Optimal Supply Networks III: Redistribution

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Sealie & Lambie

Productions

These slides are brought to you by:

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Distributed Sources

COcoNuTS

Distributed Sources

References

Cartograms A reasonable deriva

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- & Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- & Q2: Given population density is uneven, what do we do?
- & We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um et al. (2009) [6], and work cited by them.

COcoNuTS

Distributed

Sources Size-density

COcoNuTS

Sources

References

References

•9 a (→ 2 of 47

COcoNuTS

Distributed Sources

References

Optimal source allocation

Œ

爾

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

Outline

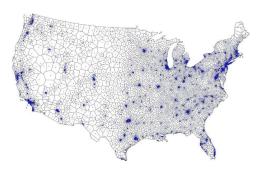
少 q (~ 3 of 47

Solidifying the basic problem

- A Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- \bigcirc O: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

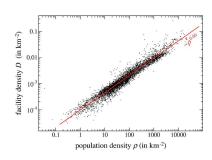
"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

Optimal source allocation



- $lap{8}$ Optimal facility density $ho_{
 m fac}$ vs. population density
- \Leftrightarrow Fit is $\rho_{\rm fac} \propto \rho_{\rm pop}^{0.66}$ with $r^2=0.94$.
- & Looking good for a 2/3 power ...

Optimal source allocation

Size-density law:

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

COcoNuTS

Distributed Sources

COcoNuTS

Distributed Sources

References

COcoNuTS

Distributed Sources Size-density lav

References

Optimal source allocation

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" G. Edward Stephan, Science, 196, 523-524, 1977. [4]

We first examine Stephan's treatment (1977) [4, 5]

- & "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal
- Also known as the Homer Simpson principle.

COcoNuTS

Distributed Sources

Size-density law

COcoNuTS

Size-density law

References

Optimal source allocation

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- \clubsuit Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- \triangle Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

where c is an unimportant shape factor.

COcoNuTS

Distributed Sources

Size-density law

References

Optimal source allocation

- Next assume facility requires regular maintenance (person-hours per day).
- & Call this quantity τ .
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- \Re Replace P by $\rho_{\mathsf{pop}} A$ where ρ_{pop} is density.
- & Important assumption: uniform density.
- Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A).$$

 \mathbb{A} Now Minimize with respect to A ...

少 Q № 13 of 47

Optimal source allocation

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3} \propto \rho_{\mathsf{pop}}^{-2/3}$$

& # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

🚓 Groovy ...

Optimal source allocation

An issue:

- \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)
- Stephan's online book "The Division of Territory in Society" is here 🗹.
- & (It used to be here \triangle .)
- The Readme is well worth reading (1995).

COcoNuTS

Distributed Sources

Cartograms

Cartograms

Standard world map:

COcoNuTS

Distributed Sources Size-density law

UNIVERSITY OF VERMONT

少 Q (~ 14 of 47

COcoNuTS

Distributed Sources

References

Cartograms

Cartogram of countries 'rescaled' by population:

Distributed Sources

COcoNuTS

少 q (~ 18 of 47

COcoNuTS

Distributed Sources

References

Cartograms

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

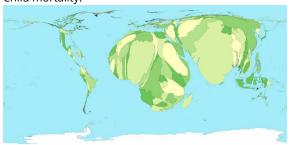
$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

COcoNuTS

Cartograms

Child mortality:



Distributed Sources References

Cartograms

Energy consumption:

COcoNuTS

Distributed Sources Cartograms

Cartograms

COcoNuTS

Distributed Sources Size-density law Cartograms

少 Q (~ 24 of 47

Cartograms

Gross domestic product:

COcoNuTS

UNIVERSITY VERMONT

少 Q (~ 21 of 47

Distributed Sources Cartograms References

Cartograms

People living with HIV:

COcoNuTS

Distributed Sources Cartograms References

COcoNuTS

Distributed Sources

Cartograms
A reasonable de
Global redistribi
Public versus Pr

References

Cartograms

Greenhouse gas emissions:

COcoNuTS

UNIVERSITY OF VERMONT

◆) < (~ 22 of 47

Distributed Sources Cartograms

UNIVERSITY OF VERMONT

•23 of 47

Cartograms

- The preceding sampling of Gastner & Newman's cartograms lives here .
- 🗞 A larger collection can be found at worldmapper.org ☑.

W**≫**RLDMAPPER 70e 8

•26 of 47

Size-density law

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

- Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- & Facility density is uniform for $ho_{
 m pop}^{2/3}$ cartogram.

COcoNuTS

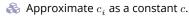
Distributed Sources Cartograms

Approximations:

Size-density law

- \Re For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \mathbb{Z} ,
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

where c_i is a shape factor for the *i*th Voronoi cell.



COcoNuTS

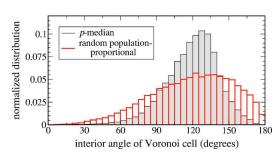
Distributed Sources Size-density law

•2 Q C → 31 of 47

COcoNuTS

References

Size-density law



From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

COcoNuTS

UNIVERSITY OF VERMONT

少 Q (→ 27 of 47

Distributed Sources Cartograms

References

Size-density law

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathsf{d}\vec{x} \,.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^n A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \mathbb{A} Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

UNIVERSITY OF VERMONT • റ ര ര 32 of 47

COcoNuTS

References

Size-density law

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- & Assume given a fixed population density ρ_{pop} defined on a spatial region Ω .
- Formally, we want to find the locations of nsources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

COcoNuTS

Distributed Sources Size-density law

References

UNIVERSITY VERMONT

少 Q № 30 of 47

Now a Lagrange multiplier story:

 $\mbox{\&}$ By varying $\{\vec{x}_1,\ldots,\vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

♣ I Can Haz Calculus of Variations
☐?

- & Compute $\delta G/\delta A$, the functional derivative \square of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

少 Q (~ 33 of 47

Size-density law

Now a Lagrange multiplier story:

& Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

- $\ref{harmonic}$ Finally, we indentify $1/A(\vec{x})$ as $ho_{
 m fac}(\vec{x})$, an approximation of the local source density.
- \mathfrak{S} Substituting $\rho_{\mathsf{fac}} = 1/A$, we have

$$ho_{\mathsf{fac}}(ec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

& Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

COcoNuTS

Distributed Sources Size-density law

•2 Q C → 38 of 47

COcoNuTS

Sources

Public versus Private

References

Global redistribution networks

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance $\ell_{i,i}$ and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

 $\mbox{\&}$ When $\delta=1$, only number of hops matters.

COcoNuTS

UNIVERSITY VERMONT ◆2 Q @ 34 of 47

COcoNuTS

Distributed Sources

Distributed Sources Global redistribution

References

Public versus private facilities

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

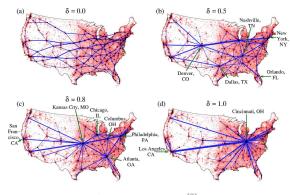
does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- A Um et al. investigate facility locations in the United States and South Korea.

COcoNuTS

Distributed Sources Size-density law Cartograms

Global redistribution networks



From Gastner and Newman (2006) [2]

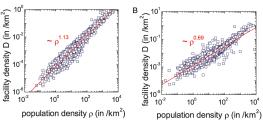
COcoNuTS

UNIVERSITY VERMONT

少 Q (~ 36 of 47

Distributed Sources

Public versus private facilities: evidence



- Right plot: public schools in the U.S.
- Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\mathsf{pop}} \simeq 100.$

& Left plot: ambulatory hospitals in the U.S.

Public versus private facilities: evidence

	piliace	- GCIII CI CC
US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.91
* Primary clinic	1.09(2)	1.00
* Hospital	0.96(5)	0.97
* University/college	0.93(9)	0.89
Market place	0.87(2)	0.90
* Secondary school	0.77(3)	0.98
* Primary school	0.77(3)	0.9
Social welfare org.	0.75(2)	0.84
* Police station	0.71(5)	0.94
Government office	0.70(1)	0.93
* Fire station	0.60(4)	0.93
* Public health center	0.09(5)	0.19

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivati Global redistribution Public versus Private

A = 15

Distributed Sources

Cartograms A reasonable deriva

Public versus Private References

Public versus private facilities: the story

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

- $\mbox{\ensuremath{\&}}\mbox{\ensuremath{For}}\mbox{\ensuremath{\beta}}=0,\,\alpha=1$: commercial scaling is linear.
- You can try this too:
 Insert question from assignment 4

 ✓

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable de

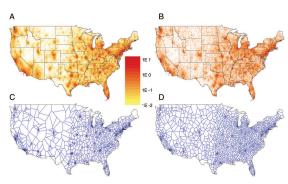
夕 **Q ←** 45 of 47

COcoNuTS

Sources

References

Public versus private facilities: evidence



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

References I

[1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman.

Optimal design of spatial distribution networks.

Phys. Rev. E, 74:016117, 2006. pdf ☑

[3] S. M. Gusein-Zade. Bunge's problem in central place theory and its generalizations. Geogr. Anal., 14:246–252, 1982.

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523–524, 1977. pdf

COcoNuTS

Public versus private facilities: the story

So what's going on?

Social institutions seek to minimize distance of travel.

Commercial institutions seek to maximize the number of visitors.

& Defns: For the *i*th facility and its Voronoi cell V_i , define

- n_i = population of the *i*th cell;
- $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
- A_i = area of *i*th cell (s_i in

Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

Vermont Vermo

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References II

[5] G. E. Stephan.

Territorial subdivision.

Social Forces, 63:145–159, 1984. pdf ☑ □

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf 2

