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net•work |ˈnetˌwərk|
noun

1 an arrangement of intersecting horizontal and vertical lines.

• a complex system of roads, railroads, or other transportation routes :

a network of railroads.

2 a group or system of interconnected people or things : a trade network.

• a group of people who exchange information, contacts, and

experience for professional or social purposes : a support network.

• a group of broadcasting stations that connect for the simultaneous

broadcast of a program : the introduction of a second TV network | [as adj. ]

network television.

• a number of interconnected computers, machines, or operations :

specialized computers that manage multiple outside connections to a network | a

local cellular phone network.

• a system of connected electrical conductors.

verb [ trans. ]

connect as or operate with a network : the stock exchanges have proven to be

resourceful in networking these deals.

• link (machines, esp. computers) to operate interactively : [as adj. ] (

networked) networked workstations.

• [ intrans. ] [often as n. ] ( networking) interact with other people to

exchange information and develop contacts, esp. to further one's

career : the skills of networking, bargaining, and negotiation.
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Thesaurus deliciousness:

network
noun

1 a network of arteries WEB, lattice, net, matrix, mesh,

crisscross, grid, reticulum, reticulation; Anatomy plexus.

2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,

webwork.
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Ancestry:

From Keith Briggs’s excellent etymological
investigation:

 Opus
reticulatum:

 A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-

network]
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http://keithbriggs.info/network.html
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Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4).’

From the OED via Briggs:
 1658–: reticulate structures in animals
 1839–: rivers and canals
 1869–: railways
 1883–: distribution network of electrical cables
 1914–: wireless broadcasting networks
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Ancestry:
Net and Work are venerable old words:
 ‘Net’ first used to mean spider web (King Ælfréd,

888).
 ‘Work’ appear to have long meant purposeful

action.

 ‘Network’ = something built based on the idea of
natural, flexible lattice or web.

 c.f., ironwork, stonework, fretwork.
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Key Observation:
 Many complex systems

can be viewed as complex networks
of physical or abstract interactions.

 Opens door to mathematical and numerical
analysis.

 Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 …largely due to your typical theoretical physicist:
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 Opens door to mathematical and numerical
analysis.

 Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 …largely due to your typical theoretical physicist:

 Piranha physicus

 Hunt in packs.

 Feast on new and interesting ideas
(see chaos, cellular automata, …)

 See also: https://xkcd.com/793/
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 Opens door to mathematical and numerical
analysis.

 Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

 Mindboggling amount of work published on
complex networks since 1998 …

 …largely due to your typical theoretical physicist:

 Piranha physicus

 Hunt in packs.

 Feast on new and interesting ideas
(see chaos, cellular automata, …)

 See also: https://xkcd.com/793/
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [14]
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ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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“Emergence of scaling in random
networks”
Barabási and Albert,
Science, 286, 509–511, 1999. [2]
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [14]

Times cited: ∼ 2�, 1�4  (as of October 8, 2015)

ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L " Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv # 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

“Collective dynamics of ‘small-world’
networks”
Watts and Strogatz,
Nature, 393, 440–442, 1998. [14]
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ing systems form a huge genetic network

whose vertices are proteins and genes, the

chemical interactions between them repre-

senting edges (2). At a different organization-

al level, a large network is formed by the

nervous system, whose vertices are the nerve

cells, connected by axons (3). But equally

complex networks occur in social science,

where vertices are individuals or organiza-

tions and the edges are the social interactions

between them (4 ), or in the World Wide Web

(WWW), whose vertices are HTML docu-

ments connected by links pointing from one

page to another (5, 6 ). Because of their large

size and the complexity of their interactions,

the topology of these networks is largely

unknown.

Traditionally, networks of complex topol-

ogy have been described with the random

graph theory of Erdős and Rényi (ER) (7 ),

but in the absence of data on large networks,

the predictions of the ER theory were rarely

tested in the real world. However, driven by

the computerization of data acquisition, such

topological information is increasingly avail-

able, raising the possibility of understanding

the dynamical and topological stability of

large networks.

Here we report on the existence of a high

degree of self-organization characterizing the

large-scale properties of complex networks.

Exploring several large databases describing

the topology of large networks that span

fields as diverse as the WWW or citation

patterns in science, we show that, indepen-

dent of the system and the identity of its

constituents, the probability P(k) that a ver-

tex in the network interacts with k other

vertices decays as a power law, following

P(k) ; k2g. This result indicates that large

networks self-organize into a scale-free state,

a feature unpredicted by all existing random

network models. To explain the origin of this

scale invariance, we show that existing net-

work models fail to incorporate growth and

preferential attachment, two key features of

real networks. Using a model incorporating

these two ingredients, we show that they are

responsible for the power-law scaling ob-

served in real networks. Finally, we argue

that these ingredients play an easily identifi-

able and important role in the formation of

many complex systems, which implies that

our results are relevant to a large class of

networks observed in nature.

Although there are many systems that

form complex networks, detailed topological

data is available for only a few. The collab-

oration graph of movie actors represents a

well-documented example of a social net-

work. Each actor is represented by a vertex,

two actors being connected if they were cast

together in the same movie. The probability

that an actor has k links (characterizing his or

her popularity) has a power-law tail for large

k, following P(k) ; k2gactor, where gactor 5
2.3 6 0.1 (Fig. 1A). A more complex net-

work with over 800 million vertices (8) is the

WWW, where a vertex is a document and the

edges are the links pointing from one docu-

ment to another. The topology of this graph

determines the Web’s connectivity and, con-

sequently, our effectiveness in locating infor-

mation on the WWW (5). Information about

P(k) can be obtained using robots (6), indi-

cating that the probability that k documents

point to a certain Web page follows a power

law, with gwww 5 2.1 6 0.1 (Fig. 1B) (9). A

network whose topology reflects the histori-

cal patterns of urban and industrial develop-

ment is the electrical power grid of the west-

ern United States, the vertices being genera-

tors, transformers, and substations and the

edges being to the high-voltage transmission

lines between them (10). Because of the rel-

atively modest size of the network, contain-

ing only 4941 vertices, the scaling region is

less prominent but is nevertheless approxi-

mated by a power law with an exponent

gpower . 4 (Fig. 1C). Finally, a rather large

complex network is formed by the citation

patterns of the scientific publications, the ver-

tices being papers published in refereed jour-

nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has

shown that the probability that a paper is

cited k times (representing the connectivity of

a paper within the network) follows a power

law with exponent gcite 5 3.

The above examples (12) demonstrate that

many large random networks share the com-

mon feature that the distribution of their local

connectivity is free of scale, following a power

law for large k with an exponent g between

2.1 and 4, which is unexpected within the

framework of the existing network models.

The random graph model of ER (7) assumes

that we start with N vertices and connect each

pair of vertices with probability p. In the

model, the probability that a vertex has k

edges follows a Poisson distribution P(k) 5
e2llk/k!, where

l 5 NSN 2 1

k
Dpk~1 2 p!N212k

In the small-world model recently intro-

duced by Watts and Strogatz (WS) (10), N

vertices form a one-dimensional lattice,

each vertex being connected to its two

nearest and next-nearest neighbors. With

probability p, each edge is reconnected to a

vertex chosen at random. The long-range

connections generated by this process de-

crease the distance between the vertices,

leading to a small-world phenomenon (13),

often referred to as six degrees of separa-

tion (14 ). For p 5 0, the probability distri-

bution of the connectivities is P(k) 5 d(k 2
z), where z is the coordination number in

the lattice; whereas for finite p, P(k) still

peaks around z, but it gets broader (15). A

common feature of the ER and WS models

is that the probability of finding a highly

connected vertex (that is, a large k) decreas-

es exponentially with k; thus, vertices with

large connectivity are practically absent. In

contrast, the power-law tail characterizing

P(k) for the networks studied indicates that

highly connected (large k) vertices have a

large chance of occurring, dominating the

connectivity.

There are two generic aspects of real net-

works that are not incorporated in these mod-

els. First, both models assume that we start

with a fixed number (N) of vertices that are

then randomly connected (ER model), or re-

connected (WS model), without modifying

N. In contrast, most real world networks are

open and they form by the continuous addi-

tion of new vertices to the system, thus the

number of vertices N increases throughout

the lifetime of the network. For example, the

actor network grows by the addition of new

actors to the system, the WWW grows expo-

nentially over time by the addition of new

Web pages (8), and the research literature

constantly grows by the publication of new

papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N 5 212,250 vertices and average connectivity ^k& 5 28.78. (B) WWW, N 5
325,729, ^k& 5 5.46 (6). (C) Power grid data, N 5 4941, ^k& 5 2.67. The dashed lines have
slopes (A) gactor 5 2.3, (B) gwww 5 2.1 and (C) gpower 5 4.
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,

are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to

capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose

links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing

the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing

models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise

when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a

complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the

structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,

ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

© 2005 Elsevier B.V. All rights reserved.
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FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A food web of predator-prey interactions
between species in a freshwater lake [272]. Picture courtesy of Neo Martinez and Richard Williams. (b) The network of
collaborations between scientists at a private research institution [171]. (c) A network of sexual contacts between individuals
in the study by Potterat et al. [342].

A. Types of networks

A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one different type of vertex in a
network, or more than one different type of edge. And
vertices or edges may have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent men or women, people of different nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professional acquaintance, or geographical
proximity. They can carry weights, representing, say,
how well two people know each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edges are themselves called directed

graphs or sometimes digraphs, for short. A graph rep-
resenting telephone calls or email messages between in-
dividuals would be directed, since each message goes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges, or acyclic
meaning they do not. Some networks, such as food webs,
are approximately but not perfectly acyclic.

One can also have hyperedges—edges that join more
than two vertices together. Graphs containing such edges
are called hypergraphs. Hyperedges could be used to in-
dicate family ties in a social network for example—n in-
dividuals connected to each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examples in this review of bipartite graphs : graphs that
contain vertices of two distinct types, with edges running
only between unlike types. So-called affiliation networks

“The structure and function of complex
networks”
M. E. J. Newman,
SIAM Rev., 45, 167–256, 2003. [10]

Times cited: ∼ 13,156 (as of October 8, 2015)
Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási
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Complex networks describe a wide range of systems in nature and society. Frequently cited examples

include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of

routers and computers connected by physical links. While traditionally these systems have been

modeled as random graphs, it is increasingly recognized that the topology and evolution of real

networks are governed by robust organizing principles. This article reviews the recent advances in the

field of complex networks, focusing on the statistical mechanics of network topology and dynamics.

After reviewing the empirical data that motivated the recent interest in networks, the authors discuss

the main models and analytical tools, covering random graphs, small-world and scale-free networks,

the emerging theory of evolving networks, and the interplay between topology and the network’s

robustness against failures and attacks.
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More observations

 But surely networks aren’t new …
 Graph theory is well established …
 Study of social networks started in the 1930’s …
 So why all this ‘new’ research on networks?
 Answer: Oodles of Easily Accessible Data.
 We can now inform (alas) our theories

with a much more measurable reality.∗
 A worthy goal: establish mechanistic explanations.

∗If this is upsetting, maybe string theory is for you …
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More observations

 Web-scale data sets can be overly exciting.

Witness:
 The End of Theory: The Data Deluge Makes the

Scientific Theory Obsolete (Anderson, Wired)
 “The Unreasonable Effectiveness of Data,”

Halevy et al. [8].
 c.f. Wigner’s “The Unreasonable Effectiveness of

Mathematics in the Natural Sciences” [15]

But:
 For scientists, description is only part of the battle.
 We still need to understand.
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http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
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Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other
 e.g., people, forks in rivers, proteins, webpages,

organisms, …

Links = Connections between nodes
 Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.
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http://www.uvm.edu/~pdodds
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Super Basic definitions

Node degree = Number of links per node
 Notation: Node ’s degree = �.
 � = 0,1,2,….
 Notation: the average degree of a network = ⟨ ⟩

(and sometimes �)

 Connection between number of edges � and
average degree: ⟨ ⟩ = 2�� .

 Defn: �� = the set of ’s � neighbors
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Super Basic definitions

Adjacency matrix:
 We represent a directed network by a matrix �

with link weight ��� for nodes and in entry ( , ).
 e.g.,

� = ⎡⎢⎢⎢⎣
0 1 1 1 00 0 1 0 11 0 0 0 00 1 0 0 10 1 0 1 0

⎤⎥⎥⎥⎦
 (n.b., for numerical work, we always use sparse

matrices.)
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Examples

So what passes for a complex network?
 Complex networks are large (in node number)
 Complex networks are sparse (low edge to node

ratio)
 Complex networks are usually dynamic and

evolving
 Complex networks can be social, economic,

natural, informational, abstract, …
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Examples

Physical networks

 River networks
 Neural networks
 Trees and leaves
 Blood networks

 The Internet
 Road networks
 Power grids

 Distribution (branching) versus redistribution
(cyclical)
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Examples
Interaction
networks
 The Blogosphere
 Biochemical

networks
 Gene-protein

networks
 Food webs: who

eats whom
 The World Wide

Web (?)
 Airline networks
 Call networks

(AT&T)
 The Media

datamining.typepad.com
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topics:

 Hidalgo et al.’s
“The Product
Space Conditions
the Development
of Nations” [9]

 How do products
depend on each
other, and how
does this
network evolve?

 How do countries
depend on each
other for water,
energy, people
(immigration),
investments?
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Examples

Interaction networks:
social networks
 Snogging
 Friendships
 Acquaintances
 Boards and directors
 Organizations
 facebook twitter, (Bearman et al., 2004)

 ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough*).
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http://www.uvm.edu/~pdodds
http://www.facebook.com
http://www.twitter.com
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Examples

Relational networks
 Consumer purchases

(Wal-Mart, Target, Amazon, …)

 Thesauri: Networks of words generated by
meanings

 Knowledge/Databases/Ideas
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Clickworthy Science:

“Clickstream Data Yields High-Resolution Maps of Science”,
Bollen et al. [4], 2009.
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Neural reboot (NR):

Dog has fun.

https://www.youtube.com/v/7xEX-48RHCY?rel=0
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