Structure detection methods

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS -

Overview

Methods

Hierarchy by aggregat Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Overlapping communi Link-based methods General structure

These slides are brought to you by:

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Link-based methods detection

Overview

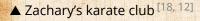
Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Links
Overlapping communities
Link-based methods
General structure detection

References

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Overlapping commun Link-based methods General structure

27 (5 (23) 10) 13 (10) 15 (10) 17 (

The issue:

how do we elucidate the internal structure of large networks across many scales?

Overview

1ethods

Hierarchy by divis Hierarchy by shuf Spectral methods

Hierarchies & Missing Links Overlapping communit Link-based methods

General structure detection

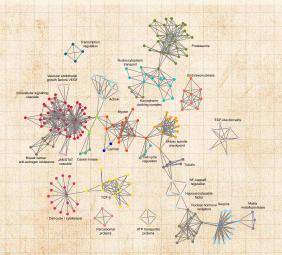
References

Possible substructures: hierarchies, cliques, rings, ...

Plus:

All combinations of substructures.

Much focus on hierarchies...



"Community detection in graphs" Santo Fortunato,
Physics Reports, **486**, 75–174, 2010. [6]

COcoNuTS -

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Overlapping communit Link-based methods General structure detection

Hierarchy by aggregation—Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.
- Works well for data sets where a distance between all objects can be specified (e.g., Aussie Rules [9]).

COcoNuTS

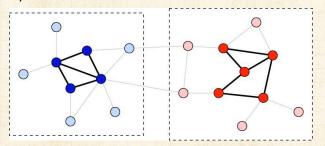
Overview

Methods

Hierarchy by aggregation

erarchy by shuffli ectral methods erarchies & Missi

Links
Overlapping communi
Link-based methods



Bottom up problems:

Tend to plainly not work on data sets representing networks with known modular structures.

Good at finding cores of well-connected (or similar) nodes... but fail to cope well with peripheral, in-between nodes.

Overview

Hierarchy by aggregation

Hierarchies & Missing

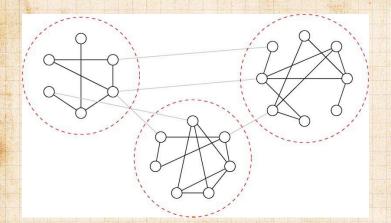
Link-based methods

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004). [12]
- See also
 - 1. "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). [10, 11]
 - 2. "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [7]

Overview

Methods


Hierarchy by aggregat Hierarchy by division Hierarchy by shuffling

Hierarchies & Missin Links

Link-based methods
General structure
detection

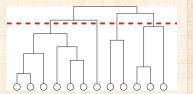
Idea: Edges that connect communities have higher betweenness than edges within communities.

COcoNuTS

Overview

Hierarchy by aggregation Hierarchy by division Spectral methods

Link-based methods



One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level.

Overview

Methods

Hierarchy by aggregati Hierarchy by division Hierarchy by shuffling

Hierarchies & Missin

Overlapping communi Link-based methods General structure detection

Key element for division approach:

Recomputing betweenness.

Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

How do we know which divisions are meaningful?

Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_{i} [e_{i\,i} - a_i^2]$$

where e_{ij} is the fraction of (undirected) edges travelling between identified communities i and j, and $a_i = \sum_{i} e_{ij}$ is the fraction of edges with at least one end in community i. \square

COCONUTS

Overview

Hierarchy by division

Link-based methods

COcoNuTS

Measuring modularity:

Overview

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

Link-based methods General structure detection

Test case:

- Generate random community-based networks.
- N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- 🚓 Example:

 $\langle k \rangle_{\text{in}} = 6$ and $\langle k \rangle_{\text{out}} = 2$.

COCONUTS

Overview

Methods

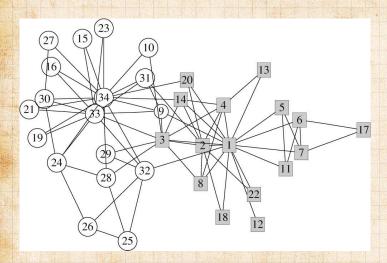
Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

> Hierarchies & Missin Links

Link-based methods
General structure

- \Longrightarrow Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

COCONUTS


Overview

Hierarchy by division

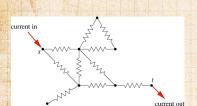
Link-based methods

Factions in Zachary's karate club network. [18]

COcoNuTS

Overview

Hierarchy by aggregation Hierarchy by division


Spectral methods Hierarchies & Missing

Link-based methods detection

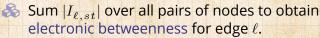
Betweenness for electrons:

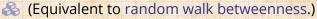
Unit resistors on each edge.

For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.

Measure absolute current along each edge ℓ , $|I_{\ell}|_{st}$.

Overview


Methods


Hierarchy by division
Hierarchy by shuffling
Spectral methods

Links Overlanning c

Link-based methods
General structure
detection

References

Contributing electronic betweenness for edge between nodes i and j:

$$B_{ij,st}^{\,\mathrm{elec}} = a_{ij} |V_{i,st} - V_{j,st}|. \label{eq:Belevine}$$

Electronic betweenness

- Define some arbitrary voltage reference.
- Kirchhoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^N \frac{1}{R_{ij}}(V_j-V_i) = \delta_{is} - \delta_{it}.$$

 \Re Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.

Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.

We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery-pokery on the left hand side:

$$\begin{split} &\sum_{j} a_{ij} (V_i - V_j) = \underbrace{V_i \sum_{j} a_{ij}} - \sum_{j} a_{ij} V_j \\ &= V_i \underbrace{k_i - \sum_{j} a_{ij}} V_j = \sum_{j} \left[\underbrace{k_i \delta_{ij} V_j} - a_{ij} V_j \right] \\ &= \left[(K - A) \overrightarrow{V} \right]_i \end{split}$$

COCONUTS

Overview

Hierarchy by division

Link-based methods

Electronic betweenness

- Write right hand side as $[I^{\text{ext}}]_{i,st} = \delta_{is} \delta_{it}$, where I_{st}^{ext} holds external source and sink currents.
- Matrixingly then:

$$(K-A)\vec{V} = I_{st}^{\rm ext}.$$

- A = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by LU decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K A is one dimensional.

lethods

Hierarchy by aggrega Hierarchy by division Hierarchy by shuffling Spectral methods

> ierarchies & Missing nks

Overlapping communiti Link-based methods General structure detection

Alternate betweenness measures:

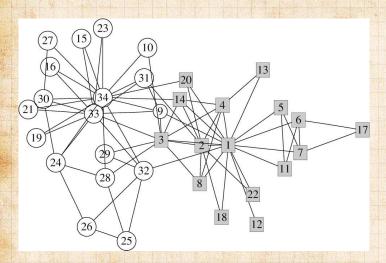
Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes i and j.
- Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness (see also diffusion).

Overview

Methods

Hierarchy by aggregati Hierarchy by division Hierarchy by shuffling


> lierarchies & Missing inks

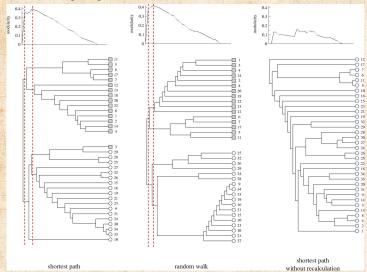
Link-based methods
General structure
detection

Factions in Zachary's karate club network. [18]

COcoNuTS

Overview

Hierarchy by aggregation Hierarchy by division


Spectral methods Hierarchies & Missing

Link-based methods detection

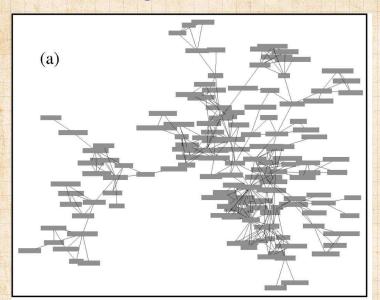
Third column shows what happens if we don't recompute betweenness after each edge removal.

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division

Link-based methods



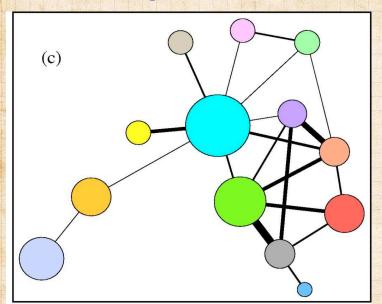
Scientists working on networks (2004)

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing


Link-based methods General structure detection

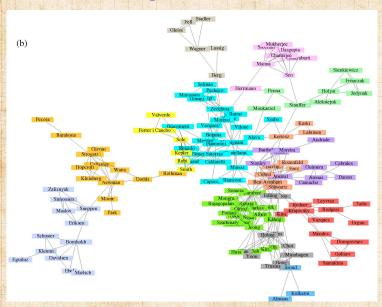
Scientists working on networks (2004)

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

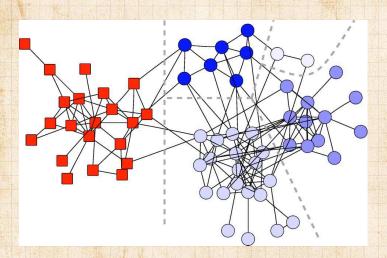
Spectral methods Hierarchies & Missing


Link-based methods General structure detection

Scientists working on networks (2004)

COCONUTS

Overview


- Hierarchy by division
- Link-based methods

Dolphins!

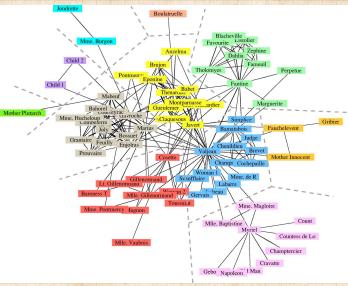
COCONUTS

Overview

Methods

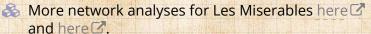
Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links


Link-based methods General structure detection

Les Miserables

Overview


Hierarchy by division

Link-based methods

"Extracting the hierarchical organization of complex systems" Sales-Pardo et al., PNAS (2007) [14, 15]

As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_i [e_{ii} - (\sum_j e_{ij})^2] = \mathrm{Tr} E - ||E^2||_1.$$

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

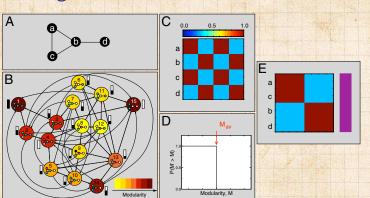
Links
Overlapping communit
Link-based methods
General structure

Shuffling for structure

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- 🚓 Look for local maxima in partition network.
- $\red {\Bbb S}$ Construct an affinity matrix with entries $M_{ij}^{
 m aff}.$
- $M_{ij}^{\text{aff}} = \mathbf{Pr}$ random walker on modularity network ends up at a partition with i and j in the same group.
- C.f. topological overlap between i and j = # matching neighbors for i and j divided by maximum of k_i and k_j .

Overview

Methods


Hierarchy by aggregati Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links Overlapping commun Link-based methods General structure

Shuffling for structure

COCONUTS

Overview

Hierarchy by shuffling Hierarchies & Missing

Link-based methods

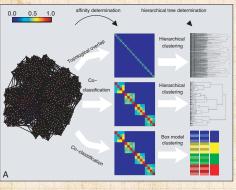
- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- ldea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- 🙈 Idea: permute nodes to minimize following cost

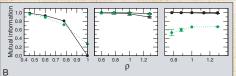
$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} M_{ij}^{\text{aff}} |i - j|.$$

- Use simulated annealing (slow).
- Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} M_{ij}^{\text{aff}} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing


Coverlapping communi Link-based methods General structure



Shuffling for structure

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling

Hierarchies & Missing

Link-based methods detection

References

N = 640,

 $\langle k \rangle = 16,$

hierarchy.

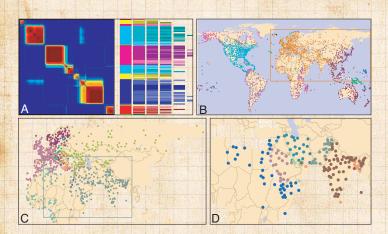
3 tiered

Table 1. Top-level structure of real-world networks

Network	Nodes	Edges	Modules	Main modules
Air transportation	3,618	28,284	57	8
E-mail	1,133	10,902	41	8
Electronic circuit	516	686	18	11
Escherichia coli KEGG	739	1,369	39	13
E. coli UCSD	507	947	28	17

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing

Link-based methods detection

Shuffling for structure

Modules found match up with geopolitical units.

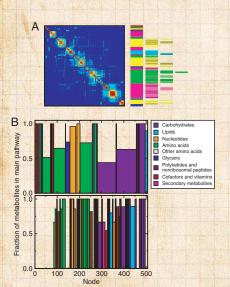
COCONUTS

Overview

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing


Link-based methods detection

Shuffling for structure

Modularity structure for metabolic network of E. coli (UCSD reconstruction).

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing

Link-based methods detection

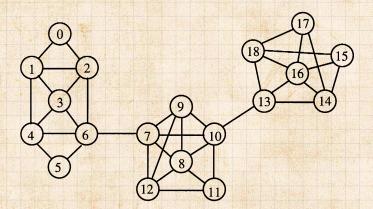
Overview

Methods

Hierarchy by division

Spectral methods Hierarchies & Mis-Links

Overlapping communications
Link-based methods
General structure


- "Detecting communities in large networks" Capocci et al. (2005) [4]
- Solution Consider normal matrix $K^{-1}A$, random walk matrix $A^{\mathsf{T}}K^{-1}$, Laplacian K-A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Builds on Kleinberg's HITS algorithm.

General structure detection

Example network:

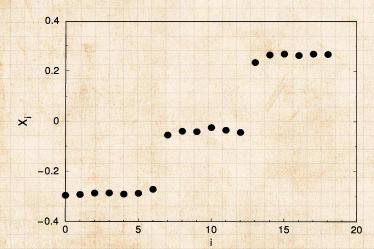
COcoNuTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links

Link-based methods detection



General structure detection

Second eigenvector's components:

COcoNuTS

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links

Link-based methods detection

Network of word associations for 10616 words.

Average in-degree of 7.

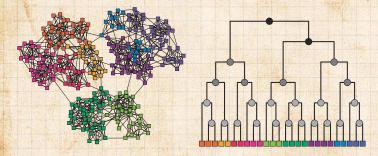
Using 2nd to 11th evectors of a modified version of AA^{T} :

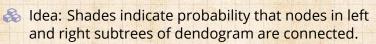
Table 1 Words most correlated to science, literature and piano in the eigenvectors of Q-1WWT

Science 1		Literature	1	Piano		
Scientific	0.994	Dictionary	0.994	Cello	0.993	
Chemistry	0.990	Editorial	0.990	Fiddle	0.992	
Physics	0.988	Synopsis	0.988	Viola	0.990	
Concentrate	0.973	Words	0.987	Banjo	0.988	
Thinking	0.973	Grammar	0.986	Saxophone	0.985	
Test	0.973	Adjective	0.983	Director	0.984	
Lab	0.969	Chapter	0.982	Violin	0.983	
Brain	0.965	Prose	0.979	Clarinet	0.983	
Equation	0.963	Topic	0.976	Oboe	0.983	
Examine	0.962	English	0.975	Theater	0.982	

Values indicate the correlation.

Overview


Hierarchy by shuffling Spectral methods


Link-based methods

Hierarchies and missing links Clauset et al., Nature (2008)^[5]

- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

COcoNuTS

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links

Link-based methods
General structure
detection

Model also predicts reasonably well

- 1. average degree,
- 2. clustering,
- 3. and average shortest path length.

Table 1 | Comparison of original and resampled networks

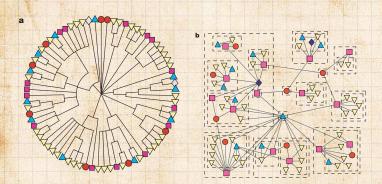
Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{\rm samp}$	C _{real}	C _{samp}	d _{real}	d _{samp}
T. pallidum	4.8	3.7(1)	0.0625	0.0444(2)	3.690	3.940(6)
Terrorists	4.9	5.1(2)	0.361	0.352(1)	2.575	2.794(7)
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)

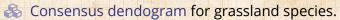
Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient C and average vertex-vertex distance d in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.

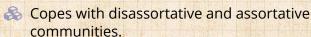
Overview

Methods

Hierarchy by division Hierarchy by shuffling


Hierarchies & Missing Links


Link-based methods
General structure
detection



Hierarchies and missing links

Overview

Hierarchy by aggregation Hierarchy by shuffling Spectral methods

Hierarchies & Missing

Link-based methods

Identity is formed from attributes such as:

🙈 Geographic location

Type of employment

Religious beliefs

Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.

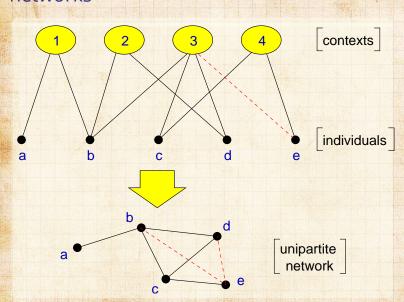
COcoNuTS

Overview

vietrious

Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links


Overlapping communities
Link-based methods
General structure
detection

Social distance—Bipartite affiliation networks

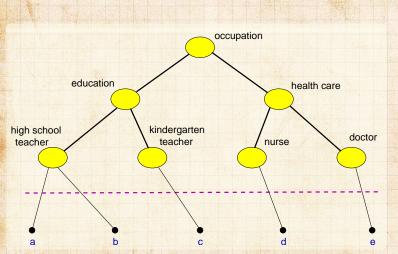
COcoNuTS -

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing


Overlapping communities Link-based methods

General structure detection

Social distance—Context distance

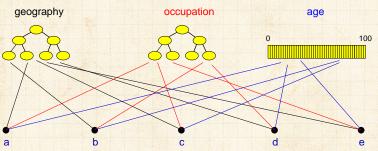
COcoNuTS -

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing


Overlapping communities Link-based methods

General structure detection

Generalized affiliation networks

Blau & Schwartz [2], Simmel [16], Breiger [3], Watts et al. [17]; see also Google+ Circles.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing

Overlapping communities Link-based methods General structure detection

Overlap: Acknowledge nodes can belong to multiple communities.

Palla et al. [13] detect communities as sets of adjacent k-cliques (must share k-1 nodes).

& One of several issues: how to choose k?

Four new quantities:

m, number of a communities a node belongs to.

 $s_{\alpha,\beta}^{\text{ov}}$, number of nodes shared between two given communities, α and β .

 $\geqslant d_{\alpha}^{\text{com}}$, degree of community α .

Associated distributions:

 $P_{>}(m)$, $P_{>}(s_{\alpha,\beta}^{\text{ov}})$, $P_{>}(d_{\alpha}^{\text{com}})$, and $P_{>}(s_{\alpha}^{\text{com}})$.

COCONUTS

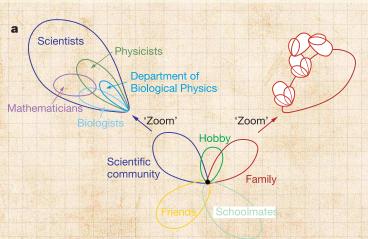
Overview

Methods

Hierarchy by aggregati Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Overlapping communities
Link-based methods

detection



"Uncovering the overlapping community structure of complex networks in nature and society"

Palla et al.. Nature, 435, 814-818, 2005. [13]

COCONUTS

Overview

Hierarchy by aggregation Hierarchy by shuffling Spectral methods

Hierarchies & Missing

Overlapping communities Link-based methods

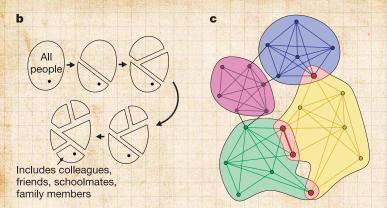


Figure 1. Illustration of the concept of overlapping communities. a. The black dot in the middle represents either of the authors of this paper, with several of his communities around. Zooming in on the scientific community demonstrates the nexted and overlapping structure of the communities, and depicting the cascades of communities starting from some members exemplifies the intervower structure of the network of communities. b. Divisive and agglomerative methods grossly fail to identify the communities when overlaps are significant. c., An example of overlapping k-clique communities at k=4. The yellow community overlaps the blue one in a single node, whereas it shares two nodes and a link with the green one. These overlapping regions are emphasized in red. Notice that any k-clique computes the properties of the properties

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

Overlapping communities Link-based methods General structure

References

20 0 56 of 76

Overview

Hierarchy by aggregation Hierarchy by shuffling Hierarchies & Missing Links

Overlapping communities Link-based methods

References

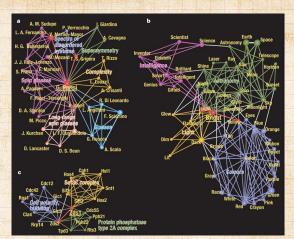
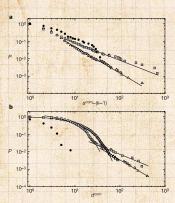


Figure 2 | The community structure around a particular node in three different networks. The communities are colour coded, the overlapping nodes and links between them are emphasized in red, and the volume of the balls and the width of the links are proportional to the total number of communities they belong to. For each network the value of k has been set to 4. a, The communities of G. Parisi in the co-authorship network of the Los Alamos Condensed Matter archive (for threshold weight $w^* = 0.75$) can

be associated with his fields of interest, b. The communities of the word 'bright' in the South Florida Free Association norms list (for $w^* = 0.025$) represent the different meanings of this word. c, The communities of the protein Zds1 in the DIP core list of the protein-protein interactions of S. cerevisiae can be associated with either protein complexes or certain functions.



 $rac{1}{4}$ Two tunable parameters: w^* , the link weight threshold, and k, the clique size.

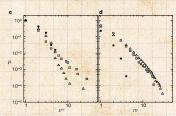


Figure 4. [Satistics of the k-clique communities for three large networks. The networks are the co-nuthorship network of the Los Alamos Condensed Matter archive (triangles, $k=6, f^*=0.93$), the word-association network of the South Florids Free Association norms (squares, $k=4, f^*=0.67$), and the protein interaction network of the yeast S_c corrections from the DP database (circles, k=0.3). The cumulative distribution function of the community size follows a power law with exponents between -1 (upper limb and -1.6 (lower limb, b_c). The cumulative distribution of the community degree starts exponentially and then crosses over to a power law (with the same exponent as for the community size distribution), c. The cumulative distribution of the overlap size. 4. The canualistive distribution of the overlap size. 4. The canualistic distribution of the membership number.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Overlapping communities Link-based methods

General structure detection

References

Links

A link-based approach:

- What we know now: Many network analyses profit from focusing on links.
- Idea: form communities of links rather than communities of nodes.
- Observation: Links typically of one flavor, while nodes may have many flavors.
- Link communities induce overlapping and still hierarchically structured communities of nodes.
- (Applause.)

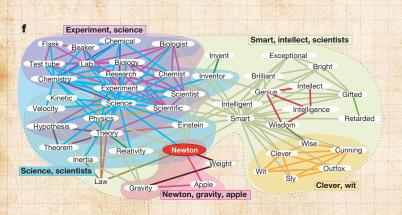
Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Links Overlapping comm

Link-based methods
General structure
detection



"Link communities reveal multiscale complexity in networks"

Ahn, Bagrow, and Lehmann, Nature, **466**, 761–764, 2010. [1]

COcoNuTS -

Overview

lethods

Hierarchy by divis Hierarchy by shuf Spectral methods

Hierarchies & Missing

verlapping commu

Link-based methods General structure detection

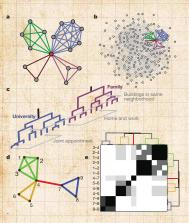


Figure 1 | Overlapping communities lead to dense networks and prevent the discovery of a single node hierarchy, a. J. Local structure in many networks is simple an individual node sees the communities it belongs to. b. Complex global structure emerges when every node is in the situation organization because nodes cannot occupy multiple leaves of a node dendrogram, preventing a single tree from encoding the full hierarchy, d. e. An example showing link communities (colours in d), the link similarity multiple certains to show the eximple showing link communities (colours in d), the link dendrogram (e), f. Link communities from the full word association network around the word 'Newton'. Link colours represent communities and filled regions provide a guide for the eye. Link communities and the word 'Newton'. Link colours represent communities and filled regions provide a guide for the eye. Link communities apture concepts related to science and allow substantial overlap. Note that the words were produced by experiment participants during free word associations.

Overview

Methods
Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

Link-based methods
General structure

References

Note: See details of paper on how to choose link communities well based on partition density D.

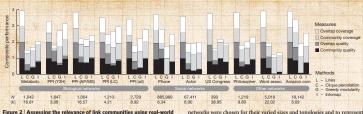


Figure 2. Assessing the relevance of link communities using real-world networks. Composite performance. (Methods and supplementary information) is a data-driven measure of the quality (relevance of discovered memberships) and coverage (frication of network classified) of community and overlap. Tested algorithms are link clustering, introduced here; tique percolation's greedy modularity outprilimation's and Infompay. Test

the different domains where network analysis is used. Shown for each are the number of neighbours per node, (k). Link clustering finds the most relevant community structure in real-world networks. AP/MS, affinity-purification/mass spectrometry; LC, literature curated; PB, protein--protein interaction; Y2H, yeast two-hybrid protein--protein interaction; Y2H, year two-hybrid protein--protein--protein--protein--protein--protein--protein--protein--protein

- Comparison of structure detection algorithms using four measures over many networks.
- Revealed communities are matched against 'known' communities recorded in network metadata.
- Link approach particularly good for dense, overlapful networks.

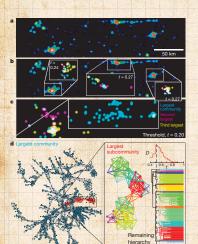
COcoNuTS

Overview

Methods

Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links


verlapping comm

Link-based methods
General structure

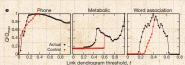
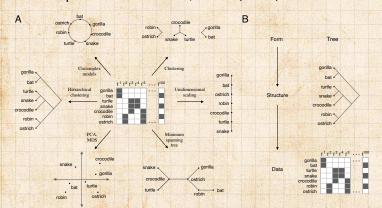


Figure 4 | Meaningful communities at multiple levels of the link dendrogram. a-c, The social network of mobile phone users displays colocated, overlapping communities on multiple scales. a, Heat map of the most likely locations of all users in the region, showing several cities. b, Cutting the dendrogram above the optimum threshold yields small, intracity communities (insets). c, Below the optimum threshold, the largest communities become spatially extended but still show correlation. d, The social network within the largest community in c, with its largest subcommunity highlighted. The highlighted subcommunity is shown along with its link dendrogram and partition density, D, as a function of threshold, t. Link colours correspond to dendrogram branches. e, Community quality, Q, as a function of dendrogram level, compared with random control (Methods).

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

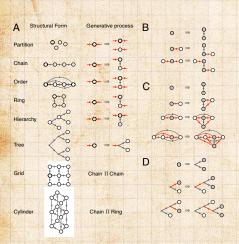
Hierarchies & Missing Links


Link-based methods

"The discovery of structural form" Kemp and Tenenbaum, PNAS (2008) [8]

Overview

Hierarchy by aggregation Hierarchy by shuffling Spectral methods Hierarchies & Missing


Link-based methods General structure

detection

Top down description of form.

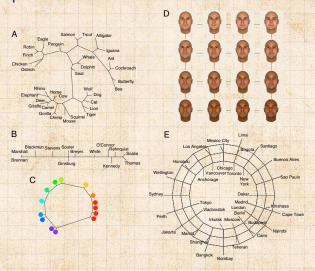
Node replacement graph grammar: parent node becomes two child nodes.

B-D: Growing chains, orders, and trees.

Overview

Hierarchy by aggregation

Hierarchy by shuffling Spectral methods Hierarchies & Missing


Link-based methods General structure detection

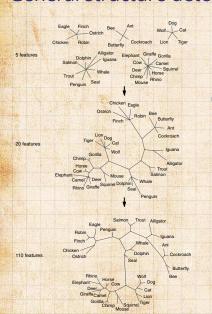
Example learned structures:

Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

COCONUTS -

Overview

Method


Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Link-based methods
General structure
detection

Effect of adding features on detected form.

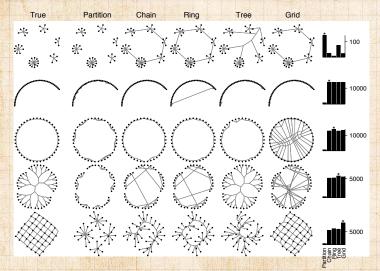
> Straight partition simple tree complex tree

Overview

Hierarchy by aggregation

Hierarchy by shuffling Spectral methods Hierarchies & Missing

Link-based methods General structure detection



General structure detection

COcoNuTS

Performance for test networks.

Overview

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing

Link-based methods General structure detection

[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann.
Link communities reveal multiscale complexity in networks.

Nature, 466(7307):761–764, 2010. pdf

[2] P. M. Blau and J. E. Schwartz.

Crosscutting Social Circles.

Academic Press, Orlando, FL, 1984.

[3] R. L. Breiger.

The duality of persons and groups.

Social Forces, 53(2):181–190, 1974. pdf

[4] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori.

Detecting communities in large networks. Physica A: Statistical Mechanics and its Applications, 352:669–676, 2005. pdf

Overview

1ethods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Overlapping communit Link-based methods General structure detection

References II

- [5] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks.

 Nature, 453:98–101, 2008. pdf
- [6] S. Fortunato.
 Community detection in graphs.
 Physics Reports, 486:75–174, 2010. pdf
- [7] M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf
- [8] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proc. Natl. Acad. Sci., 105:10687–10692, 2008. pdf

Overview

Methods

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links Overlapping communi Link-based methods General structure

[9] D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth, and P. S. Dodds.

The game story space of professional sports: Australian Rules Football.

Draft version of the present paper using pure random walk null model. Available online at http://arxiv.org/abs/1507.03886v1. Accesssed January 17, 2016, 2015. pdf

[10] M. E. J. Newman.

Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.

Phys. Rev. E, 64(1):016132, 2001. pdf

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing

Links
Overlapping commu

Link-based methods General structure detection

[11] M. E. J. Newman.

Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [Phys. Rev. E 64, 016132 (2001)].

Phys. Rev. E, 73:039906(E), 2006. pdf

[12] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, 2004. pdf

[13] G. Palla, I. Derényi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure
of complex networks in nature and society.
Nature, 435(7043):814–818, 2005. pdf

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing
Links

Overlapping communit Link-based methods General structure

[14] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral.

Extracting the hierarchical organization of complex systems.

Proc. Natl. Acad. Sci., 104:15224–15229, 2007. pdf 2

[15] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex systems: Correction. Proc. Natl. Acad. Sci., 104:18874, 2007. pdf

[16] G. Simmel.

The number of members as determining the sociological form of the group. I.

American Journal of Sociology, 8:1-46, 1902.

Overview

Methods

Hierarchy by division
Hierarchy by shufflir
Spectral methods
Hierarchies & Missir

Overlapping commun Link-based methods General structure

[17] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.

Science, 296:1302–1305, 2002. pdf

[18] W. W. Zachary.

An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33:452–473, 1977.

Overview

Methods

Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

Overlapping communit Link-based methods General structure detection

