Optimal Supply Networks I: Branching

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS -

Optimal transportation

Optimal branching

Murray's law

Murray meets Tokunaga

These slides are brought to you by:

COcoNuTS -

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

Outline

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

References

COcoNuTS

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

References

What's the best way to distribute stuff?

- ► Stuff = medical services, energy, people, ...
- ▶ Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - 3. Redistribute stuff between nodes that are both sources and sinks
- Supply and Collection are equivalent problems

THE UNKNOWN MECHANISM

COcoNuTS

Optimal transportation

Optimal branching Murray's law

Murray meets Tokunaga

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

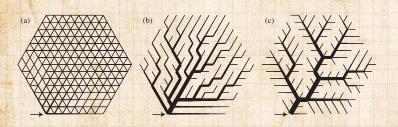
where I_j = current on link j and Z_j = link j's impedance?

Example: $\gamma = 2$ for electrical networks.

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

Single source optimal supply



(a) $\gamma > 1$: Braided (bulk) flow

(b) $\gamma < 1$: Local minimum: Branching flow

(c) $\gamma < 1$: Global minimum: Branching flow

From Bohn and Magnasco [3] See also Banavar et al. [1] COcoNuTS

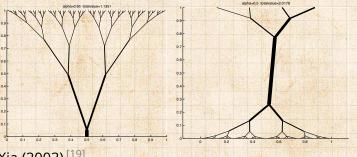
Optimal transportation

Optimal branching

Murray's law

Murray meets Tokunaga

Optimal paths related to transport (Monge) problems:

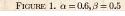


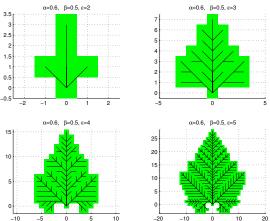
Xia (2003) [19]

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

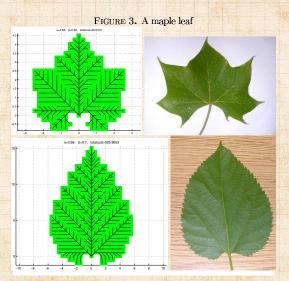




Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

Growing networks:



COcoNuTS

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

References

An immensely controversial issue...

► The form of river networks and blood networks: optimal or not? [17, 2, 5, 4]

Two observations:

- ➤ Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- ► Real networks differ in details of scaling but reasonably agree in scaling relations.

River network models

COcoNuTS

Optimality:

- ▶ Optimal channel networks [12]
- ► Thermodynamic analogy [13]

versus...

Randomness:

- Scheidegger's directed random networks
- Undirected random networks

Optimal transportation

Optimal branching

Murray's law

Murray meets Tokunaga

COcoNuTS

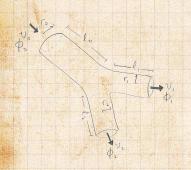
Optimal transportation

Optimal branching

Murray meets Tokunaga

References

9 a @ 13 of 30



Murray's law (1926) connects branch radii at forks: [10, 9, 11, 6, 15]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch, and r_1 and r_2 are radii of sub-branches.

- Holds up well for outer branchings of blood networks.
- ▶ Also found to hold for trees [11, 7, 8].
- ➤ See D'Arcy Thompson's "On Growth and Form" for background inspiration [14, 15].

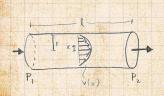
Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

diadic equivalent of Onins lav

$$\Delta p = \Phi Z \Leftrightarrow V = IR$$

where Δp = pressure difference, Φ = flux.



Fluid mechanics: Poiseuille impedance of for smooth Poiseuille flow in a tube of radius r and length ℓ:

$$Z = \frac{8\eta\ell}{\pi r^4}$$

- ▶ η = dynamic viscosity \bigcirc (units: $ML^{-1}T^{-1}$).
- Power required to overcome impedance:

$$P_{\mathsf{drag}} = \Phi \Delta p = \Phi^2 Z.$$

► Also have rate of energy expenditure in maintaining blood given metabolic constant *c*:

$$P_{\text{metabolic}} = cr^2 \ell$$

COcoNuTS

Optimal transportation

Optimal branching

Murray's law

Murray meets Tokunaga

transportation

Optimal branching

Murray meets Tokunaga

References

Aside on P_{drag}

- ▶ Work done = $F \cdot d$ = energy transferred by force F
- ▶ Power = P = rate work is done = $F \cdot v$
- $ightharpoonup \Delta p$ = Force per unit area
- Φ = Volume per unit time
 = cross-sectional area · velocity
- ► So $\Phi\Delta p$ = Force · velocity

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell$$

- Observe power increases linearly with \(\ell \)
- But r's effect is nonlinear:
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - decreasing r decrease metabolic cost but impedance goes up (as r⁻⁴)

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

Murray's law:

▶ Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16\eta} = k^2 r^6$$

where k = constant.

Optimal transportation

Optimal branching Murray's law

Murray meets Tokunaga

Murray's law:

► So we now have:

$$\Phi = kr^3$$

► Flow rates at each branching have to add up (else our organism is in serious trouble...):

$$\Phi_0 = \Phi_1 + \Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches

▶ All of this means we have a groovy cube-law:

$$r_0^3 = r_1^3 + r_2^3$$

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

Murray meets Tokunaga:

- Φ_{ω} = volume rate of flow into an order ω vessel segment
- ► Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

 $\blacktriangleright \ \, \text{Using} \ \phi_\omega = k r_\omega^3$

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k} r_{\omega-k}^{3}$$

Find Horton ratio for vessel radius $R_r = r_\omega/r_{\omega-1}...$

Optimal

Optimal branching Murray's law Murray meets Tokunaga

Find R_r^3 satisfies same equation as R_n and R_v (v is for volume):

$$R_r^3 = R_n = R_v$$

▶ Is there more we could do here to constrain the Horton ratios and Tokunaga constants? Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

Murray meets Tokunaga:

- ▶ Isometry: $V_{\omega} \propto \ell_{\omega}^{\,3}$
- ▶ Gives

$$R_{\ell}^3 = R_v = R_n$$

- ▶ We need one more constraint...
- ► West et al (1997) [17] achieve similar results following Horton's laws.
- ➤ So does Turcotte et al. (1998) [16] using Tokunaga (sort of).

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

[2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf

[3] S. Bohn and M. O. Magnasco.
Structure, scaling, and phase transition in the optimal transport network.
Phys. Rev. Lett., 98:088702, 2007. pdf

Optimal transportation

Optimal branching

Murray's law

Murray meets Tokunaga

- [4] P. S. Dodds.
 Optimal form of branching supply and collection networks.
 Phys. Rev. Lett., 104(4):048702, 2010. pdf
- [5] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. Physical Review E, 63(1):016115, 2001. pdf
- [6] P. La Barbera and R. Rosso. Reply. Water Resources Research, 26(9):2245–2248, 1990. pdf
- [7] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421:939–942, 2003. pdf

Optimal

Optimal branching Murray's law Murray meets Tokunaga

[8] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of wood. Functional Ecology, 18:931–938, 2004. pdf

[9] C. D. Murray.

The physiological principle of minimum work applied to the angle of branching of arteries.

J. Gen. Physiol., 9(9):835–841, 1926. pdf

[10] C. D. Murray. The physiological principle of minimum work. I. The vascular system and the cost of blood volume.

Proc. Natl. Acad. Sci., 12:207-214, 1926. pdf

transportation

Optimal branching Murray's law Murray meets Tokunaga

A relationship between circumference and weight in trees and its bearing on branching angles.

J. Gen. Physiol., 10:725–729, 1927. pdf

[12] I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and Self-Organization.
Cambridge University Press, Cambrigde, UK, 1997.

[13] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

Optimal transportation

Optimal branching
Murray's law
Murray meets Tokunaga

[14] D. W. Thompson.

On Growth and From.

Cambridge University Pres, Great Britain, 2nd edition, 1952.

[15] D. W. Thompson.
On Growth and Form — Abridged Edition.
Cambridge University Press, Great Britain, 1961.

[16] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf

[17] G. B. West, J. H. Brown, and B. J. Enquist.
A general model for the origin of allometric scaling laws in biology.
Science, 276:122–126, 1997. pdf

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References VI

COCONUTS

[18] Q. Xia. The formation of a tree leaf. Submitted. pdf

[19] Q. Xia. Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251-279, 2003. pdf

transportation Optimal branching

Murray's law Murray meets Tokunaga

