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Structure detection

& Theissue:
how do we
elucidate the

large networks

A Zachary's karate club 18 17]

<& Possible substructures:
hierarchies, cliques, rings, ...

& Plus:

All combinations of substructures.
<& Much focus on hierarchies...

“Community detection in graphs”Z'

Santo Fortunato,
Physics Reports, 486, 75-174, 2010. ()

il

Hierarchy by aggregation—Bottom up:

&% ldea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

&
<& Example: Ward's method (£
&

Procedure:
1. Order pair-based distances.
2. Sequentially add links between nodes based on
closeness.
3. Use additional criteria to determine when clusters
are meaningful.

&

Clusters gradually emerge, likely with clusters
inside of clusters.

Call above property Modularity.

Works well for data sets where a distance between
all objects can be specified (e.g., Aussie Rules [!).

& &

internal structure of

across many scales?
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Hierarchy by aggregation Hierarchy by division

Overview Overview

Bottom up problems: One class of structure-detection algorithms:

Methods

fierarchy &

Methods

Tend to plainly not work on data sets representing
networks with known modular structures.

1. Compute edge betweenness for whole network.
2. Remove edge with highest betweenness.

3. Recompute edge betweenness

4. Repeat steps 2 and 3 until all edges are removed.

References References
5 Record when
components appear as
a function of # edges
removed.

T, ] coconurs 6 Generate dendogram I Tcoconrs

z o
o '@ i
: revealing hierarchical Red line indicates appearance

________________________ : ' o structure of four (4) components at a
___________________ ’ certain level.
.lMVLK\Il"I |§| .UNIVLKMH |9|
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Good at finding cores of well-connected (or
similar) nodes... but fail to cope well with
peripheral, in-between nodes.
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Hierarchy by division Key element for division approach:

Recomputing betweenness.
TOp dOWﬂ: Overview . . Overview
Vethods Reason: Possible to have a low betweenness in

Idea: Identify global structure first and recursively oo links that connect large communities if other links
uncover more detailed structure. ; s carry majority of shortest paths.

Methods

Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

When to stop?:

We'll first work through “Finding and evaluating References How do we know which divisions are meaningful? References
community structure in networks” by Newman Modularity measure: difference in fraction of
and Girvan (PRE, 2004).12] within component nodes to that expected for
See also randomized version:
“Scientific collaboration networks. II. Shortest Q=73 lesi — a?]
paths, weighted networks, and centrality” by 2 ‘cO‘(oN‘m‘s where ¢, is the fraction of (undirected) edges I CoconuTs

Newman (PRE, 2001).[10: 11]
2. “Community structure in social and biological
networks” by Girvan and Newman (PNAS, 2002). ] .

travelling between identified communities 7 and j,
and a; = Zj e,;; is the fraction of edges with at

O 70 O
H e 8 least one end in community 4. 0 L By
“a 100f76 a 130f76
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Hierarchy by division Hierarchy by division

Overview Overview
g \\ Methods Methods
Test case:
Generate random community-based networks.
N = 128 with four communities of size 32.
Add edges randomly within and across
communities.
: | Example:
N / (k)in = 6 and (k)oy = 2.

References

References

.| CocoNuTs CocoNuTs

Idea: Edges that connect communities have higher
betweenness than edges within communities.
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Hierarchy by division

Al HL A ﬁ

Maximum modularity @ ~ 0.5 obtained when four
communities are uncovered.

Further ‘discovery’ of internal structure is
somewhat meaningless, as any communities arise
accidentally.

Hierarchy by division

Factions in Zachary’s karate club network. ['¢]

Betweenness for electrons:

Unit resistors on each

edge.
g/\é For every pair of nodes
\Jv.v» e.»«,«.vi' s (source) and ¢ (sink),
o 3 Y, set up unit currents in
Nt atsand out at ¢.
iy N
. curtent o Measure absolute

current along each
edge (, |1, ,|.

Sum |1, .| over all pairs of nodes to obtain
electronic betweenness for edge /.
(Equivalent to random walk betweenness.)
Contributing electronic betweenness for edge
between nodes i and j:

elec _
Bij,st =a;

j“/i,st - ‘/j,st"
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Electronic betweenness

Define some arbitrary voltage reference.
Kirchhoff's laws: current flowing out of node ¢
must balance:

Noq
Yo

=1 g

- Vi) = 5is _5it~

Between unconnected nodes, R;; = oo = 1/a;;.
We can therefore write:

N
Zaij(vi - VJ) =0;5— 054
=1

Some gentle jiggery-pokery on the left hand side:
Z]- aij(vi - ‘/j) =V Zz Aij— Ej aijvj

=Viki =32, a5V = ¥, [kidi,V; — ai;V;)

=[(K - A)V];

Electronic betweenness

Write right hand side as [1*], ., = d,, —;,, where
I holds external source and sink currents.

Matrixingly then:
(K — AV =12

L = K — Alis a beast of some utility—known as the
Laplacian.

Solve for voltage vector V by LU decomposition
(Gaussian elimination).

Do not compute an inverse!

Note: voltage offset is arbitrary so no unique
solution.

Presuming network has one component, null
space of K — A is one dimensional.

In fact, N(K — A) = {cI,c € R} since (K — A)T = 0.

Alternate betweenness measures:

Random walk betweenness:

Asking too much: Need full knowledge of network
to travel along shortest paths.

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j.

Record the number of times an edge is followed
by a walk.

Consider all pairs of nodes.

Random walk betweenness of an edge = absolute
difference in probability a random walk travels
one way versus the other along the edge.
Equivalent to electronic betweenness (see also
diffusion).
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Hierarchy by division

<& Factions in Zachary's karate club network. [®!

Hierarchy by division

0z N 0 1o -
o . o ™~ of i —/ )

I

[etelalelalalalalalalalalalal}
0000000000000000

shortest path

random walk without recalculation

shortest path

<% Third column shows what happens if we don't

recompute betweenness after each edge removal.

Scientists working on networks (2004)
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Scientists working on networks (2004)
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<& More network analyses for Les Miserables here ('

and here (.

Shuffling for structure

& “Extracting the hierarchical organization of
complex systems”
Sales-Pardo et al., PNAS (2007) 14 15]

&> Consider all partitions of networks into m groups

<& As for Newman and Girvan approach, aim is to
find partitions with maximum modularity:

Q:Z[e Zez]

=TrE —||E?||;.

Shuffling for structure

& Consider partition network, i.e., the network of all

possible partitions.

<& Defn: Two partitions are connected if they differ
only by the reassignment of a single node.

&% Look for local maxima in partition network.

& Construct an affinity matrix with entries M2,

& Mf]f.f = Pr random walker on modularity network
ends up at a partition with i and j in the same
group.

&> C.f. topological overlap between i and j =

# matching neighbors for i and j divided by
maximum of k; and ;.
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Shuffling for structure

A C 0.0 0.5 1.0
[ _osses ]
a
b
c
a
< c
b
D May d
s
Sod
&
Modularity Modularity, M

<& A: Base network; B: Partition network; C:
Coclassification matrix; D: Comparison to random
networks (all the same!); E: Ordered
coclassification matrix; Conclusion: no structure...

Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.

Idea is to weight possible hierarchies according to their
basin of attraction’s size in the partition network.

Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.

& ® & » B

Idea: permute nodes to minimize following cost

ZZijflz’—j\.

11]1

Use simulated annealing (slow).

& &

Observation: should achieve same results for more
general cost function: C' = £ >~ Z;_V METF(li — 4))
where f is a strictly monotonically increasing function
of0, 1,2, ...

Shuffling for structure

Hierarchical
clustering

- & N = 640,
e | | & (k) =16,
<& 3tiered

I hierarchy.

AR R
]
Lilalalil

Mutual information
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Shuffling for structure

Table 1. Top-level structure of real-world networks

Network

Nodes Edges

Modules Main modules

Air transportation
E-mail

Electronic circuit
Escherichia coli KEGG
E. coli UCSD

3,618 28,284

1,133 10,902
516 686
739 1,369
507 947

57 8
4 8
18 1"
39 13
28 17

Shuffling for structure

&> Modules found match up with geopolitical units.

Shuffling for structure

A

in main pathway 09

Fraction of metab

W Carbonydrates

| Uiids

O Nucleotides

B Amino acids

D Other amino acids.

W Giycans

[ Poetides and
nonribosomal peptides

B Cofactors and vitamins

B Secondary metabolites

<& Modularity
structure for
metabolic
network of E. coli
(UCSD
reconstruction).
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General structure detection

<> "Detecting communities in large networks”
Capocci et al. (2005)

<& Consider normal matrix K~ 4, random walk
matrix ATK~1, Laplacian K — A, and AAT.

< Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
structure.

<% Builds on Kleinberg's HITS algorithm.

General structure detection

<> Example network:

General structure detection

<& Second eigenvector's components:

0.4
XXX
0.2 | |
<0 ]
e®e e,
-02 | ]
see000o0®
-0.4 L . .
0 5 10 15 20
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General structure detection oo Hierarchies and missing links o
Overview Overview
& Network of word associations for 10616 words. Methods a Methods

Hierarchy &

gation

fierarchy by divisior

&> Average in-degree of 7.
&% Using 2nd to 11th evectors of a modified version

y shuffling

D

of AAT:
Table 1 General
Words most correlated to science, literature and piano in the eigenvectors of Q' WWT e /
References References
Science 1 Literature 1 Piano 1 /
Scientific 0.994 Dictionary 0.994 Cello 0.993 Vvv
Chemistry 0.990 Editorial 0.990 Fiddle 0.992 Y Vl
Physics 0.988 Synopsis 0.988 Viola 0.990 '
Concentrate 0.973 Words 0.987 Banjo 0.988
Thinking 0.973 Grammar 0.986 Saxophone 0.985
T« 0.973 Adjecti 0.983 Dir 0.984 .
e o0 Conpter ot Vi og o < Consensus dendogram for grassland species. o
Brain 0.965 Prose 0.979 Clarinet 0.983 CocoNuTs . . . . CocoNuTs
Equation 0.963 Topic 0.7 Oboe 0.983 : & Copes with disassortative and assortative
Examine 0.962 English 0.975 Theater 0.982 commun itieS | <&
Values indicate the correlation.
ERSITY |g' leNxvt‘»Ls‘rn’ |g|
IOl ™ < VERMONT IOl
o 440f76 na > 480f76
H H H H H COcoNuTS . COcoNuTS
Hierarchies and missing links From PoCS:
[5] . o
Clauset et al., Nature (2008) Small-worldness and social searchability
Overview Overview
Methods Methods

Hierarchy by aggregation

. Social networks and identity:

Hierarchie

Identity is formed from attributes such as:
- < Geographic location :
References & Type of employment References
e < Religious beliefs
Idea: Shades indicate probability that nodes in left <& Recreational activities.
and right subtrees of dendogram are connected.
Handle: Hierarchical random graph models. o Groups are formed by people with at least one similar
ool attribute. i cocours

Plan: Infer consensus dendogram for a given real 43

nethark. - ) o ) Attributes < Contexts < Interactions < Networks.
Obtain probability that links are missing (big 4 [eegr Poomn B
problem...).

b P &

D 46 0f 76 va 500f76
. . . . . COCONUTS . . . . e . COCONUTS
Hierarchies and missing links o Social distance—Bipartite affiliation o
networks
Overview Overview
Methods Methods
&> Model also predicts reasonably well [contexts]
1. average degree,
2. clustering,
3. and average shortest path length.
Table 1| Comparison of original and resampled networks
References References
Network (kireat  K)samp  Creal Ceamp dreal dsamp [individuals]
T. pallidum 48 3.7(1) 0.0625 0.0444(2) 3.690  3.940(6)
Terrorists 49 51(2) 0361 0.352(1) 2575  2.794(7)
Grassland 3.0 29(1) 0174 0.168(1) 3.29 3.69(2)
Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree (k), clustering coefficient C and average vertex-vertex distance d in each case, -
suggesting that they capture much of the structure of the real networks. Parenthetical values CocoNuTs
indicate standard errors on the final digits. S
unipartite o
v, network
el e P @
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Social distance—Context distance

occupation

education health care

high school
teacher

kindergarten

teacher doctor

Models

Generalized affiliation networks

geography occupation

Blau & Schwartz %), Simmel l'!, Breiger ], Watts et
al.l'"]; see also Google+ Circles.

Dealing with community overlap:

Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.
Overlap: Acknowledge nodes can belong to
multiple communities.
Palla et al. "3 detect communities as sets of
adjacent k-cliques (must share £ — 1 nodes).
One of several issues: how to choose £?
Four new quantities:
m, number of a communities a node belongs to.
sor 3 number of nodes shared between two given
communities, o and .
d°™, degree of community «.
s%M, community «'s size.
Associated distributions:
P.(m), P.(s3! g), Po(d3™), and P (s2™).

COcoNuTS

Overview

Methods

Hierarchy by shuffling

Hierarchies & Missing

References

.| CocoNuTs

“ O]
ERSITY |§|
RMONT 1O

DA 520f76
COcoNuTS

Overview

Methods

References

CocoNuTs

1 0
ol UNIVERSITY |o|
P8 s VERMONT IOl

e 530f76
COcoNuTS

Overview

Methods

Hierarchy by shuffling

Hierarchies & Missing

References

.| CocoNuTs

. O]
SITY |§|
RMONT 1O

vaQ 540f76

“Uncovering the overlapping community

Palla et al.,
Nature, 435, 814-818, 2005. 3]

Physicists

\ Department of
W Biological Physics

Mathematicians

‘\‘Zoom’ ‘Zoom,
Hobby
Scientific
community Family

Includes colleagues,
friends, schoolmates,
family members

Figure 1| Illustration of the concept of overlapping communities. 3, The
black dot in the middle represents cither of the authors of this paper, with
several of h it ing i i

ested and the c d
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.

b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. ¢, An example of overlapping
Kecli iesatk = 4.

in a single node, whereas it shares two nodes and a link with the green one.
‘These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k — 1 nodes.
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Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4., The communities of G. Parisi in the co-authorship network of the
Los Alamos Condensed Matter archive (for threshold weight w* = 0.75) can

be associated with s fields of interest. b, The communities of the word
“bright’ in the South Florida Free Association norms list (for w* = 0.025)
represent the different meanings of this word. ¢, The communities of the
protein Zds1 in the DIP core list of the protein-protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.

Two tunable parameters: w*, the link weight
threshold, and k, the clique size.
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Figure 4 | Statistics of the k-clique communities for three large
networks. The networks are the co-authorship network of the Los Alamos
Condensed Matter archive (triangles, k = 6, f* = 0.93), the word-
association network of the South Florida Free Association norms (squares,
k=4, f* = 0.67), and the protein interaction network of the yeast S.
cerevisiae from the DIP database (circles, k = 4). 3, The cumulative
distribution function of the community size follows a power law with
exponents between —1 (upper line) and 1.6 (lower line). b, The
cumulative distribution of the community degree starts exponentially and
then crosses over to a power law (with the same exponent s for the
104 y size distribution). ¢, ) the overlap
size. d, The cumulative distribution of the membership number.

A link-based approach:
&> What we know now: Many network analyses profit
from focusing on links.

&% Idea: form communities of links rather than
communities of nodes.

&% Observation: Links typically of one flavor, while
nodes may have many flavors.

&% Link communities induce overlapping and still
hierarchically structured communities of nodes.

&> [Applause.]

“Link communities reveal multiscale

Ahn, Bagrow, and Lehmann,
Nature, 466, 761-764, 2010.""
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Figure 1] i lead d prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is i the situation
displayed in a. ¢, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram,preventing a ingle r from encoing the ull hierachy:

de
matri (e;darker entris show more smilr pais of lmlu) and the link
L network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.

<> Note: See details of paper on how to choose link
communities well based on partition density D.

Composite performance

Measures.

W Community qualty

o Methods
] TCGT LGGI LGGI LGGI LGGI LGGI LGGI LGN LGCG!
Metaboic_FPINZH) PFIAPMS) PPILC)  PPI@)  Photw  Acior USCongress Phicsopher Wordassor. Amazancom Lo Unks
 Giue percoation
& - Gy oy
1e7 1004 123 272 amsaes  enan a0 2 sow e 1o
® test 308 t6s7 42t 8% 63 850 sss gm0 20

Figure 2| chosen sizes and topol d to represent

networks. Composite performance (Methods and

‘memberships) and coverage (fraction of network classified) of community

and overlap. Tested algorithms are link clustering, introduced here; clique
percolation’; greedy modularity optimization®; and Infomap", Test

eachare the
‘number of nodes, N, and the average number of neighbours per node, (k).
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LG, literature
curated; PPI, protein-protein interaction; Y2H, yeast two-hybrid.

<> Comparison of structure detection algorithms
using four measures over many networks.

< Revealed communities are matched against
‘known’ communities recorded in network

metadata.

< Link approach particularly good for dense,

overlapful networks.
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Figure 4| Meaningful communities at multiple levels of the link
dendrogram. a—c, The social network of mobile phone users displays co-
located, overlapping communities on multiple scales. a, Heat map of the
most likely locations of all users in the region, showing several cities

b,C

city communities (insets). ¢, Below the optimunm threshold, the largest
communities become spatially extended but still show correlation. d, The

|
E |
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vihit lnk dendrogram iy |mmlmn density, D, asa function of threshold,
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General structure detection

&% “The discovery of structural form”
Kemp and Tenenbaum, PNAS (2008) ¢!
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between cities.
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