Random Bipartite Networks Complex Networks | @networksvox

CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Sealie & Lambie

Productions

These slides are brought to you by:

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Introduction

Basic story

References

Introduction Basic story References

•9 q (~ 2 of 32

COcoNuTS

Introduction Basic story References

pairing" Ahn et al.,

COcoNuTS

Introduction

Basic story

References

UNIVERSITY OF VERMONT

少 Q (~ 4 of 32

COcoNuTS

Introduction

Basic story References

UNIVERSITY VERMONT ◆) q (* 4 of 32

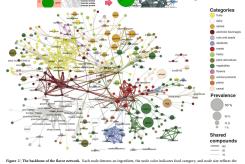
COcoNuTS

Introduction Basic story References

"Flavor network and the principles of food pairing"

"Flavor network and the principles of food

Āhn et al., Nature Scientific Reports, 1, 196, 2011. [1]



Outline

Introduction

Basic story

References

ჟად 5 of 32

"Recipe recommendation using ingredient networks"

Teng, Lin, and Adamic, Proceedings of the 3rd Annual ACM Web Science Conference, 1, 298–307, 2012. [7]

Basic story

References

UNIVERSITY VERMONT

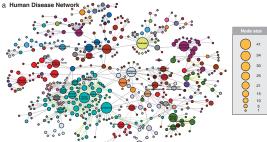
少 Q (~ 6 of 32

References

"The human disease network" Goh et al., Proc. Natl. Acad. Sci., 104, 8685-8690, 2007. [3]

COcoNuTS Introduction Basic story

References



"The Product Space Conditions the Development of Nations"

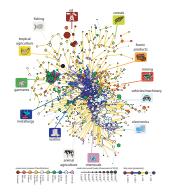
sælt

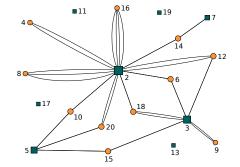
Hidalgo et al., Science, **317**, 482–487, 2007. [5]

"The complex architecture of primes and natural numbers"

García-Pérez, Serrano, and Boguñá, http://arxiv.org/abs/1402.3612, 2014. [2]

Introduction Basic story References





UNIVERSITY OF VERMONT ൗ q (~ 10 of 32

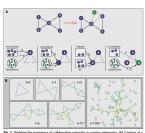
COcoNuTS

Introduction

Basic story

References

Networks and creativity:



- 🚳 Guimerà et al., Science 2005: ^[4] "Team **Assembly Mechanisms** Determine Collaboration Network Structure and Team Performance"
- Broadway musical industry
- Scientific collaboration in Social Psychology, Economics, Ecology, and Astronomy.

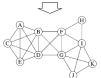
COcoNuTS

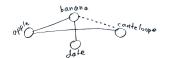
Introduction Basic story References

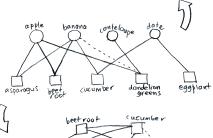
Random bipartite networks:

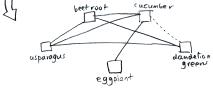
distributions and their applications" Newman, Strogatz, and Watts, Phys. Rev. E, **64**, 026118, 2001. [6]

"Random graphs with arbitrary degree









Basic story:

- An example of two inter-affiliated types:
 - ♀ = tropes ☑.
- Stories contain tropes, tropes are in stories.
- & Consider a story-trope system with N_{\blacksquare} = # stories and $N_{\mathbb{Q}}$ = # tropes.
- $\Re m_{\blacksquare, Q}$ = number of edges between \blacksquare and Q.
- & Let's have some underlying distributions for numbers of affiliations: $P_k^{(\Xi)}$ (a story has k tropes) and $P_k^{(\mathbf{\hat{V}})}$ (a trope is in k stories).
- & Average number of affiliations: $\langle k \rangle_{\square}$ and $\langle k \rangle_{\mathbb{Q}}$.

 - $\langle k \rangle_{\blacksquare}$ = average number of tropes per story. $\langle k \rangle_{Q}$ = average number of stories containing a given trope.

COcoNuTS

Introduction Basic story References

COcoNuTS

Introduction Basic story References

COcoNuTS

Introduction

Basic story

Usual helpers for understanding network's structure:

- Randomly select an edge connecting a

 to a

 v.
- $\begin{cases} \& \& \end{cases}$ Probability the $\begin{cases} \blacksquare & \end{cases}$ contains k other tropes:

$$R_k^{(\blacksquare)} = \frac{(k+1)P_{k+1}^{(\blacksquare)}}{\sum_{i=0}^{N_{\blacksquare}}(j+1)P_{j+1}^{(\blacksquare)}} = \frac{(k+1)P_{k+1}^{(\blacksquare)}}{\langle k \rangle_{\blacksquare}}.$$

 $\mbox{\&}$ Probability the $\mbox{\&}$ is in k other stories:

$$R_k^{(\overline{\mathbf{Q}})} = \frac{(k+1)P_{k+1}^{(\overline{\mathbf{Q}})}}{\sum_{j=0}^{N_{\overline{\mathbf{Q}}}}(j+1)P_{j+1}^{(\overline{\mathbf{Q}})}} = \frac{(k+1)P_{k+1}^{(\overline{\mathbf{Q}})}}{\langle k \rangle_{\overline{\mathbf{Q}}}}.$$

COcoNuTS

Introduction

Basic story

References

COcoNuTS

Introduction

Basic story

References

Induced networks of **I** and **♀**:

- $\bigotimes P_{\mathsf{ind},k}^{(\blacksquare)}$ = probability a random \blacksquare is connected to kstories by sharing at least one \Im .
- $\Re P_{\mathrm{ind},k}^{(Q)}$ = probability a random \mathbb{Q} is connected to ktropes by co-occurring in at least one **II**.
- $\Re R_{\mathrm{ind},k}^{(\blacksquare)}$ = probability a random edge leads to a \blacksquare which is connected to k other stories by sharing at least one \(\bar{V} \).
- $\Re R_{\mathrm{ind},k}^{(\mathbf{\hat{V}})}$ = probability a random edge leads to a $\mathbf{\hat{V}}$ which is connected to k other tropes by co-occurring in at least one **III**.
- Goal: find these distributions \(\Pi \).
- Another goal: find the induced distribution of component sizes and a test for the presence or absence of a giant component.
- Unrelated goal: be 10% happier/weep less.

COcoNuTS

Introduction

Basic story

References

Yes, we're doing it:

- $\mbox{\ensuremath{\&}} \ F_{P^{(\ensuremath{\mathbb{Q}})}}(x) = \sum_{k=0}^{\infty} P_k^{(\ensuremath{\mathbb{Q}})} x^k$
- $\mbox{\&} \ F_{R^{\scriptsize{\textcircled{\tiny III}}}}(x) = \sum_{k=0}^{\infty} R_k^{\scriptsize{\textcircled{\tiny III}}} x^k = \frac{F_{P^{\scriptsize{\textcircled{\tiny III}}}}'(x)}{F_{P^{\scriptsize{\mathclap{\tiny III}}}}'(1)}$

Generating Function Madness

The usual goodness:

- & Means: $F'_{P(\square)}(1) = \langle k \rangle_{\square}$ and $F'_{P(\emptyset)}(1) = \langle k \rangle_{\mathbb{Q}}$.

•9 q (≈ 16 of 32

$$\mbox{\hfill} F_{P_{\rm ind}^{(\mbox{\hfill})}}(x) = \sum_{k=0}^{\infty} P_{{\rm ind},k}^{(\mbox{\hfill})} x^k$$

$$\mbox{\ensuremath{\&}} \ F_{R_{\rm ind}^{(\blacksquare)}}(x) = \sum_{k=0}^{\infty} R_{{\rm ind},k}^{(\blacksquare)} x^k$$

$$\mbox{\&} \ F_{R_{\rm ind}^{(\mbox{\scriptsize Q})}}(x) = \sum_{k=0}^{\infty} R_{{\rm ind},k}^{(\mbox{\scriptsize Q})} x^k$$

So how do all these things connect?

- We're again performing sums of a randomly chosen number of randomly chosen numbers.
- We use one of our favorite sneaky tricks:

$$W = \sum_{i=1}^U V^{(i)} \rightleftharpoons F_W(x) = F_U(F_V(x)).$$

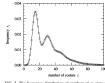
少 q (→ 17 of 32

COcoNuTS

Introduction Basic story

References

Induced distributions are not straightforward:



- $\mbox{\&}$ View this as $P_{\mathrm{ind},k}^{(oxdot)}$ (the probability a story shares tropes with k other stories). [6]
- Result of purely random wiring with Poisson distributions for affiliation numbers.
- Parameters: $N_{f eta}=10^4$, $N_{f Q}=10^5$, $\langle k \rangle_{f eta}=1.5$, and $\langle k \rangle_{f Q}=15$.

COcoNuTS

Introduction

Basic story

Induced distributions for stories:

 \mathbb{R} Randomly choose a \mathbb{H} , find its tropes (U), and then find how many other stories each of those tropes are part of (V):

$$F_{P^{(\blacksquare)}}(x)=F_{P^{(\blacksquare)}}\left(F_{R^{(\P)}}(x)\right)$$

Find the at the end of a randomly chosen affiliation edge leaving a trope, find its number of other tropes (U), and then find how many other stories each of those tropes are part of (V):

$$F_{R^{(\blacksquare)}}(x) = F_{R^{(\blacksquare)}}\left(F_{R^{(\P)}}(x)\right)$$

COcoNuTS

Introduction

Basic story

References

Induced distributions for tropes:

Randomly choose a \mathfrak{P} , find the stories its part of (U), and then find how many other tropes are part of those stories (V):

 $F_{P_{\mathrm{ind}}^{(\mathbf{Q})}}(x) = F_{P^{(\mathbf{Q})}}\left(F_{R^{(\mathbf{H})}}(x)\right)$

Find the at the end of a randomly chosen <math>affiliation edge leaving a story, find the number of other stories that use it (U), and then find how many other tropes are in those stories (V):

$$F_{R_{\mathrm{ind}}^{(\emptyset)}}(x) = F_{R^{(\emptyset)}}\left(F_{R^{(\blacksquare)}}(x)\right)$$

Let's do some good:

8

Average number of stories connected to a story through trope-space:

$$\langle k \rangle_{\blacksquare, \mathrm{ind}} = F'_{P_{\mathrm{lad}}^{(\blacksquare)}}(1)$$

Introduction Basic story References

$$\begin{split} &\operatorname{So:}\left\langle k\right\rangle_{\boxminus,\operatorname{ind}} = \left.\frac{\mathrm{d}}{\mathrm{d}x}F_{P^{(\boxminus)}}\left(F_{R^{(\lozenge)}}(x)\right)\right|_{x=1} \\ &= F'_{R^{(\lozenge)}}(1)F'_{P^{(\boxminus)}}\left(F_{R^{(\lozenge)}}(1)\right) = F'_{R^{(\lozenge)}}(1)F'_{P^{(\boxminus)}}(1) \end{split}$$

Similarly, the average number of tropes connected to a random trope through stories:

$$\langle k\rangle_{{\Bbb Q},{\rm ind}}=F'_{R^{({\Bbb H})}}(1)F'_{P^{({\Bbb Q})}}(1)$$

In terms of the underlying distributions, we have: $\langle k \rangle_{\boxminus, \mathsf{ind}} = \tfrac{\langle k(k-1) \rangle_{\mathbb{Q}}}{\langle k \rangle_{\mathbb{Q}}} \langle k \rangle_{\boxminus} \text{ and } \langle k \rangle_{\mathbb{Q}, \mathsf{ind}} = \tfrac{\langle k(k-1) \rangle_{\boxminus}}{\langle k \rangle_{\boxminus}} \langle k \rangle_{\mathbb{Q}}$

UNIVERSITY OF VERMONT •ൗ ര രം 21 of 32

Next: is this thing connected?

- Always about the edges: when following a random edge toward a E, what's the expected number of new edges leading to other stories via tropes?
- $lap{N}$ We want to determine $\langle k
 angle_{R,oxed{oxed{H}}, ext{ind}} = F'_{R_{ ext{lad}}}(1)$ (and $F_{_{R}(\overline{\mathbb{Q}})}^{\prime}(1)$ for the trope side of things).
- We compute with joy:

$$\begin{split} \langle k \rangle_{R, \boxplus, \mathrm{ind}} &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F_{R_{\mathrm{ind},k}^{(\mathbb{I})}}(x) \right|_{x=1} = \left. \frac{\mathrm{d}}{\mathrm{d}x} F_{R^{(\mathbb{I})}}\left(F_{R^{(\mathbb{I})}}(x)\right) \right|_{x=1} \\ &= F_{R^{(\mathbb{I})}}'(1) F_{R^{(\mathbb{I})}}'\left(F_{R^{(\mathbb{I})}}(1)\right) = F_{R^{(\mathbb{I})}}'(1) F_{R^{(\mathbb{I})}}'(1) = \frac{F_{R^{(\mathbb{I})}}''(1)}{F_{L^{(\mathbb{I})}}'(1)} \frac{F_{L^{(\mathbb{I})}}''(1)}{F_{L^{(\mathbb{I})}}'(1)} \\ \end{split}$$

- Note symmetry.
- \$happiness++;

COcoNuTS

Introduction

Basic story References

Introduction

Basic story

Introduction

Basic story

References

$$\langle k \rangle_{R, \boxminus, \mathrm{ind}} = \frac{\langle k(k-1) \rangle_{\boxminus}}{\langle k \rangle_{\boxminus}} \frac{\langle k(k-1) \rangle_{\lozenge}}{\langle k \rangle_{\lozenge}}$$

We have a giant component in both induced networks when

$$\langle k \rangle_{R, \boxminus, \mathrm{ind}} \equiv \langle k \rangle_{R, \heartsuit, \mathrm{ind}} > 1$$

See this as the product of two gain ratios. #excellent #physics

Simple example for finding the degree

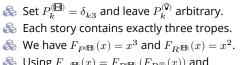
random bipartite affiliation structure:

We can mess with this condition to make it mathematically pleasant and pleasantly inscrutable:

$$\sum_{k=0}^{\infty}\sum_{k'=0}^{\infty}kk'(kk'-k-k')P_k^{(\blacksquare)}P_{k'}^{(\mbox{\scriptsize Q})}=0. \label{eq:power_power}$$

COcoNuTS

Introduction Basic story References



$$\begin{split} & \text{$\&$ Using $F_{P_{\text{ind}}^{(\mathbb{Q})}}(x) = F_{P^{(\mathbb{Q})}}\left(F_{R^{(\mathbb{Q})}}(x)\right)$ and} \\ & F_{P_{\text{ind}}^{(\mathbb{Q})}}(x) = F_{P^{(\mathbb{Q})}}\left(F_{R^{(\mathbb{H})}}(x)\right)$ we have} \\ & F_{P_{\text{ind}}^{(\mathbb{H})}}(x) = \left[F_{R^{(\mathbb{Q})}}(x)\right]^3 \text{ and } F_{P_{\text{ind}}^{(\mathbb{Q})}}(x) = F_{P^{(\mathbb{Q})}}\left(x^2\right). \end{split}$$

distributions for the two induced networks in a

- & Even more specific: If each trope is found in exactly two stories then $F_{P^{(\mathbf{\tilde{V}})}}=x^2$ and $F_{R^{(\mathbf{\tilde{V}})}}=x$ giving $F_{P_{\mathrm{ind}}^{(\P)}}(x)=x^3$ and $F_{P_{\mathrm{ind}}^{(\P)}}(x)=x^4.$
- Yes for giant components □: $\langle k \rangle_{R, \boxminus, \mathrm{ind}} \equiv \langle k \rangle_{R, \heartsuit, \mathrm{ind}} = 2 \cdot 1 = 2 > 1.$

COcoNuTS

Introduction

Basic story

UNIVERSITY VERMONT

• ഉ രം 25 of 32

Boards and Directors: [6]

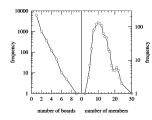


FIG. 8. Frequency distributions for the boards of directors of the Fortune 1000. Left panel: the numbers of boards on which each director sits. Right panel: the numbers of directors on each board.

- Exponentialish distribution for number of boards each director sits on.
- Boards typically have 5 to 15 directors.
- Plan: Take these distributions, presume random bipartite structure and generate co-director network and board interlock network.

Boards and Directors and more: [6]

TABLE I. Summary of results of the analysis of four collaboration networks.

Network	Clustering C		Average degree z	
	Theory	Actual	Theory	Actual
Company directors	0.590	0.588	14.53	14.44
Movie actors	0.084	0.199	125.6	113.4
Physics (arxiv.org)	0.192	0.452	16.74	9.27
Biomedicine (MEDLINE)	0.042	0.088	18.02	16.93

Random bipartite affiliation network assumption produces decent matches for some basic quantities.

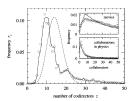
COcoNuTS

Introduction

Basic story

References

Boards and Directors: [6]



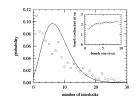
- Jolly good: Works very well for co-directors.
- For comparison, the dashed line is a Poisson with the empirical average degree.

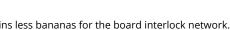
COcoNuTS

Introduction

Basic story References

Boards and Directors: [6]





- Assortativity is the reason: Directors who sit on many boards tend to sit on the same boards.
- Note: The term assortativity was not used in this 2001 paper.

To come:

- Distributions of component size.
- Simpler computation for the giant component condition.
- Contagion.
- Testing real bipartite structures for departure from randomness.

Nutshell:

- Random bipartite networks model many real systems well.
- Crucial improvement over simple random networks.
- We can find the induced distributions and determine connectivity/contagion condition.

COcoNuTS

Introduction Basic story

References

References I

[1] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási.

Flavor network and the principles of food pairing. Nature Scientific Reports, 1:196, 2011. pdf

[2] L. P. García-Pérez, M. A. Serrano, and M. Boguñá. The complex architecture of primes and natural numbers, 2014.

http://arxiv.org/abs/1402.3612. pdf

[3] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási.

The human disease network.

Proc. Natl. Acad. Sci., 104:8685–8690, 2007. pdf

COcoNuTS

Introduction

Basic story

References

References II

[4] R. Guimerà, B. Uzzi, J. Spiro, and L. A. N. Amaral. Team assembly mechanisms determine collaboration network structure and team performance.

Science, 308:697-702, 2005. pdf

[5] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausman.

The product space conditions the development of nations.

Science, 317:482-487, 2007. pdf

[6] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64:026118, 2001. pdf

References III

Introduction Basic story References

COcoNuTS

[7] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic. Recipe recommendation using ingredient networks.

In Proceedings of the 3rd Annual ACM Web Science Conference, WebSci '12, pages 298-307, New York, NY, USA, 2012. ACM. pdf < □

COcoNuTS

Introduction

Basic story

References

