributions

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions Assortativity

Motifs

Concurrency Branching ratios

Interconnectedness

Nutshell

Properties

1. degree distribution P_{L}

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell References

Properties

1. degree distribution P_k

A P_k is the probability that a randomly selected node has degree k.

$$P_k = e^{-\langle k
angle} rac{\langle k
angle^k}{k!}$$

PoCS | @pocsvox Properties of Complex Networks

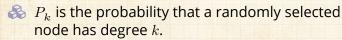
Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell



Properties

1. degree distribution P_{L}

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell

1. degree distribution P_k

A P_{k} is the probability that a randomly selected node has degree k.

& k = node degree = number of connections.

🙈 ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 2

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell

1. degree distribution P_{ν}

A P_{k} is the probability that a randomly selected node has degree k.

& k = node degree = number of connections.

🙈 ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 2

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell

1. degree distribution P_k

 $\begin{cases} \& P_k \end{cases}$ is the probability that a randomly selected node has degree k.

& k = node degree = number of connections.

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 🗷

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

hubs may facilitate or impede contagion.

Properties of

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Degree distributions

Clustering Motifs

Concurrency
Branching ratios
Network distances

Interconnectedness

Nutshell

1. degree distribution P_k

 $\begin{cases} \& P_k \end{cases}$ is the probability that a randomly selected node has degree k.

& k = node degree = number of connections.

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 🗷

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

hubs may facilitate or impede contagion.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Assortativity

Clustering Motifs Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell

Note:

Erdős-Rényi random networks are a mathematical construct.

PoCS | @pocsvox

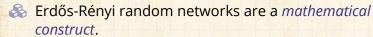
Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness


Nutshell

Note:

'Scale-free' networks are growing networks that form according to a plausible mechanism.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell

Note:

- Erdős-Rényi random networks are a mathematical construct.
- 'Scale-free' networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Concurrency

Interconnectedness

Nutshell

Outline

Properties of Complex Networks

Assortativity

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

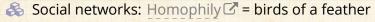
Motifs

Concurrency

Branching ratios

Interconnectedness

Nutshell



Complex Networks

2. Assortativity/3. Homophily:

e.g., degree is standard property for sorting: measure degree-degree correlations.

Assortative network: similar degree nodes connecting to each other.

Disassortative network: high degree nodes connecting to low degree nodes.

Pocs | @pocsvox Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Motifs Concurrency

Branching ratios

Interconnectedness

Nutshell

Pocs | @pocsvox
Properties of
Complex
Networks

2. Assortativity/3. Homophily:

Degree distributions
Assortativity

Properties of Complex Networks

e.g., degree is standard property for sorting: measure degree-degree correlations.

Concurrency

Branching ratios

Assortative network: similar degree node:

Network distances

Disassortative network: high degree nodes connecting to low degree nodes.

Nutshell

PoCS | @pocsvox
Properties of
Complex
Networks

2. Assortativity/3. Homophily:

Properties of Complex Networks

Degree distributions
Assortativity

e.g., degree is standard property for sorting: measure degree-degree correlations.

Concurrency

Assortative network: [5] similar degree nodes connecting to each other.

Network distances
Interconnectedness

Disassortative network: high degree nodes

Nutshell

PoCS | @pocsvox Properties of Complex Networks

2. Assortativity/3. Homophily:

Properties of Complex Networks

Social networks: Homophily 🗹 = birds of a feather

Assortativity

e.g., degree is standard property for sorting: measure degree-degree correlations.

Concurrency Interconnectedness

Assortative network: [5] similar degree nodes connecting to each other.

Nutshell

Disassortative network: high degree nodes connecting to low degree nodes.

PoCS | @pocsvox Properties of Complex Networks

2. Assortativity/3. Homophily:

Properties of Complex Networks

Social networks: Homophily 🗹 = birds of a feather

Assortativity

e.g., degree is standard property for sorting: measure degree-degree correlations.

Concurrency

Assortative network: [5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.

Interconnectedness

Disassortative network: high degree nodes connecting to low degree nodes.

PoCS | @pocsvox
Properties of
Complex
Networks

2. Assortativity/3. Homophily:

Networks
A problem
Degree distributions
Assortativity

Properties of Complex

e.g., degree is standard property for sorting: measure degree-degree correlations.

Concurrency
Branching ratios
Network distances
Interconnectedness

Assortative network: ^[5] similar degree nodes connecting to each other.
Often social: company directors, coauthors, actors.

Nutshell References

Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

Outline

Properties of Complex Networks

Clustering

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

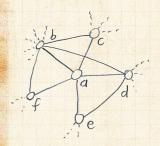
Assortativity

Clustering

Concurrency Branching ratios

Interconnectedness

Nutshell



Local socialness:

4. Clustering:

PoCS | @pocsvox

Properties of Complex Networks

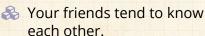
Properties of Complex Networks

Assortativity

Clustering

Concurrency Branching ratios Interconnectedness

Nutshell



Local socialness:

4. Clustering:

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Clustering

Concurrency

Branching ratios Interconnectedness

Nutshell

Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained) on following slides):
 - 1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

2. Newman [6]

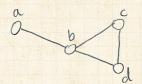
$$C_2 = rac{3 imes ext{\#triangles}}{ ext{\#triples}}$$

PoCS | @pocsvox

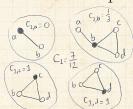
Properties of Complex Networks

Properties of Complex Networks

Clustering


Concurrency

Interconnectedness



Calculation of C_1 :

PoCS | @pocsvox Properties of Complex

Networks

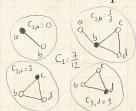
Properties of Complex Networks

Assortativity

Clustering


Concurrency Interconnectedness

Nutshell



Calculation of C_1 :

pairs of neighbors who are connected.

PoCS | @pocsvox

Properties of Complex Networks

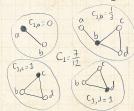
Properties of Complex Networks

Assortativity

Clustering

Concurrency Interconnectedness

Nutshell



Calculation of C_1 :

pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where k_i is node i's degree, and N_i is the set of i's neighbors.

PoCS | @pocsvox

Properties of Complex Networks

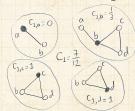
Properties of Complex Networks

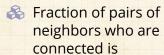
Clustering

Concurrency

Interconnectedness

Nutshell





Calculation of C_1 :

pairs of neighbors who are connected.

$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where k_i is node i's degree, and N_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^n \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i(k_i - 1)/2}$$

PoCS | @pocsvox

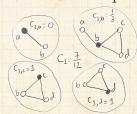
Properties of Complex Networks

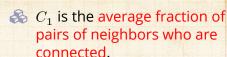
Properties of Complex Networks

Clustering

Concurrency

Interconnectedness Nutshell





Calculation of C_1 :

Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where k_i is node i's degree, and N_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i(k_i - 1)/2} = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i(k_i - 1)/2} \right\rangle_i$$

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

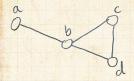
A problem

Degree distribution

Clustering

Concurrency
Branching ratio

Network distances


Nutshell


Example network:

Triangles:

Triples:

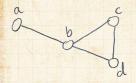
 \mathbb{A} Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

PoCS | @pocsvox Properties of

Complex Networks

Properties of Complex Networks

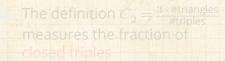
Clustering


Concurrency Interconnectedness

Example network:

Triangles:

Triples:




 \mathbb{A} Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

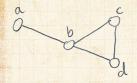
Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Clustering


Concurrency Interconnectedness

Example network:

Triangles:

Triples:

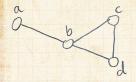
- \mathbb{A} Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- \red{Rel} The definition $C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Clustering


Concurrency Interconnectedness

Example network:

Triangles:

Triples:

- Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\text{The definition } C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.

Social Network Analysis (SNA): fraction of transitive triples.

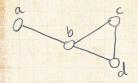
PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks Aproblem

Degree distributions

Clustering
Motifs
Concurrency


Branching ratios Network distances Interconnectedness

Example network:

Triangles:

Triples:

- Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks A problem

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

$$\#$$
triangles = $\frac{1}{6}$ Tr A^3

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Assortativity

Clustering

Concurrency

Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

 \Longrightarrow If the path $i-j-\ell$ exists then $a_{i,i}a_{i\ell}=1$.

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

#triangles =
$$\frac{1}{c} \text{Tr} A^2$$

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency

Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

 \Longrightarrow If the path $i-j-\ell$ exists then $a_{i,i}a_{i\ell}=1$.

$$\# ext{triples} = rac{1}{2} \left(\sum_{i=1}^N \sum_{\ell=1}^N \left[A^2 \right]_{i\ell} - ext{Tr} A^2
ight)$$

#triangles =
$$\frac{1}{6}$$
Tr A^3

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency

Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

- \Leftrightarrow If the path $i-j-\ell$ exists then $a_{ij}a_{j\ell}=1$.
- \clubsuit We want $i \neq \ell$ for good triples.

#triples =
$$\frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} [A^2]_{i\ell} - \text{Tr} A^2 \right)$$

$$\#$$
triangles $=\frac{1}{6}$ Tr A^3

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

- \clubsuit If the path i-j- ℓ exists then $a_{ij}a_{j\ell}=1$.
- \Leftrightarrow We want $i \neq \ell$ for good triples.
- $\text{In general, a path of } n \text{ edges between nodes } i_1 \\ \text{and } i_n \text{ travelling through nodes } i_2, i_3, ... i_{n-1} \text{ exists} \\ \Leftrightarrow a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

#triangles = $\frac{1}{6} \text{Tr} A^3$

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

- If the path $i-j-\ell$ exists then $a_{i,j}a_{j\ell}=1$.
- \clubsuit We want $i \neq \ell$ for good triples.
- A In general, a path of n edges between nodes i_1 and i_n travelling through nodes i_2 , i_3 , ... i_{n-1} exists $\iff a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

$$\# \mathsf{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \mathsf{Tr} A^2 \right)$$

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

 $\mbox{\&}$ If the path i-j- ℓ exists then $a_{ij}a_{j\ell}=1$.

 \Leftrightarrow We want $i \neq \ell$ for good triples.

In general, a path of n edges between nodes i_1 and i_n travelling through nodes $i_2, i_3, ... i_{n-1}$ exists $\Leftrightarrow a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1$.

$$\#\mathsf{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \mathsf{Tr} A^2 \right)$$

#triangles =
$$\frac{1}{6}$$
Tr A^3

PoCS | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

 \Leftrightarrow For sparse networks, C_1 tends to discount highly connected nodes.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Clustering

Concurrency

Interconnectedness

Nutshell

& For sparse networks, C_1 tends to discount highly connected nodes.

 \mathcal{L}_2 is a useful and often preferred variant

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Clustering

Concurrency Interconnectedness

Nutshell

 \Leftrightarrow For sparse networks, C_1 tends to discount highly connected nodes.

 $\stackrel{ ext{left}}{\Leftrightarrow} C_2$ is a useful and often preferred variant

& In general, $C_1 \neq C_2$.

 C_1 is a global average of a local ratio. C_2 is a ratio of two global quantities.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances

Nutshell Nutshell

 \Leftrightarrow For sparse networks, C_1 tends to discount highly connected nodes.

 $\stackrel{ ext{left}}{\Leftrightarrow} C_2$ is a useful and often preferred variant

& In general, $C_1 \neq C_2$.

 \mathcal{L}_1 is a global average of a local ratio.

 C_2 is a ratio of two global quantities

Properties of Complex

Properties of Complex Networks

Networks

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

- For sparse networks, C_1 tends to discount highly connected nodes.
- $\stackrel{\textstyle <}{\&} C_2$ is a useful and often preferred variant
- & In general, $C_1 \neq C_2$.
- \mathcal{L}_1 is a global average of a local ratio.

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Degree distributions

Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

Outline

Properties of Complex Networks

Motifs

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency Branching ratios Interconnectedness

Nutshell

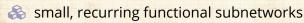
5. motifs:

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Assortativity Motifs

Concurrency Branching ratios Interconnectedness



5. motifs:

e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al.

PoCS | @pocsvox Properties of Complex

Networks

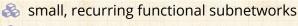
Properties of Complex Networks

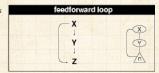
A problem

Degree distributions

Assortativity

Motifs


Concurrency
Branching ratios
Network distances
Interconnectedness



5. motifs:

🙈 e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [7]

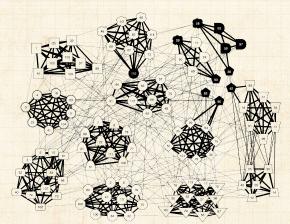
PoCS | @pocsvox
Properties of

Properties of Complex Networks

Properties of Complex Networks

Degree distributions
Assortativity

Motifs Concurrency Branching ratios


Branching ratios Network distances Interconnectedness

6. modularity and structure/community detection:

Clauset et al., 2006 [2]: NCAA football

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distribution Assortativity

Motifs

Concurrency Branching ratios

Network distances Interconnectedness

Nutshell

Outline

Properties of Complex Networks

A problem
Degree distribution
Assortativity
Clustering
Motifs

Concurrency

Branching ratios
Network distances
Interconnectednes

Nutshel

References

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distribution
Assortativity

Clustering

Concurrency

Branching ratios

Interconnectedness

Nutshell

7. concurrency:

transmission of a contagious element only occurs during contact

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

Assortativity

Concurrency

Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Concurrency

Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- & rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough

knowledge of previous contacts crucial beware cumulated network data Kretzschmar and Morris, 1996 [4]

"Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distributions
Assortativity
Clustering
Motifs

Concurrency

Network distances
Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial

PoCS | @pocsvox Properties of Complex

Properties of Complex Networks

Networks

Concurrency

Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- ather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- 🗞 knowledge of previous contacts crucial
- 🙈 beware cumulated network data

Kretzschmar and Morris, 1996

"Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

Properties of Complex

Networks

Properties of Complex Networks

A problem

Degree distribution

Sussortativity
Clustering
Motifs

Concurrency

Network distances
Interconnectedness

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- ather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- 🗞 knowledge of previous contacts crucial
- 🙈 beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]

"Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

Degree distributions
Assortativity
Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

PoCS | @pocsvox Properties of Complex Networks

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- dynamic property—static networks are not enough
- knowledge of previous contacts crucial
- beware cumulated network data
- Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

Properties of Complex Networks

Concurrency Interconnectedness

Outline

Properties of Complex Networks

A problem
Degree distribution
Assortativity
Clustering
Motifs

Branching ratios

Network distances Interconnectednes

Nutshell

References

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

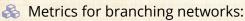
Degree distributions
Assortativity

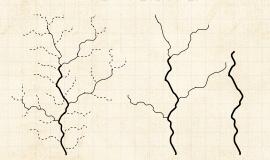
Clusterin

Motifs Concurrency

Branching ratios

Interconnectedness


Nutshell



8. Horton-Strahler ratios:

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Concurrency Branching ratios

Interconnectedness



8. Horton-Strahler ratios:

Metrics for branching networks:

Method for ordering streams hierarchically

PoCS | @pocsvox

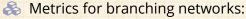
Properties of Complex Networks

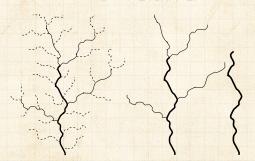
Properties of Complex Networks

Concurrency

Branching ratios

Interconnectedness


Nutshell



8. Horton-Strahler ratios:

Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

PoCS | @pocsvox

Properties of Complex Networks

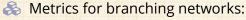
Properties of Complex Networks

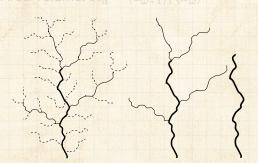
Concurrency

Branching ratios

Interconnectedness

Nutshell




8. Horton-Strahler ratios:

Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

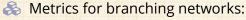
PoCS | @pocsvox

Properties of Complex Networks

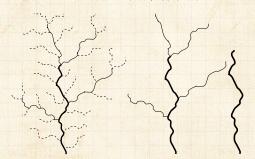
Properties of Complex Networks

Concurrency Branching ratios

Interconnectedness


Nutshell

8. Horton-Strahler ratios:



Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

ightharpoonup Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Concurrency Branching ratios

Interconnectedness Nutshell

Outline

Properties of Complex Networks

Network distances

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency Branching ratios

Network distances Interconnectedness

Nutshell

9. network distances:

(a) shortest path length d_{i}

(b) average path length $\langle d_{ij} \rangle$:

PoCS | @pocsvox
Properties of

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering Motifs Concurrency

Branching ratios
Network distances

Network distances Interconnectedness

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

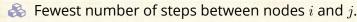
Assortativity

Motifs

Concurrency Branching ratios

Network distances Interconnectedness

Nutshell



9. network distances:

(a) shortest path length d_{ij} :

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Assortativity

Concurrency Branching ratios

Network distances Interconnectedness

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

 \clubsuit Fewest number of steps between nodes i and j.

A (Also called the chemical distance between i and j.)

PoCS | @pocsvox Properties of Complex Networks

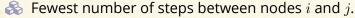
Properties of Complex Networks

Assortativity

Concurrency

Network distances Interconnectedness

Nutshell



9. network distances:

(a) shortest path length d_{ii} :

A (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

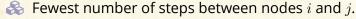
PoCS | @pocsvox Properties of Complex Networks

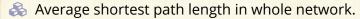
Properties of Complex Networks

Concurrency

Network distances

Nutshell




9. network distances:

(a) shortest path length d_{ij} :

 $\ensuremath{\mathfrak{S}}$ (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Good algorithms exist for calculation.

Weighted links can be accommodated.

PoCS | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distributions Assortativity Clustering

Concurrency
Branching ratios

Network distances

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

 \clubsuit Fewest number of steps between nodes i and j.

 \Re (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

Good algorithms exist for calculation.

Weighted links can be accommodated

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Assortativity
Clustering
Motifs

Concurrency
Branching ratios
Network distances

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

 \Leftrightarrow Fewest number of steps between nodes i and j.

(Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

Good algorithms exist for calculation.

Weighted links can be accommodated.

Pocs | @pocsvox

Properties of

Complex

Networks

Properties of Complex Networks

A problem

Degree distrib

Assortativity
Clustering
Motifs
Concurrency

Branching ratios Network distances

Nutshell

PoCS | @pocsvox Properties of Complex

Networks

9. network distances:

Properties of Complex Networks

 \clubsuit network diameter d_{max} :

Maximum shortest path length between any two nodes.

> Concurrency Network distances Interconnectedness

Nutshell

9. network distances:

 $\ \ \,$ network diameter d_{\max} :

Maximum shortest path length between any two nodes.

closeness $d_{\text{cl}} = [\sum_{ij} d_{ij}^{-1}/(\frac{n}{2})]^{-1}$: Average 'distance' between any two nodes.

Closeness handles disconnected networks $(d_{ij} = \infty)$

 $d_{\rm cl}=\infty$ only when all nodes are isolated. Closeness perhaps compresses too much into one number

Pocs | @pocsvox
Properties of
Complex

Properties of Complex Networks

A problem

Networks

Degree distributions

Clustering Motifs

Concurrency

Branching ratios

Network distances Interconnectedness

Nutshell

Pocs | @pocsvox
Properties of
Complex
Networks

9. network distances:

network diameter d_{max}: Maximum shortest path length between any two nodes.

 \Leftrightarrow Closeness handles disconnected networks $(d_{ij} = \infty)$

 $d_{\rm cl}=\infty$ only when all nodes are isolated. Closeness perhaps compresses too much into one number

Properties of Complex Networks

Degree distributions

Motifs Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell

PoCS | @pocsvox
Properties of
Complex

Networks

9. network distances:

- network diameter d_{max}: Maximum shortest path length between any two nodes.
- Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{cl} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number

Properties of Complex Networks

Degree distributions
Assortativity

Concurrency Branching ratios Network distances

10. centrality:

Many such measures of a node's 'importance.

- $\acute{\text{ex}}$ 1: Degree centrality: k_i .
- ex 2: Node i's betweenness
- = fraction of shortest paths that pass through i
- ex 3: Edge l's betweenness
- = fraction of shortest paths that travel along
- ex 4: Recursive centrality: Hubs and Authorities (Ion Kleinberg

Pocs | @pocsvox
Properties of
Complex

Networks

Properties of Complex Networks

A problem
Degree distributions
Assortativity

Motifs Concurrency

Network distances

Nutshell References

10. centrality:

Many such measures of a node's 'importance.'

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Concurrency

Network distances

Nutshell

10. centrality:

Many such measures of a node's 'importance.'

 \Leftrightarrow ex 1: Degree centrality: k_i .

PoCS | @pocsvox Properties of

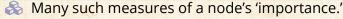
Complex Networks

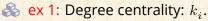
Properties of Complex Networks

Assortativity

Concurrency

Network distances


Nutshell



10. centrality:

A ex 2: Node i's betweenness

= fraction of shortest paths that pass through i.

PoCS | @pocsvox Properties of Complex

Networks

Properties of Complex Networks

Assortativity

Concurrency

Network distances

Nutshell

10. centrality:

- Many such measures of a node's 'importance.'
- \Leftrightarrow ex 1: Degree centrality: k_i .
- \approx ex 2: Node *i*'s betweenness = fraction of shortest paths that pass through *i*.
- \approx ex 3: Edge ℓ 's betweenness = fraction of shortest paths that travel along ℓ .
 - ex 4: Recursive centrality: Hubs and Authorities
 (Ion Kleinberg 1)

Pocs | @pocsvox
Properties of
Complex

Properties of Complex Networks

A problem

Degree distrib

Networks

Degree distributions
Assortativity
Clustering

Concurrency Branching ratios

Network distances

10. centrality:

- Many such measures of a node's 'importance.'
- \Leftrightarrow ex 1: Degree centrality: k_i .
- A ex 2: Node i's betweenness = fraction of shortest paths that pass through i.
- ex 3: Edge ℓ's betweenness = fraction of shortest paths that travel along ℓ .
- ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [3])

PoCS | @pocsvox Properties of Complex

Properties of Complex Networks

Networks

Concurrency Network distances

Outline

Properties of Complex Networks

A problem
Degree distributions
Assortativity
Clustering
Motifs
Concurrency
Branching ratios

Interconnectedness

Mutshel

References

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem

Degree distribution
Assortativity

Clustering

Motifs

Concurrency
Branching ratios

Network distance

Interconnectedness

Nutshell

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.

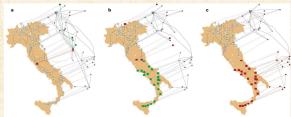


Figure 1 | Modelling a blackout in Italy, Illustration of an iterative process of a cascade of failures using real-world data from a power network (located on the map of Italy) and an Internet network (shifted above the map) that were implicated in an electrical blackout that occurred in Italy in September 200320. The networks are drawn using the real geographical locations and every Internet server is connected to the geographically nearest power station, a. One power station is removed (red node on map) from the power network and as a result the Internet nodes depending on it are removed from the Internet network (red nodes above the map). The nodes that will be disconnected from the giant cluster (a cluster that spans the entire network

at the next step are marked in green, b. Additional nodes that were disconnected from the Internet communication network giant component are removed (red nodes above map). As a result the power stations depending on them are removed from the power network (red nodes on map). Again, the nodes that will be disconnected from the giant cluster at the next step are marked in green. c, Additional nodes that were disconnected from the giant component of the power network are removed (red nodes on map) as well as the nodes in the Internet network that depend on them (red nodes above map).

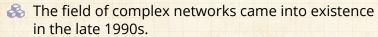
PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Concurrency

Interconnectedness


Nutshell

Overview Key Points:

PoCS | @pocsvox Properties of Complex

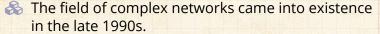
Properties of Complex

Networks

Networks

Concurrency

Interconnectedness


Nutshell

Overview Key Points:

Explosion of papers and interest since 1998/99.

PoCS | @pocsvox Properties of Complex

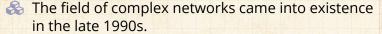
Properties of Complex

Networks

Networks

Concurrency

Interconnectedness


Nutshell

Overview Key Points:

Explosion of papers and interest since 1998/99.

Hardened up much thinking about complex systems.

PoCS | @pocsvox Properties of Complex

Properties of Complex Networks

Networks

Concurrency

Interconnectedness

Nutshell

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.

Three main (blurred) categories

Physical (e.g., river networks),
 Interactional (e.g., social networks)
 Abstract (e.g., thesauri).

PoCS | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distributions Assortativity Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Overview Key Points:

- A The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks).
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

Properties of Complex

Properties of Complex Networks

Networks

Concurrency Interconnectedness

scale-free-networks,

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency

Branching ratios Network distances Interconnectedness

Nutshell

Neural reboot (NR):

Mouse

https://www.youtube.com/v/GpYY9oz9qnl?rel=0

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity Motifs Concurrency

Branching ratios Interconnectedness

Nutshell

References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin.

Catastrophic cascade of failures in interdependent networks.

Nature, 464:1025-1028, 2010. pdf

- [2] A. Clauset, C. Moore, and M. E. J. Newman.
 Structural inference of hierarchies in networks,
 2006. pdf
- [3] J. M. Kleinberg.
 Authoritative sources in a hyperlinked environment.
 Proc. 9th ACM-SIAM Symposium on Discr.

Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf

Pocs | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

A problem

Degree distribu

Degree distributions
Assortativity

Motifs Concurrency

Branching ratios
Network distances
Interconnectedness

Nutshell

References II

[4] M. Kretzschmar and M. Morris.

Measures of concurrency in networks and the spread of infectious disease.

Math. Biosci., 133:165–95, 1996. pdf

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman.

The structure and function of complex networks.

SIAM Rev., 45(2):167–256, 2003. pdf

[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nature Genetics; 31:64–68, 2002. pdf PoCS | @pocsvox
Properties of
Complex
Networks

Properties of Complex Networks

Degree distributions
Assortativity
Clustering

Concurrency
Branching ratios
Network distances
Interconnectedness

Nutshell

References III

[8] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-442, 1998. pdf 2

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

Assortativity

Motifs

Concurrency

Interconnectedness

Nutshell

