### **Properties of Complex Networks**

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2016 | #FallPoCS2016

#### Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont













Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribution Assortativity

Nutshell References











OF WEBS

PoCS | @pocsvox Properties of Complex Networks

Networks
A problem
Degree distrib

Nutshell

References





#### 少 q (~ 4 of 36

### These slides are brought to you by:

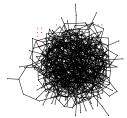


### PoCS | @pocsvox Properties of Complex Networks

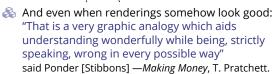
Properties of Complex Networks

Degree distrib Assortativity
Clustering
Motifs
Concurrency
Branching rati
Network dista

Nutshell References







少∢ (~ 2 of 36

### A notable feature of large-scale networks:

Graphical renderings are often just a big mess.



- ← Typical hairball
- $\bigcirc$  number of nodes N = 500
- number of edges m = 1000
- average degree  $\langle k \rangle = 4$





## PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

A problem Degree dist

Nutshell

References







少 Q (~ 6 of 36

### Outline

#### **Properties of Complex Networks**

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency Branching ratios

Network distances

Interconnectedness

Nutshell

References

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Nutshell References





少 q (~ 3 of 36

### Some key aspects of real complex networks:

- & degree distribution\*
- assortativity
- A homophily
- clustering
- motifs modularity
- concurrency
- 🙈 hierarchical scaling network distances
- centrality
- efficiency
- interconnectedness
- robustness
- Plus coevolution of network structure and processes on networks.
- \* Degree distribution is the elephant in the room that we are now all very aware of...

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

A problem
Degree distri
Assortativity
Clustering
Motifs
Concurrency

Nutshell References







### **Properties**

### 1. degree distribution $P_k$

- A  $P_k$  is the probability that a randomly selected node has degree k.
- & k = node degree = number of connections.
- 🚓 ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert question from assignment 7 🗹

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- $\Leftrightarrow$  ex 2: "Scale-free" networks:  $P_k \propto k^{-\gamma} \Rightarrow$  'hubs'.
- link cost controls skew.
- hubs may facilitate or impede contagion.

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks Degree distribution

Nutshell References





少 Q ← 9 of 36

#### Local socialness:

#### 4. Clustering:



- Your friends tend to know each other.
- Two measures (explained) on following slides):
  - 1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle$$

2. Newman [6]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$

PoCS | @pocsvox Properties of Complex Networks

Properties of Clustering

Nutshell References







## •9 q (~ 14 of 36

### **Properties**

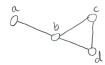
#### Note:

- & Erdős-Rényi random networks are a mathematical construct.
- \$\iiis \text{'Scale-free' networks are growing networks that} form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.

### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Degree distributions Clustering Motifs


Nutshell References






ൗ < № 10 of 36

### Example network:



Calculation of  $C_1$ :



- pairs of neighbors who are connected.
- Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where  $k_i$  is node i's degree, and  $N_i$  is the set of i's neighbors.

🚓 Averaging over all nodes, we have:

$$\begin{array}{l} \text{have:} \\ C_1 = \frac{1}{n} {\sum_{i=1}^n} \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} = \\ \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i \end{array}$$

### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribution

Clustering

Nutshell References







## 少∢ペ 15 of 36

### **Properties**

#### 2. Assortativity/3. Homophily:

- & e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: [5] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors.
- Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem

Nutshell

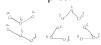
References





夕 Q № 12 of 36

## Triples and triangles


#### Example network:



Triangles:



Triples:



- $\aleph$  Nodes  $i_1$ ,  $i_2$ , and  $i_3$  form a triple around  $i_1$  if  $i_1$  is connected to  $i_2$  and  $i_3$ .
- $\Re$  Nodes  $i_1$ ,  $i_2$ , and  $i_3$  form a triangle if each pair of nodes is connected
- $\red$  The definition  $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.
- 🙈 Social Network Analysis (SNA): fraction of transitive triples.

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribution Assortativity Clustering
Motifs
Concurrency
Branching ratio
Network distar

Nutshell References







### Clustering:

Sneaky counting for undirected, unweighted networks:

- $\clubsuit$  If the path  $i-j-\ell$  exists then  $a_{ij}a_{i\ell}=1$ .
- & We want  $i \neq \ell$  for good triples.
- In general, a path of n edges between nodes  $i_1$ and  $i_n$  travelling through nodes  $i_2$ ,  $i_3$ , ... $i_{n-1}$  exists  $\iff a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_{n-2}i_{n-1}}a_{i_{n-1}i_n}=1.$



$$\# \mathrm{triples} = \frac{1}{2} \left( \sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[ A^2 \right]_{i\ell} - \mathrm{Tr} A^2 \right)$$



$$\# {\rm triangles} = \frac{1}{6} {\rm Tr} A^3$$

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks Clustering

Nutshell

References





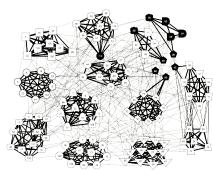
•9 q (~ 17 of 36

PoCS | @pocsvox

Properties of Complex Networks

Properties of Complex Networks

A problem Degree distrib


Clustering Motifs

Nutshell

References

### **Properties**

6. modularity and structure/community detection:



Clauset et al., 2006 [2]: NCAA football

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks Aproblem Degree distribution

Nutshell References





•9 q (~ 21 of 36

### **Properties**

- $\mathfrak{F}$  For sparse networks,  $C_1$  tends to discount highly connected nodes.
- &  $C_2$  is a useful and often preferred variant
- & In general,  $C_1 \neq C_2$ .
- $\mathcal{L}_1$  is a global average of a local ratio.
- &  $C_2$  is a ratio of two global quantities.

## **Properties**

### 7. concurrency:

- & transmission of a contagious element only occurs during contact
- 🙈 rather obvious but easily missed in a simple model
- & dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distr

Nutshell References







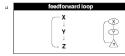
# •> q (~ 23 of 36

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribution Assortativity Clustering Motifs

Nutshell References






少 q (~ 25 of 36

### **Properties**

#### 5. motifs:

- small, recurring functional subnetworks
- e.g., Feed Forward Loop:



Shen-Orr, Uri Alon, et al. [7]

### PoCS | @pocsvox Properties of

UNIVERSITY OF VERMONT

少 Q ← 18 of 36

Properties of Complex Networks

Nutshell References





•9 q (~ 20 of 36

### **Properties**

#### 8. Horton-Strahler ratios:

- Metrics for branching networks:
  - Method for ordering streams hierarchically
  - Number:  $R_n = N_{\omega}/N_{\omega+1}$
  - $\widehat{\mathbb{R}}$  Segment length:  $R_l = \langle l_{\omega+1} 
    angle / \langle l_{\omega} 
    angle$
  - Area/Volume:  $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$



### **Properties**

#### 9. network distances:

### (a) shortest path length $d_{ij}$ :

- $\clubsuit$  Fewest number of steps between nodes i and j.
- A (Also called the chemical distance between i and *j*.)

#### (b) average path length $\langle d_{ij} \rangle$ :

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.

#### PoCS | @pocsvox Properties of Complex Networks

Complex Networks

Network distances

Nutshell References





•9 q (~ 27 of 36

### **Properties**

#### Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.



#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribution Assortativity Interconnectednes



Nutshell

References





•9 q (~ 31 of 36

### **Properties**

**Properties** 

10. centrality:

& ex 1: Degree centrality:  $k_i$ . ex 2: Node i's betweenness

ex 3: Edge ℓ's betweenness

(Jon Kleinberg [3])

#### 9. network distances:

- $\ \ \,$  network diameter  $d_{\text{max}}$ : Maximum shortest path length between any two
- $\Leftrightarrow$  closeness  $d_{cl} = [\sum_{i,j} d_{i,j}^{-1}/\binom{n}{2}]^{-1}$ : Average 'distance' between any two nodes.
- Closeness handles disconnected networks  $(d_{ij}=\infty)$
- $d_{cl} = \infty$  only when all nodes are isolated.
- & Closeness perhaps compresses too much into one

Many such measures of a node's 'importance.'

= fraction of shortest paths that pass through i.

= fraction of shortest paths that travel along  $\ell$ . & ex 4: Recursive centrality: Hubs and Authorities

### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Network distances

Nutshell References







•9 q (> 28 of 36

#### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

References





•9 a (№ 29 of 36

### **Nutshell:**

### Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- & Explosion of papers and interest since 1998/99.
- & Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
  - 1. Physical (e.g., river networks),
  - Interactional (e.g., social networks),
  - 3. Abstract (e.g., thesauri).

### PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distri

Nutshell







PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks

Nutshell

References





少 Q (~ 34 of 36

#### scale-free-networks.

#### References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin.

Catastrophic cascade of failures in interdependent networks.

Nature, 464:1025-1028, 2010. pdf

- [2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf 🗹
- [3] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete

Algorithms, 1998. pdf ✓

### References II

[4] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165-95, 1996. pdf 2

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167-256, 2003. pdf

[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf ☑

#### References III

[8] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440–442, 1998. pdf

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distributions Assortativity Clustering
Motifs
Concurrency
Branching ratio

Nutshell

References





少 Q (~ 34 of 36

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distribu Degree distrib Assortativity Clustering Motifs Concurrency Branching ration Network distant Interconnector

Nutshell

References





少 Q (~ 35 of 36

PoCS | @pocsvox Properties of Complex Networks

Properties of Complex Networks A problem Degree distributions Assortativity

Nutshell References





•9 q (~ 36 of 36