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These slides are brought to you by:
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 An awful recording: Wikipedia’s list of
epidemics from 430 BC on.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/List_of_epidemics
https://en.wikipedia.org/wiki/List_of_epidemics
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Contagion

A confusion of contagions:
 Is Harry Potter some kind of virus?
 What about the Da Vinci Code?
 Did Sudoku spread like a disease?
 Language? The alphabet? [9]

 Religion?
 Democracy...?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Contagion

Naturomorphisms
 “The feeling was contagious.”
 “The news spread like wildfire.”
 “Freedom is the most contagious virus known to

man.”
—Hubert H. Humphrey, Johnson’s vice president

 “Nothing is so contagious as enthusiasm.”
—Samuel Taylor Coleridge

Optimism according to Ambrose Bierce:
The doctrine that everything is beautiful, including
what is ugly, everything good, especially the bad, and
everything right that is wrong. ... It is hereditary, but
fortunately not contagious.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Ambrose_Bierce
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Social contagion

Eric Hoffer, 1902–1983
There is a grandeur in the uniformity of the mass.
When a fashion, a dance, a song, a slogan or a joke
sweeps like wildfire from one end of the continent to
the other, and a hundred million people roar with
laughter, sway their bodies in unison, hum one song
or break forth in anger and denunciation, there is the
overpowering feeling that in this country we have
come nearer the brotherhood of man than ever
before.

 Hoffer was an interesting fellow...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Eric_Hoffer
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The spread of fanaticism

Hoffer’s most famous work: “The True Believer:
Thoughts On The Nature Of Mass Movements”
(1951) [11]

Aphorisms-aplenty:
 “We can be absolutely certain only about things

we do not understand.”
 “Mass movements can rise and spread without

belief in a God, but never without belief in a devil.”
 “Where freedom is real, equality is the passion of

the masses. Where equality is real, freedom is the
passion of a small minority.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Imitation

despair.com

“When people are
free to do as they
please, they usually
imitate each other.”

—Eric Hoffer
“The Passionate State
of Mind” [12]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
despair.com
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The collective...

despair.com

“Never
Underestimate the
Power of Stupid
People in Large
Groups.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
despair.com
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Examples of non-disease spreading:

Interesting infections:
 Spreading of certain buildings in the US:

 2008 Viral get-out-the-vote video.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.cnnbcvideo.com/?nid=VWB8OWHr.GqH2kYkPxOMwTQ1NDIxODA-
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Marbleization of the US:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The most terrifying contagious outbreak?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Contagion

Definitions
 (1) The spreading of a quality or quantity between

individuals in a population.
 (2) A disease itself:

the plague, a blight, the dreaded lurgi, ...
 from Latin: con = ‘together with’ + tangere ‘to

touch.’
 Contagion has unpleasant overtones...
 Just Spreading might be a more neutral word
 But contagion is kind of exciting...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Contagions

Two main classes of contagion
1. Infectious diseases:

tuberculosis, HIV, ebola, SARS, influenza,
zombification, ...

2. Social contagion:
fashion, word usage, rumors, uprisings, religion,
stories about zombies, ...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Archival footage from the Black Plague

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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An awful recording: Wikipedia’s list of epidemics
from 430 BC on.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/List_of_epidemics
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Community—S2E6: Epidemiology

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Mathematical Epidemiology

The standard SIR model [17]

 = basic model of disease contagion
 Three states:

1. S = Susceptible
2. I = Infective/Infectious
3. R = Recovered or Removed or Refractory

 �(�) + �(�) + �(�) = 1
 Presumes random interactions (mass-action

principle)
 Interactions are independent (no memory)
 Discrete and continuous time versions

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Mathematical Epidemiology

Discrete time automata example:

I

R

S
βI

1− ρ

ρ

1− βI

r
1− r

Transition Probabilities:� for being infected given
contact with infected� for recovery� for loss of immunity

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Mathematical Epidemiology

Original models attributed to
 1920’s: Reed and Frost
 1920’s/1930’s: Kermack and McKendrick [13, 15, 14]

 Coupled differential equations with a mass-action
principle

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Independent Interaction models

Differential equations for continuous model
d
d� � = −��� + ��
d
d� � = ��� − ��
d
d� � = �� − ���, �, and � are now rates.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Reproduction Number �0
Reproduction Number �0 
 �0 = expected number of infected individuals

resulting from a single initial infective
 Epidemic threshold: If �0 > 1, ‘epidemic’ occurs.
 Exponential take off: ��0 where � is the number of

generations.
 Fantastically awful notation convention: �0 and

the � in ���.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Basic_reproduction_number
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Reproduction Number �0
Discrete version:
 Set up: One Infective in a randomly mixing

population of Susceptibles
 At time � = 0, single infective random bumps into a

Susceptible
 Probability of transmission = �
 At time � = 1, single Infective remains infected with

probability 1 − �
 At time � = �, single Infective remains infected

with probability (1 − �)�

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Reproduction Number �0
Discrete version:
 Expected number infected by original infective:�0 = � + (1 − �)� + (1 − �)2� + (1 − �)3� + …

= � (1 + (1 − �) + (1 − �)2 + (1 − �)3 + …)= � 11 − (1 − �) = �/�
For �(0) ≃ 1 initial susceptibles
(1 − �(0) = �(0) = fraction initially immune):�0 = �(0)�/�

http://www.uvm.edu
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation
models

Model output

Nutshell

Other kinds of prediction

Next

References

I

R

S
βI

1− ρ

ρ

1− βI

r
1− r

.
.
.
.
.

.
31 of 92

Independent Interaction models

For the continuous version
 Second equation:

d
d�� = ��� − ��
d
d�� = (�� − �)�

 Number of infectives grows initially if��(0) − � > 0 ⇒ ��(0) > � ⇒ ��(0)/� > 1
where �(0) ≃ 1.

 Same story as for discrete model.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


PoCS|@pocsvox

Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation
models

Model output

Nutshell

Other kinds of prediction

Next

References

I

R

S
βI

1− ρ

ρ

1− βI

r
1− r

.
.
.
.
.

.
32 of 92

Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

F
ra

ct
io

n 
in

fe
ct

ed

 Continuous phase transition.
 Fine idea from a simple model.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Independent Interaction models

Many variants of the SIR model:
 SIS: susceptible-infective-susceptible
 SIRS: susceptible-infective-recovered-susceptible
 compartment models (age or gender partitions)
 more categories such as ‘exposed’ (SEIRS)
 recruitment (migration, birth)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Watch someone else pretend to save the
world:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Save the world yourself:

 And you can be the virus.
 Also contagious?: Cooperative games ...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/Z-Man-Games-ZMG-71100-Pandemic/dp/B00A2HD40E/
http://pandemic3.com/
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Neural reboot—Save another pretend world with
Vax:

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://vax.herokuapp.com
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Pandemic severity index (PSI)
 Classification during/post pandemic:

 Category based.
 1–5 scale.
 Modeled on the

Saffir-Simpson hurricane
scale.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Pandemic_severity_index
https://en.wikipedia.org/wiki/Saffir–Simpson_hurricane_wind_scale
https://en.wikipedia.org/wiki/Saffir–Simpson_hurricane_wind_scale
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For novel diseases:
1. Can we predict the size of an epidemic?
2. How important is the reproduction number �0?�0 approximately same for all of the following:
 1918-19 “Spanish Flu” ∼ 75,000,000 world-wide,

500,000 deaths in US.
 1957-58 “Asian Flu” ∼ 2,000,000 world-wide,

70,000 deaths in US.
 1968-69 “Hong Kong Flu” ∼ 1,000,000 world-wide,

34,000 deaths in US.
 2003 “SARS Epidemic” ∼ 800 deaths world-wide.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Size distributions

Size distributions are important elsewhere:
 earthquakes (Gutenberg-Richter law)
 city sizes, forest fires, war fatalities
 wealth distributions
 ‘popularity’ (books, music, websites, ideas)
 Epidemics?

Power laws distributions are common but not
obligatory...

Really, what about epidemics?
 Simply hasn’t attracted much attention.
 Data not as clean as for other phenomena.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Feeling Ill in Iceland

Caseload recorded monthly for range of diseases in
Iceland, 1888-1990

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
0

0.01

0.02

0.03

Date

F
re

qu
en

cy

Iceland: measles
normalized count

 Treat outbreaks separated in time as ‘novel’
diseases.
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Really not so good at all in Iceland

Epidemic size distributions �(�) for
Measles, Rubella, and Whooping Cough.
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Spike near � = 0, relatively flat otherwise.
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Measles & Pertussis
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Insert plots:
Complementary cumulative frequency distributions:

N(Ψ′ > Ψ) ∝ Ψ−�+1
Limited scaling with a possible break.
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Power law distributions

Measured values of �:
 measles: 1.40 (low Ψ) and 1.13 (high Ψ)
 pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)
 Expect 2 ≤ � < 3 (finite mean, infinite variance)
 When � < 1, can’t normalize
 Distribution is quite flat.

http://www.uvm.edu
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Resurgence—example of SARS

D

Date of onset

# 
N

ew
 c

as
es

Nov 16, ’02 Dec 16, ’02 Jan 15, ’03 Feb 14, ’03 Mar 16, ’03 Apr 15, ’03 May 15, ’03 Jun 14, ’03

160

120

80

40

0

 Epidemic slows...
then an infective moves to a new context.

 Epidemic discovers new ‘pools’ of susceptibles:
Resurgence.

 Importance of rare, stochastic events.

http://www.uvm.edu
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Community—S2E6: Epidemiology
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The challenge

So... can a simple model produce
1. broad epidemic distributions

and
2. resurgence ?

http://www.uvm.edu
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Size distributions
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Simple models
typically produce
bimodal or unimodal
size distributions.

 This includes network models:
random, small-world, scale-free, ...

 Exceptions:
1. Forest fire models
2. Sophisticated metapopulation models

http://www.uvm.edu
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Burning through the population

Forest fire models: [18]

 Rhodes & Anderson, 1996
 The physicist’s approach:

“if it works for magnets, it’ll work for people...”

A bit of a stretch:
1. Epidemics ≡ forest fires

spreading on 3-d and 5-d lattices.
2. Claim Iceland and Faroe Islands exhibit power law

distributions for outbreaks.
3. Original forest fire model not completely

understood.

http://xkcd.com/793/
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Size distributions

From Rhodes and Anderson, 1996.
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Sophisticated metapopulation models:

 Multiscale models suggested earlier by others but
not formalized (Bailey [1], Cliff and Haggett [5],
Ferguson et al.)

 Community based mixing (two
scales)—Longini. [16]

 Eubank et al.’s EpiSims/TRANSIMS—city
simulations. [8]

 Spreading through countries—Airlines: Germann
et al., Colizza et al. [6]

 GLEAM:
Global
pandemic
simulations by
Vespignani et
al.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Community—S2E6: Epidemiology
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Size distributions

 Vital work but perhaps hard to generalize from...
 ⇒ Create a simple model involving multiscale

travel
 Very big question: What is �?
 Should we model SARS in Hong Kong as spreading

in a neighborhood, in Hong Kong, Asia, or the
world?

 For simple models, we need to know the final size
beforehand...

http://www.uvm.edu
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Improving simple models

Contexts and Identities—Bipartite networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

 boards of directors
 movies
 transportation modes (subway)
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Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Age
 Recreational activities

Groups are crucial...
 formed by people with at least one similar

attribute
 Attributes ⇔ Contexts ⇔ Interactions ⇔

Networks. [22]

http://www.uvm.edu
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Infer interactions/network from identities

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db

Distance makes sense in identity/context space.
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Generalized context space

100

eca b d

geography occupation age

0

(Blau & Schwartz [3], Simmel [19], Breiger [4])
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A toy agent-based model:
Multiscale, resurgent epidemics in a hierarchical
metapopulation model
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Although population structure has long been recognized as rele-

vant to the spread of infectious disease, traditional mathematical

models have understated the role of nonhomogenous mixing in

populations with geographical and social structure. Recently, a

wide variety of spatial and network models have been proposed

that incorporate various aspects of interaction structure among

individuals. However, these more complex models necessarily

suffer from limited tractability, rendering general conclusions

difficult to draw. In seeking a compromise between parsimony and

realism, we introduce a class of metapopulation models in which

we assume homogeneous mixing holds within local contexts, and

that these contexts are embedded in a nested hierarchy of succes-

sively larger domains. We model the movement of individuals

between contexts via simple transport parameters and allow

diseases to spread stochastically. Our model exhibits some impor-

tant stylized features of real epidemics, including extreme size

variation and temporal heterogeneity, that are difficult to charac-

terize with traditional measures. In particular, our results suggest

that when epidemics do occur the basic reproduction number R0

may bear little relation to their final size. Informed by our model’s

behavior, we suggest measures for characterizing epidemic thresh-

olds and discuss implications for the control of epidemics.

math model � population structure

The role and importance of interaction structure is a central
yet unresolved issue in mathematical epidemiology (1). At

the broadest level, the issue is straightforward: clearly not all
people interact equally with all others; hence diseases of humans
cannot spread in real populations precisely as they would if all
individuals were to mix uniformly at random. Moving beyond
this simple insight, however, poses considerable empirical and
theoretical obstacles: empirical, because the amount and variety
of structure present in real populations of different sizes defies
existing measurement technologies; and theoretical, because
without such knowledge it is difficult to model and thus assess
the impact of interaction structure on the spread of human-to-
human diseases. In this article, we focus on two key aspects of
large populations that we believe have not received adequate
attention in the existing literature: (i) that large populations
exhibit structure at many scales; and (ii) that the movement of
individuals between these scales is essential to the spread of a
large epidemic. These features can be represented formally with
a straightforward variation of a commonly studied class of
disease-spreading models, metapopulation models (e.g., ref. 2),
yet they nevertheless carry important implications for under-
standing and possibly controlling diseases, such as severe acute
respiratory syndrome (SARS) and influenza, that have the
potential to spread on many scales.

Metapopulation models can in general be characterized as a
theoretical compromise between the simplest and most analyt-
ically tractable disease-spreading models, often called compart-
ment models, and models in the recent network epidemiology
tradition that attempt to capture population structure in a
realistic way, but which necessarily exhibit far greater complex-
ity. Compartment models assume a continuous population that

is divided into a number of compartments (or states), typically
susceptible, infected, and recovered. Disease transmission oc-
curs because of contact between susceptible and infected indi-
viduals, and the mixing within and between compartments is
assumed to be random, where transition rules (for example, the
rate at which an infected person recovers) specify how individ-
uals move from one compartment to another (3).

Population structure can be introduced into these simple
models by specifying additional compartments, corresponding
not only to the different stages of within-host behavior, but also
to various differentiating features of the population, such as age
(4), susceptibility (5), risk behavior (6), and social status (2, 7),
along with a correspondingly complex set of mixing rates.
Individual-level f luctuations can also be included by specifying
fully stochastic versions of these models (8) without overly
compromising their mathematical tractability. Nevertheless,
compartment models rely heavily on the assumption that pop-
ulation structure can be represented solely in terms of individual
attributes (e.g., disease state, age, behavior), an assumption that
clearly cannot be satisfied in cases of diseases spreading over
spatially extended regions, where the physical distribution of the
population matters, or when disease transmission depends on
specific types of interactions (such as for sexually transmitted
diseases), whose structure may cut across physical locations and
social categories in unknown and complicated ways.

Spatial models (4, 9–11) address part of this problem by
modeling transmission as a function of geographical distance and
have been effective in capturing the dynamics of diseases in wild
(12) and domesticated (13) animals, as well as in suggesting
control strategies. However, spatial models are less relevant to
epidemics of modern human societies, in part because of the
importance of modern modes of transportation that shortcut
long geographical distances (14–16), and in part because many
diseases are transmitted by close-contact networks that charac-
terize families, organizational affiliations (e.g., school or work)
(7), or sexual relations (17). In recent years, therefore, models
that attempt to characterize the actual pattern of interactions
associated with a particular population and disease transmission
mechanism have become increasingly popular (17–21). How-
ever, although network models are appealing from a theoretical
perspective, the more elements of interaction structure that any
such model incorporates, the more free parameters and assump-
tions are required, and the harder it becomes to perform robust
and reliable analyses (1). Exacerbating this problem of model
complexity is the difficulty of determining parameters or justi-
fying assumptions empirically.

Metapopulation models (2) therefore offer a potentially use-
ful compromise between compartment models and networks.
Like compartment models, metapopulation models assume ran-
dom mixing within subpopulations (or patches) that are typically

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: SARS, severe acute respiratory syndrome.
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“Multiscale, resurgent epidemics in a
hierarchcial metapopulation model”
Watts et al.,
Proc. Natl. Acad. Sci., 102, 11157–11162,
2005. [23]

Geography: allow people to move between
contexts
 Locally: standard SIR model with random mixing
 discrete time simulation
 � = infection probability
 � = recovery probability
 � = probability of travel
 Movement distance: Pr(�) ∝ exp(−�/�)
 � = typical travel distance

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/watts2005a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/watts2005a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/watts2005a.pdf
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A toy agent-based model

Schematic:
b=2

i j

x ij =2l=3

n=8

http://www.uvm.edu
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Model output

 Define �0 = Expected number of infected
individuals leaving initially infected context.

 Need �0 > 1 for disease to spread (independent of�0).
 Limit epidemic size by restricting frequency of

travel and/or range

http://www.uvm.edu
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Model output

Varying �:

 Transition in expected final size based on typical
movement distance (sensible)

http://www.uvm.edu
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Model output

Varying �0:

 Transition in expected final size based on typical
number of infectives leaving first group (also
sensible)

 Travel advisories: � has larger effect than �0.

http://www.uvm.edu
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Example model output: size distributions
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 Flat distributions are possible for certain � and � .
 Different �0’s may produce similar distributions
 Same epidemic sizes may arise from different �0’s

http://www.uvm.edu
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Model output—resurgence

Standard model:

0 500 1000 1500
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Model output—resurgence

Standard model with transport:
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The upshot

Simple multiscale population structure
+
stochasticity

leads to

resurgence
+
broad epidemic size distributions

http://www.uvm.edu
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Nutshelling

 For the hierarchical movement model, epidemic
size is highly unpredictable

 Model is more complicated than SIR but still
simple.

 We haven’t even included normal social responses
such as travel bans and self-quarantine.

 The reproduction number �0 is not terribly useful.
 �0, however measured, is not informative about

1. how likely the observed epidemic size was,
2. and how likely future epidemics will be.

 Problem: �0 summarises one epidemic after the
fact and enfolds movement, the price of bananas,
everything.

http://www.uvm.edu
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Conclusions

 Disease’s spread is highly sensitive to population
structure.

 Rare events may matter enormously: e.g., an
infected individual taking an international flight.

 More support for controlling population
movement:
e.g., travel advisories, quarantine

http://www.uvm.edu
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Nutshelling

What to do:
 Need to separate movement from disease
 �0 needs a friend or two.
 Need �0 > 1 and �0 > 1 and � sufficiently large

for disease to have a chance of spreading
 And in general: keep building up the kitchen sink

models.

More wondering:
 Exactly how important are rare events in disease

spreading?
 Again, what is �?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Krugman, 1998: “Why most economists’
predictions are wrong.”

“The growth of the Internet will
slow drastically, as the flaw in
”Metcalfe’s law”—which states
that the number of potential
connections in a network is
proportional to the square of the
number of
participants—becomes apparent:
most people have nothing to say
to each other! By 2005 or so, it
will become clear that the
Internet’s impact on the economy
has been no greater than the fax
machine’s.”1

1http://www.redherring.com/mag/issue55/economics.html

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://web.archive.org/web/19980610100009/www.redherring.com/mag/issue55/economics.html
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Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big
mathematical models of forecasting
the economy ...

If I could figure out a way to determine
whether or not people are more
fearful or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better
than any way I know.”

http://wikipedia.org

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://wikipedia.org
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Economics, Schmeconomics
Greenspan continues:
“The trouble is that we can’t figure that out. I’ve been
in the forecasting business for 50 years. I’m no better
than I ever was, and nobody else is. Forecasting 50
years ago was as good or as bad as it is today. And
the reason is that human nature hasn’t changed. We
can’t improve ourselves.”

Jon Stewart:

“You just bummed the @*!# out of
me.”

wildbluffmedia.com

 From the Daily Show (September 18, 2007)
 The full inteview is here.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
wildbluffmedia.com
http://www.thedailyshow.com
http://thedailyshow.cc.com/videos/cenrt5/alan-greenspan
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Predicting social catastrophe isn’t easy...
“Greenspan Concedes Error on Regulation”
 …humbled Mr. Greenspan admitted that he had

put too much faith in the self-correcting power of
free markets …

 “Those of us who have looked to the self-interest
of lending institutions to protect shareholders’
equity, myself included, are in a state of shocked
disbelief”

 Rep. Henry A. Waxman: “Do you feel that your
ideology pushed you to make decisions that you
wish you had not made?”

 Mr. Greenspan conceded: “Yes, I’ve found a flaw. I
don’t know how significant or permanent it is. But
I’ve been very distressed by that fact.”

New York Times, October 23, 2008

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2008/10/24/business/economy/24panel.html
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Economics, Schmeconomics

James K. Galbraith:
NYT But there are at least 15,000 professional

economists in this country, and you’re saying only
two or three of them foresaw the mortgage crisis?
[JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics,
which claims to be a science? [JKG] It’s an
enormous blot on the reputation of the
profession. There are thousands of economists.
Most of them teach. And most of them teach a
theoretical framework that has been shown to be
fundamentally useless.

From the New York Times, 11/02/2008

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2008/11/02/magazine/02wwln-Q4-t.html
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Other attempts to use SIR and co. elsewhere:
 Adoption of ideas/beliefs (Goffman & Newell,

1964) [10]

 Spread of rumors (Daley & Kendall, 1965) [7]

 Diffusion of innovations (Bass, 1969) [2]

 Spread of fanatical behavior (Castillo-Chávez &
Song, 2003)

 Spread of Feynmann diagrams (Bettencourt et al.,
2006)

Social contagion:
 SIR may apply sometimes …
 But we need new fundamental models.
 Next up: Thresholds.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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We really should know social contagion is
different but …

Table 1. Illustrative studies of social contagion.

Authors Type(s) of social contagion

Research

approach

Conceptual

model

(linear/

dialogic/

hybrid)

1 McDougall (1920) Crime Conceptual/

theoretical

Linear

2 Blumer (1939) Crazes, manias, fads, financial

panic, patriotic hysteria

Conceptual/

theoretical

Linear

3 Milgram, et al. (1969) Crowd formation Quantitative Linear

4 Russel, et al. (1976) Jaywalking Quantitative Linear

5 Stephenson and Fielding

(1971)

Social rule violation Quantitative Linear

6 Kerckhoff and Back (1968);

Cohen, et al. (1978);

Colligan and Murphy

(1982)

Psychogenic illness Qualitative and

quantitative

Dialogic

7 Goethals and Perlstein

(1978); Wheeler and

Levine (1967) Wheeler

(1966)

Aggression in response to

socially undesirable

opinions

Quantitative Linear

8 Freedman and Perlick (1979) Expressions of appreciation Quantitative Linear

9 Pennebaker (1980) Coughing Quantitative Linear

10 Freedman, Birsky, and

Cavoukian (1980)

Expressions of enjoyment Quantitative Linear

11 Freedman, et al. (1980) Applause Quantitative Linear

12 Kirby and Corzine (1981) Stigma Qualitative Linear

13 Phillips (1983); Sheehan

(1983)

Aggression in dispersed

communities exposed to

mass media

Quantitative Linear

14 Rozin and Nemeroff (1990,

2002); Rozin, Millman,

and Nemeroff (1986)

Disgust Quantitative;

conceptual

Linear

15 Crandall (1988) Binge eating in sororities Quantitative Linear

16 Sullins (1991) Mood convergence in a

waiting room

Quantitative Linear

17 Rowe, Chassin, Presson,

Edwards, and Sherman

(1992); Ritter and

Holmes (1969)

Restraint reduction and

teenage smoking

Quantitative Linear

18 Rogers and Rowe (1993) Sex among youth Quantitative Linear

19 Levy and Nail (1993) Hysterical contagion, echo

(or imitation) contagion,

disinhibitory contagion

Quantitative Linear

(continued)

362 Culture & Psychology 21(3) “It’s contagious: Rethinking a metaphor
dialogically”
Warren and Power,
Culture & Psychology, 21, 359–379,
2015. [21]

 “Facebook will lose 80% of users by 2017, say
Princeton researchers” (Guardian, 2014)
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Figure 1: Google search query data for “Facebook” between January 2012 and July 2013

before and after removal of the artifactual October 2012 jump in search queries. Both data

sets are scaled such that 100 corresponds to the maximum weekly Google search queries for the set with
the jump removed over the plotted time period.
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Figure 2: Search query data for “Facebook” and “MySpace” obtained from Google Trends

overlaid on top of each other. The data for both curves are scaled such that 100 corresponds to the

maximum weekly Google search queries for ”Facebook” over the plotted time period. Search queries for
“MySpace” peak at 10% of the maximum weekly search queries for “Facebook” in this time period.

Figure Legends

Tables

“Epidemiological modeling of online social
network dynamics”
Spechler and Cannarella,
Availabe online at
http://arxiv.org/abs/1401.4208,
2014. [20]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/warren2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/warren2015a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/warren2015a.pdf
http://www.theguardian.com/technology/2014/jan/22/facebook-princeton-researchers-infectious-disease
http://www.theguardian.com/technology/2014/jan/22/facebook-princeton-researchers-infectious-disease
http://www.uvm.edu/~pdodds/research/papers/others/everything/spechler2014a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/spechler2014a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/spechler2014a.pdf
http://arxiv.org/abs/1401.4208
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The Facebook Data Science team’s response:

 Mike Develin, Lada Adamic, and Sean Taylor.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://www.facebook.com/notes/mike-develin/debunking-princeton/10151947421191849
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