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» Get your own exciting generator here (4.
» As N 7, polyhedral die rapidly becomes a ball...
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- Random networks

» Consider set of all networks with IV labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.
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- Random networks

» Consider set of all networks with IV labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.

» To be clear: each network is equally probable.
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- Random networks

» Consider set of all networks with IV labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.

» To be clear: each network is equally probable.

» Sometimes equiprobability is a good assumption,
but it is always an assumption.
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- Random networks b

Pure random
networks

» Consider set of all networks with IV labelled nodes SHi
and m edges. Generalized

Random

» Standard random network = 4. b
one randomly chosen network from this set.

» To be clear: each network is equally probable.

» Sometimes equiprobability is a good assumption,
but it is always an assumption.

» Known as Erd&s-Rényi random networks or ER
graphs.
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» Number of possible edges:

Random networks—basic features:

» Limit of m = 0: empty graph.
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» Number of possible edges:

» Limit of m = 0: empty graph.
» Limit of m = (§): complete or fully-connected

graph.
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» Number of possible edges:

Nyin—U

0§m§(2 2

» Limit of m = 0: empty graph.

» Limit of m = (4): complete or fully-connected
graph.

» Number of possible networks with N labelled

nodes:
2(151) ~J elnT2N2
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» Number of possible edges:

Pure random

networks
N N(N -1 Bt
0 é m S ( ) = Q Holrm bliiuiedte
2 2
> Limitof m = 0: empty graph.
i 8 Random
» Limit of m = (4): complete or fully-connected Networks
graph. Col ‘:\:’
» Number of possible networks with N labelled
nodes:
9(3) N

» Given m edges, there are ((2)) different possible
networks.
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Given m edges, there are ((2)) different possible
networks.

Crazy factorial explosion for 1 <« m « ().
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N, N(N-1) Sl
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Limit of m = 0: empty graph. i
Limit of m = (&): complete or fully-connected Networ

Configuration mode

graph.
Number of possible networks with N labelled

nodes:
|

=
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2(151) ~ e Nz‘

4

Given m edges, there are ((2)) different possible
networks.

Crazy factorial explosion for 1 <« m « ().

Real world: links are usually costly so real
e 10O
networks are almost always sparse. R @
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i Random networks

How to build standard random networks:

:L » Given N and m.
» Two probablistic methods
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- Random networks
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» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥ pairs with appropriate
probability p.
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Random networks

» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥ pairs with appropriate
probability p.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥ pairs with appropriate
probability p.
» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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- Random networks

» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥ pairs with appropriate
probability p.
» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
» Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.
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» Two probablistic methods (we'll see a third later
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Random
1. Connect each of the (¥ pairs with appropriate i s e
probability p. o buidinpract

» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

» Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.

» Best for adding relatively small numbers of links
(most cases).
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- Random networks

» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥ pairs with appropriate
probability p.
» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
» Algorithm: Randomly choose a pair of nodes 7 and
J. © # j, and connect if unconnected; repeat until
all m edges are allocated.
» Best for adding relatively small numbers of links
(most cases).
» 1and 2 are effectively equivalent for large N.
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- Random networks
- Afew more things:

~ » For method 1, # links is probablistic:

1

:p§N(N— 1)
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~ Random networks
» For method 1, # links is probablistic:
N 1
m) =p(,) =psN(N—1)

» So the expected or average degree is

2 (m)
(ky = 2
= ZpAN(V = 1) = ZpiN(N — 1) =p(N - 1),

» Which is what it should be...
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- Random networks

» For method 1, # links is probablistic:
N 1
m) =p(,) =psN(N—1)

» So the expected or average degree is

_2(m)
TN
= ZpAN(V = 1) = ZpiN(N — 1) =p(N - 1),

» Which is what it should be...

» If we keep (k) constantthenp < 1/N — 0 as
INE =5 507
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 Random networks: examples

Next slides:
Example realizations of random networks
» N =500
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- Random networks: examples

Example realizations of random networks
» N =500
» Vary m, the number of edges from 100 to 1000.

COcoNuTS

Pure random

Generalized
Random
Nétworks

tion model

i

kL_"_L

The O
ﬁ UNIVERSITY |g|
<8/ VERMONT 10|

D 13 0f 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Random networks: examples

Example realizations of random networks
» N =500

» Vary m, the number of edges from 100 to 1000.

» Average degree (k) runs from 0.4 to 4.
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- Random networks: examples
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» Vary m, the number of edges from 100 to 1000.
» Average degree (k) runs from 0.4 to 4.

» Look at full network plus the largest component.
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' Random networks:
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- Random

~m =100
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 Clustering in random networks:
» For construction method 1, what is the clustering
coefficient for a finite network?
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- Clustering in random networks:
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Clustering in random networks:

» For construction method 1, what is the clustering
coefficient for a finite network?
» Consider triangle/triple clustering coefficient: ™!

3 x #triangles

20 o dtriples
! » Recall: C, = probability that
i two friends of a node are
‘ also friends.
. \ P_T: CL
Ly )
i
1
i3
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- Clustering in random networks:

» For construction method 1, what is the clustering
coefficient for a finite network?
» Consider triangle/triple clustering coefficient: ™!
3 x #triangles
20 o dtriples

! » Recall: C, = probability that

i two friends of a node are
also friends.

FzC,  » Or: C, = probability that a

,,t) triple is part of a triangle.
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- Clustering in random networks:
» For construction method 1, what is the clustering
coefficient for a finite network?
» Consider triangle/triple clustering coefficient: ™!
3 x #triangles
20 o dtriples

! » Recall: C, = probability that
i two friends of a node are
also friends.

FzC,  » Or: C, = probability that a
,,t) triple is part of a triangle.

’ » For standard random

! networks, we have simply
: that

“3 @ =D,
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Clustering in random networks:

» So for large random
networks (N — o0),
clustering drops to zero.

» Key structural feature of
random networks is that
they locally look like
pure branching networks
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Clustering in random networks:

» So for large random
networks (N — o0),
clustering drops to zero.

» Key structural feature of
random networks is that
they locally look like
pure branching networks

» No small loops.
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» Recall P, = probability that a randomly selected
node has degree k.

» Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

» Now consider one node: there are'N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are N — 1 choose £’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are N — 1 choose £’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
Therefore have a binomial distribution (";

Plp, Ny = (1

COcoNuTS

Pure random
networks
Definitions

How to build theoretically

Clustering

Generalized
Random
Networks
Configuration mode

1he O]
ﬁ UNIVERSITY |9
il ¥ VERMONT 1O

D 230f 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://en.wikipedia.org/wiki/Binomial_distribution

L|m|t|ng form of P(k:;p, N):

..Our degree dlstrlbutlon

5 P ) = (Nt ph (1 — p)"
What happens as V. — oc?
We must end up with the normal dlStI’IbutIOl’]
right?
If pis'fixed, then we would end up with a:Gaussian
with average degree (k) ~ pN — .

| But we want to keep (k) fixed.x

So examine limit of P(k;p,. V) when
iwith

{h)*

P(’]f:[).,\v:) e T

This:is a:/
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» Our degree distribution:
Rhspnlt) = (Ha ipS(1 - p) 10
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Limiting form ofHP(l«:; p,N):
» Our degree distribution:

P(kip,N) = (Ngh)ph(1 —p) 1+,

» What happens as N — oo?
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» Our degree distribution:
Blksy V) = (aip el p) =l
» What happens as N — ~o?

» We must end up with the normal distribution
right?
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» Our degree distribution:
Bl e o (L) "1

» What happens as N — co?

» We must end up with the normal distribution
right?

» If pis fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.
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Our degree distribution:

Bl e o (L) "1

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...
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COcoNuTS

Our degree distribution: o
P(k’p, N) At (ngl)pk:<1 35 p)N—l—k:' networks

Definitions

What happens as N — oo?

We must end up with the normal distribution

right? R
Networks

If p is fixed, then we would end up with a Gaussian .
with average degree (k) ~ pN — oc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N—-1—-k o
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COcoNuTS

Our degree distribution: e
P(k’p, N) At (ngl)pk:<1 35 p)N—l—k:' networks

Definitions

What happens as N — oo?

We must end up with the normal distribution :
right? o
If p is fixed, then we would end up with a Gaussian - .
with average degree (k) ~ pN — oc.
But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N—-1-k 7
Bk p N <kl<:>' (1 it ]V<k:_>1> B (k) (k)

This is a Poisson distribution (£ with mean (k). | [t
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Poisson basics:
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Classic use: probability

that an event occurs &
times in a given time
period, given an
average rate of
occurrence.

e.g.

phone calls/minute,
horse-kick deaths.

‘Law of small numbers'
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» The variance of degree distributions for random et
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networks turns out to be very important.

» Using calculation similar to one for finding (k) we
find the second moment to be:
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» The variance of degree distributions for random networks
networks turns out to be very important. v e
> Using calculation similar to one for finding (k) we ~ wo
find the second moment to be: e e
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(k) = (k)2 + ().
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Using calculation similar to one for finding (k) we

find the second moment to be:

(k2) = (k)* + (k).

» Variance is then

a? = (k2) = (k)2

(B)? + (k) — (k)*
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Poisson basics: A

Pure random: ' *

» The variance of degree distributions for random networks
networks turns out to be very important.

» Using calculation similar to one for finding (k) we
find the second moment to be:

Degree distributions

Generalized
Random
Networks

(k2) = (k) + (k).
» Variance is then

0 = (k%) = (0% = (k) + (k) = (b2 = (R).
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COcoNuTS

Poisson basics:

- 5 s 4 P d
» The variance of degree distributions for random et

Definition:

networks turns out to be very important.

» Using calculation similar to one for finding (k) we
find the second moment to be:

Generalized
Random
Networks

(k2) = (k)2 + (k).
» Variance is then

0 = (k%) = (0% = (k) + (k) = (b2 = (R).

» So standard deviation o is equal to /(k).
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COcoNuTS

- Poisson basics:

Pure random

» The variance of degree distributions for random networks
networks turns out to be very important.

» Using calculation similar to one for finding (k) we
find the second moment to be:

Definitions

Generalized
Random
Networks

(k2) = (k)2 + (k).

» Variance is then

0% = (k%) — (k) = (k) + (k) — (k)2 = (k). ”

» So standard deviation o is equal to /(k).

» Note: This is a special property of Poisson
distribution and can trip us up...
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution P,.
» Also known as the configuration model. !
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution P,.
» Also known as the configuration model. !

» Can generalize construction method from ER
random networks.
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COcoNuTS

- General random networks

» So... standard random networks have a Poisson Biret o
networks

degree distribution etvort
» Generalize to arbitrary degree distribution P,. teus

» Also known as the configuration model. !
Generalized
» Can generalize construction method from ER Rabilom
random networks. Kenipusten e il

» Assign each node a weight w from some e
distribution P,, and form links with probability ot i

P(link between i and j) oc w,;w;.
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- General random networks

>

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P, and form links with probability

P(link between i and j) oc w,;w;.

But we'll be more interested in
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- General random networks o

» So... standard random networks have a Poisson Pure random
degree distribution i

» Generalize to arbitrary degree distribution P,. vt s

» Also known as the configuration model. ! GM‘

» Can generalize construction method from ER Raidom
random networks. ontprson el

» Assign each node a weight w from some AR
distribution P, and form links with probability Ciban i

P(link between i and j) oc w,;w;.

» But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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COcoNuTS

General random networks

» So... standard random networks have a Poisson Biret o

networks

degree distribution petritios

F © build theoretically

» Generalize to arbitrary degree distribution P,,. S
» Also known as the configuration model. ! 2 gt

Generalized
» Can generalize construction method from ER Raidom
random networks. ontputmnosst
» Assign each node a weight w from some AR b
distribution P, and form links with probability phd 8

P(link between i and j) oc w,;w;.

» But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions. 4 [EVOR
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- Random networks: examples
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

» N = 1000.
B B oockiifork = b
» Set P, = 0 (no isolated nodes).
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- Random networks: examples
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Example realizations of random networks with power

law degree distributions: Generalized
Random
» N = 1000 Nétworks

Configuration model

B B oockiifork = b
» Set P, = 0 (no isolated nodes).
» Vary exponent vy between 2.10 and 2.91.
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- Random networks: examples

Pure random
networks
Defir

Example realizations of random networks with power oxireeeibgiand
law degree distributions: Generalzed
> N = 1000. Ngiworls
> P, k7 fork > 1.
» Set P, = 0 (no isolated nodes).
» Vary exponent vy between 2.10 and 2.91.

» Again, look at full network plus the largest
component.
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COcoNuTS

- Random networks: examples

Pure random
networks
Definitions

Example realizations of random networks with power e dsinguand

law degree distributions: Generalized
Random
’ N = 1000 Networks

Confi model

B B oockiifork = b
» Set P, = 0 (no isolated nodes).
» Vary exponent vy between 2.10 and 2.91.

» Again, look at full network plus the largest
component.

» Apart from degree distribution, wiring is random.
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' Random networks: examples for N=1000
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Generalized random networks:
» Arbitrary degree distribution P;,.

COcoNUTS T

Pure random ¥+
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Nétworks
Configuration model
How to build in practice - -

Random friends are
strange

Largest component

References

52 ’>/V'ERMONT i

DA 330f69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

; MOdelS COcoNuTS :

Pure random

Generalized

» Arbitrary degree distribution P,. Random

Nétworks
» Create (unconnected) nodes with degrees
sampled from P,,.
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Models

» Arbitrary degree distribution P,.

» Create (unconnected) nodes with degrees
sampled from P,,.

» Wire nodes together randomly.
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networks
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Degree distributions
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Configuration mode
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|\/|Ode|S COCoNUTS :

Pure random
networks
Def

Degree distributions

» Arbitrary degree distribution P,. E?jﬁ‘km

» Create (unconnected) nodes with degrees i
sampled from P,,.

» Wire nodes together randomly.

» Create ensemble to test deviations from e 3
randomness.
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- Building random networks: Stubs

» |dea: start with a soup of unconnected nodes with
stubs (half-edges):

S

ARE e
e
M-t ft
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- Building random networks: Stubs

» |dea: start with a soup of unconnected nodes with
stubs (half-edges):

S
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- Building random networks: Stubs

» |dea: start with a soup of unconnected nodes with

stubs (half-edges):

S

E 1!

RS
M-t ft

» Randomly select stubs
(not nodes!) and
connect them.
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COcoNuTS

- Building random networks: Stubs

Pure random
networks

> |dea: start with a soup of unconnected nodes with =
stubs (half-edges):

1€oretically
Degree distributions
Generalized
Random
Networks
o Config de
He actice

111l \T/\T/+ IIII » Randomly select stubs s

(not nodes!) and

® 91 H connect them. FJ l
| ¥ H + H } » Must have an even N .\
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COcoNuTS

- Building random networks: Stubs

Pure random
networks

> Idea: start with a soup of unconnected nodes with v
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Building random networks: First rewiring

Phase 2:
» Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><><
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 Building random networks: First rewiring

» Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

GG (B) >‘<>é
» Being careful: we can't change the degree of any
node, so we can't simply move links around.
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 Building random networks: First rewiring

» Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) $O (B) >‘<>é

» Being careful: we can't change the degree of any
node, so we can't simply move links around.

» Simplest solution: randomly rewire two edges at a
time.
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Pure random

Degree distributions

Generalized
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- General random rewiring algorithm

» Randomly choose two edges.
(Or choose problem edge and
a random edge)
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- General random rewiring algorithm

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges are
disjoint.
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- General random rewiring algorithm

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges are
disjoint.

» Rewire one end of each edge.
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General random rewiring algorithm
ety

9

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges are
disjoint.

» Rewire one end of each edge.

» Node degrees do not change.
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General random rewiring algorithm
ety

9

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges are
disjoint.

» Rewire one end of each edge.
» Node degrees do not change.

» Works if e, is a self-loop or
repeated edge.
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General random rewiring algorithm
e

l 1 Pure random

1 networks

» Randomly choose two edges.
(Or choose problem edge and
arandom edge) Sedree vt

COcoNuTS

G lized
» Check to make sure edges are  rion
e Nét rk
disjoint. i ol

How to build in practice

» Rewire one end of each edge.
» Node degrees do not change.

» Works if e, is a self-loop or
repeated edge.

» Same as finding on/off/on/off |
4-cycles. and rotating them. i’t’wm.»[-y g
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- Sampling random networks

» Use rewiring algorithm to remove all self and
repeat loops.

» Randomize network wiring by applying rewiring
algorithm liberally.
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- Sampling random networks

» Use rewiring algorithm to remove all self and
repeat loops.

» Randomize network wiring by applying rewiring
algorithm liberally.

» Rule of thumb: # Rewirings ~ 10 x # edges ®..
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Pure random

Degree distributions

Generalized
Random
Nétworks
Configuration model
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~ Random sampling coronts

Pure random
networks
Definitions

» Problem with only joining up stubs is failure to
randomly sample from all possible networks.

suild theoretically

fistributions
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Configuration model
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Random sarhpling

» Problem with only joining up stubs is failure to
randomly sample from all possible networks.

» Example from Milo et al. (2003) °/:

(@)

1 configuration

(b)

90 configurations

% frequency of occurrence

Eo anemsna i ontamind]

‘g0 with the winners

T L

switching algorithm

o sl P Al bvmiis)

matching algorithm
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Sampling random networks

» What if we have P, instead of N, ?
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- Sampling random networks

» What if we have P, instead of N, ?

» Must now create nodes before start of the
construction algorithm.
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Sampling random networks

» What if we have P, instead of N, ?

» Must now create nodes before start of the
construction algorithm.

» Generate N nodes by sampling from degree
distribution Py.
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- Sampling random networks counurs

Pure random
networks

Definitions

How to build thedretically
Sor

» What if we have P, instead of N, ? Cltern

Degree distributions

» Must now create nodes before start of the Genetalized
construction algorithm. Networks
» Generate N nodes by sampling from degree et lgoree

distribution Py.
» Easy to do exactly numerically since k is discrete.
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- Sampling random networks cocTs |

Pure random
networks
Definitions

» What if we have P, instead of N, ? e
» Must now create nodes before start of the il

Random
construction algorithm. Nfmos |
» Generate N nodes by sampling from degree b

distribution Py.
» Easy to do exactly numerically since k is discrete.

» Note: not all P, will always give nodes that can be
wired together.
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- Network motifs corons

Pure random
networks

» Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

ild theoretically
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COcoNuTS

 Network motifs

Pure random
network

» Idea of motifs®! introduced by Shen-Orr, Alon et

al. in 2002.
» Looked at gene expression within full context of T
transcriptional regulation networks. RStoe. |
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 Network motifs

» Idea of motifs®! introduced by Shen-Orr, Alon et
al. in 2002.

» Looked at gene expression within full context of
transcriptional regulation networks.

» Specific example of Escherichia coli.
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COcoNuTS

Network motifs

Pure random
networks

» Idea of motifs®! introduced by Shen-Orr, Alon et

al. in 2002.
» Looked at gene expression within full context of T
transcriptional regulation networks. Random

Networks

» Specific example of Escherichia coli. T

» Directed network with 577 interactions (edges) '
and 424 operons (nodes).

Motifs
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- Network motifs i

Pure random
networks

» Idea of motifs®! introduced by Shen-Orr, Alon et Deor

al. in 2002. s
» Looked at gene expression within full context of Gemm
transcriptional regulation networks. Random.
» Specific example of Escherichia coli.
» Directed network with 577 interactions (edges) f
and 424 operons (nodes). e e

» Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.
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COcoNuTS

- Network motifs

Pure random
networks

» Idea of motifs®! introduced by Shen-Orr, Alon et oefnon

How to build theoretically

al. in 2002. il
» Looked at gene expression within full context of G “‘ ¢ 1
transcriptional regulation networks. Random

Networks

» Specific example of Escherichia coli.

» Directed network with 577 interactions (edges) =
and 424 operons (nodes).

» Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.

» Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs
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COcoNuTS

Network motifs

Pure random

feedforward loop networks

Definitions
X : — ﬂ i o
| -—05 mple
Y 6 8 10 12 14 16 18 20 De; dis putions
z “mm Generalized

Random
6 & 10 12 14 16 18 20 Networks
cry Confis ST G
g output Z —— Configuration mode
J How to build in practice
araC output Motifs
6 6 10 12 14 16 16 20 1dom friends are
| o i
araBAD Largest component

» Z only turns on in response to sustained activity in
X.

» Turning off X rapidly turns off Z.
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COcoNuTS

Network motifs

Pure random

feedforward loop HOFworks

Definit
X a m suild theoretically
| Sos
Y 6 8 10 12 14 16 18 20 e dis putions
V4 vu5m Generalized

Random
6 & 10 12 14 16 18 20 Networks
on SAfaur :
P oz Configuration mode
J / \ How to build in practice
arat output Motifs
6 6 10 12 14 16 16 20 R erids are
| ime
araBAD Largest componer

» Z only turns on in response to sustained activity in
X.

» Turning off X rapidly turns off Z.
» Analogy to elevator doors.
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Network motifs

single input module (SIM)

» Master switch.
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Network motifs g

Pure random
networks

dense overlapping regulons (DOR) ‘L B8

22
Xy Xo X R ¢

1 2 3 n Generalized
Random
Networks

H 0 build in pi
Motis

R om frie

Zy 2, 23 Zy..Zn

rpoS
ada
oxyR

?

crp

\ﬁs

ihf
Ip
hn:
rcsA
nhaR

References

alkA
katG
dps
osmC
nhaA
proP

ftsQAZ

The O]
ﬁ UNIVERSITY |9|
2l VERMONT |0

D> 44 0f 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Network motifs coronts
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networks
Definitions
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» Note: selection of motifs to test is reasonable but 1o
nevertheless ad-hoc.
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| Network motifs COCONUTS -

Pure random

Generalized

» Note: selection of motifs to test is reasonable but {1100
nevertheless ad-hoc. ¢

» For more, see work carried out by Wiggins et al. at
Columbia.

onfiguration model
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- Outline

Generalized Random Networks

Random friends are strange

COcoNuTS =

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
Ho

o build in practice
Motifs
Random friends are

UN‘IVERSIFY I |
n& o VERMONT

DA 46 of 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

' The edge-degree distribution: B
| » The degree distribution P, is fundamental for our . :
description of many complex networks At

Definitions
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 The edge-degree distribution: B
» The degree distribution P, is fundamental for our . :
description of many complex networks Aetwoe 10

Definitions

» Again: P, is the degree of randomly chosen node.

suild theoretically

Degree distributions
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Random
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- The edge-degree distribution:

» The degree distribution P, is fundamental for our
description of many complex networks

» Again: P, is the degree of randomly chosen node.

» A second very important distribution arises from

choosing randomly on edges rather than on nodes.
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- The edge-degree distribution:

| » The degree distribution P, is fundamental for our
description of many complex networks

» Again: P, is the degree of randomly chosen node.

» A second very important distribution arises from
choosing randomly on edges rather than on nodes.

» Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.
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The edge-'de'gre.e distribution:

>

>

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):
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The edge-'de'gre.e distribution:

>

>

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

kP,

S

Normalized form:

Q=
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The edge-'de'gre.e distribution:

>

>

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

ot e
RS KT R

Normalized form:
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The edge-'de'gre.e distribution:

>

>

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
e kP, kP,

ok E R

Big deal: Rich-get-richer mechanism is built into this
selection process.
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7, P, =2/7,Py=1/7,
P
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» Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7, P, =2/7,Py=1/7,
P

» Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,
Qs = 3/16, Qs = 6/16.
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» Probability of randomly

selecting a node of degree k
by choosing from nodes:

P =3/7 P, =2 /7P =17
D — v

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs = 3/16, Qs = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.
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3 ‘The edge-degféé distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has %
friends.
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The edge—'de'gre.e distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has %
friends.

» Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.
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 The edge—'de'gre.e distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has %
friends.

» Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

(k+1)Pp,q

=
TR R
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 The edge—'de'gre.e distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has %
friends.

» Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

Bl (k+1)Pp,q 2| (k+1)Pp 1
PR S (k)
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The edge-'de'gre.e distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has k&
friends.

» Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

B (k+1)Pp,q 2 (k+1)Pp 1
PR S (k)

» Equivalent to friend having degree k + 1.
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COcoNuTS

The edge-'delgree distribution:

Pure random

» For random networks, @, is also the probability HERHEaE
that a friend (neighbor) of a random node has % oy e
friends. i

» Useful variant on Q,: Generalies

Networks
Configuration mode

R, = probability that a friend of a random node
has k other friends.

B (k+1)Pp,q 2 (k+1)Pp 1
PR S (k)

» Equivalent to friend having degree k + 1.

» Natural question: what's the expected number of
other friends that one friend has?
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- The edge-degree distribution:
> Given R, is the probability that a friend has & other

Pure random
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A Some visual examples
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COcoNuTS

- The edge-degree distribution:
> Given R, is the probability that a friend has & other

Pure random

friends, then the average number of friends' other networks
friends is i i
= . kE+1)P
<k>R:ZkRk:Zk£_i%_k.ﬂ_ i
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 The edge-degree distribution:
‘ > Given R, is the probability that a friend has & other

friends, then the average number of friends’ other b T
friends IS Definitions

. N (k+ 1 P

i Z kR Z A 91 o e
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COcoNuTS

 The edge—'de'gré.e distribution:

» Given R, is the probability that a friend has k other - A
friends, then the average number of friends' other At
friends is i

L Z kR, = Z k_(f‘:_L)_.ﬁtl
k=0 k=0 <k>

Generalized
Random
Networks

1 o0
Zk: (k+1)Py.;

=1
=%I;«k+1>2—<k+1>>ml

(where we have sneakily matched up indices)

e O
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

S 50 of 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- The edge-degree distribution: B

| » Given R, is the probability that a friend has k other - A
friends, then the average number of friends' other ngtrvcvgifs i
friends is it

) ZkRk i Zk(k+ 1) Py q
k=0 k=0 (k)

Generalized
Random
Networks

1 Z k(k+1)P,,,
k=1
e 2
o <k> kz::l((k‘—’—l) (k+1)) Pk+1
(where we have sneakily matched up indices)
o s (72 —4)P; (usingj=k+1)
(k) <=
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- The edge-degree distribution: B

| » Given R, is the probability that a friend has k other - A
friends, then the average number of friends' other ngtrvcvgifs i
friends is it

e Ly Rl
k=0 k=0 <k> Generalized

Random
Networks

1 > e
Z k(k+1) Py g

k=1

b 5

=7 k; (k+1)2—(k+1)) Py.q
(where we have sneakily matched up indices)

= s (32 —Jj)P; (usingj=k+1)

(k) 55
I ((k2) — (k) e
(k) Ao B
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The edgé-de;gfé.e distribution:

» Note: our result, (k) , = ((k%) — (k)), is true for
all random networks, independent of degree
distribution.
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j ‘The edge-degféé distribution:

» Note: our result, (k) . = ((k%) — (k)), is true for

)
all random networks, independent of degree
distribution.

» For standard random networks, recall

(k2) = (k)? + (k).
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' The edge-degree distribution:

» Note: our result, (k) . = ((k%) — (k)), is true for
all random networks, independent of degree
distribution.

» For standard random networks, recall
(k?) = (k) + (k).

» Therefore:

COcoNuTS

Pure random ¥
networks

Defil
How

Degree

distributions

Generalized
Random
Nétworks

e O
ﬁ UNIVERSITY |9|
<8l ¥ VERMONT 10Ol

D 510f 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

' The edge-degree distribution:

» Note: our result, (k) . = ((k%) — (k)), is true for
all random networks, independent of degree
distribution.

» For standard random networks, recall
(k?) = (k) + (k).

» Therefore:
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 The edge—'de'gre.e distribution:

» Note: our result, (k) . = 7 >(</-c2> (k)), is true for

all random networks, independent of degree
distribution.

» For standard random networks, recall
(k?) = (k) + (k).

» Therefore:

» Again, neatness of results is a special property of
the Poisson distribution.
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The edge-'delgre.e distribution:

>

Note: our result, (k) . = ((k*) — (k)), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall

(k2) = (k)? + (k).

Therefore:
1
(L = 0] ((k)? + (k) — (k) = (k)
Again, neatness of results is a special property of

the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...
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The edge-degree distribution: i
In fact, R, is rather special for pure random
networks ... o L
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3 ‘The edge-degféé distribution:

» In fact, R, is rather special for pure random

networks ...
» Substituting

into

B
ey
(k+1)Pp iy
R s
mE
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; ‘The edge-'de'gré.e distribution:

» In fact, R, is rather special for pure random

networks ...
» Substituting

Pk: =
into
Rk} -
we have
1 (k+1)
R, = XD

& (k+1)!°
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The edge-degree distribution:
» In fact, R, is rather special for pure random
networks ...

» Substituting

R
28! o (k)
into (k4 1)P
=+ k+1
JB S A T
’ (k)
we have
Bi= (k+ 1> <k>(k+1)e*<k> o M <k>(k+/{) —(k)

&) (k+1)! K Uk
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- The edge-degree distribution: B
» In fact, R, is rather special for pure random i
networks ... et

» Substituting

(fof e
P, = (k)
k' Generalized
e R
Rk L (k + I)Pk:+1 Configura ::H nodel
we have
References
i R D B 5 ety R
; )y (k+1) (Y (kTR S <
1
k K‘ .,/,‘ ‘\)
- (B} s iy
k!
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- The edge-degree distribution: B
» In fact, R, is rather special for pure random i
networks ... et

» Substituting

(fof e
P, = (k)
k!
Generalized
e R
Rk L (k + I)Pk:+1 Configura ::H nodel
we have
References
i R D B 5 ety R
; )y (k+1) (Y (kTR S <
1“{
—%—<’€>:Pk.
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- The edge-degree distribution:

» In fact, R, is rather special for pure random
networks ...

» Substituting

P </;;V>'k —(k)
into (k4 1)P
=+ k+1
R, = ——FF—=
(k)
we have
R (k?<—]:>1> <(Z>(k;;:6<k> i &ﬁm@%M
+1)! !
)t
e (k) — P

> #samesies.
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. Reason #1:
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Reason #1;

Two reasons why this matters

» Average # friends of friends per node is

<k2> 7

gL

(k) x (k) r
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- Two reasons why this matters
Reason #1:
» Average # friends of friends per node is

(ea) = (B) x () g = (B) =

(6 — (k)

R < R
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 Two reasons why this matters
Reason #1:

» Average # friends of friends per node is

(ko) = (k) x (k) g = (k) -~ ((k*) — (k)

R < R
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- Two reasons why this matters

» Average # friends of friends per node is

(a) = () x (k) = <k>z,f7> ((B2) — (k) = (k2) — (k).

> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

COcoNuTS

Pure random: ¢ #*
networks
Definitions

Generalized
Random
Nétworks

References
P
S:: )
) o

y |\

)
,;"m,_j‘

=

e o
ﬁ UNIVERSITY |Q|
sl ¥ VERMONT IOl

D> 53 0f 69



http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Two reasons why this matters

» Average # friends of friends per node is

(a) = () x (k) = <k>z,f7> ((B2) — (k) = (k2) — (k).

> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
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“ Two reasons why this matters

» Average # friends of friends per node is

(a) = () x (k) = <k>% ((B2) — (k) = (k2) — (k).

> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
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“ Two reasons why this matters

» Average # friends of friends per node is

(a) = () x (k) = <k>% ((B2) — (k) = (k2) — (k).

> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... % %!
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“ Two reasons why this matters

» Average # friends of friends per node is

(a) = () x (k) = <k>% ((B2) — (k) = (k2) — (k).

> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... % %!

4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters
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- Two reasons why this matters

More on peculiarity #3:
» A node’s average # of friends: (k)

» Friend's average # of friends: <<’jj>>

e 7 R
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 Two reasons why this matters

More on peculiarity #3:
» A node’s average # of friends: (k)

» Friend's average # of friends: <<’jj>>
» Comparison:
e k>
() _ gy )

3o SN b
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 Two reasons why this matters

More on peculiarity #3:
» A node’s average # of friends: (k)

» Friend's average # of friends: <<’jj>>

» Comparison:

ol
Tl e

3o SN b
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- Two reasons why this matters

More on peculiarity #3:
» A node’s average # of friends: (k)

» Friend's average # of friends: <<’jj>>

» Comparison:
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networks
» Anode’s average # of friends: (k)
» Friend's average # of friends: <<’f>> TEE
» Comparison: Generalzed
Nétworks
() _ o ) -

i e i b
= W= O =0 (1 ) 2@

» So only if everyone has the same degree

(variance= ¢2 = 0) can a node be the same as its
friends.
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» A node’s average # of friends: (k)

» Friend's average # of friends: (£

| 2 Comparison' Generalized
¢ Random
Networks
(k%) (k%)

- (R o
o = Wi = O = (14 ) = 0 2

» So only if everyone has the same degree
(variance= o2 = 0) can a node be the same as its

friends.

» Intuition: for random networks, the more SL« j
connected a node, the more likely it is to be R
chosen as a friend. mo o
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Eom and Jo,

ur friends really are
» Go on, hurt me: Friends have more coauthors,
citations, and publications.
» Other horrific studies: your connections on

Twitter have more followers than you, your sexual

partners more partners than you, ...

» The hope: Maybe they have more enemies and
diseases too.

'Some press here (4 [MIT Tech Review].

Nature Scientific Reports, 4, 4603, 2014, "]
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 Two reasons why this matters

(Big) Reason #2:

» (k)R is key to understanding how well random
networks are connected together.
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“ Two reasons why this matters

» (k)R is key to understanding how well random
networks are connected together.

» e.g., we'd like to know what's the size of the largest
component within a network.
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(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.
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(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.
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(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.

Note: Component = Cluster
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Structure of random networks

» A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.
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Structure of random networks

» A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.

» All of this is the same as requiring (k) > 1.
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 Structure of random networks

» A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.

» All of this is the same as requiring (k) > 1.

» Giant component condition (or percolation
condition):
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- Structure of random networks S

Pure random
networks

» A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge. Degre distrbutons

» Equivalently, expect exponential growth in node Semsialac
number as we move out from a random node. Newioths |

» All of this is the same as requiring (k) > 1.

» Giant component condition (or percolation
condition):

(k?) — (k)
(k)

» Again, see that the second moment is an essential
part of the story.

(k)p = > 1

The O
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

D> 60 of 69


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

 Structure of random networks

Pure random
networks

» A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge. Degre distrbutons

» Equivalently, expect exponential growth in node Semsialac
number as we move out from a random node. Newioths |

» All of this is the same as requiring (k) > 1.

» Giant component condition (or percolation
condition):

(k?) — (k)
(k)
» Again, see that the second moment is an essential
part of the story.
: '('?jvwnksrrv |8|
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> Recall (k2) = (k)2 + (k).
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> Recall (k2) = (k)2 + (k).
» Determine condition for giant component:
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» Recall (k2) = (k)2 + (k).
» Determine condition for giant component:

» Therefore when (k) > 1, standard random
networks have a giant component.
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» Recall (k2) = (k)2 + (k).
» Determine condition for giant component:

» Therefore when (k) > 1, standard random
networks have a giant component.

» When (k) < 1, all components are finite.
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» Recall (k2) = (k)2 + (k).
» Determine condition for giant component:

» Therefore when (k) > 1, standard random
networks have a giant component.

» When (k) < 1, all components are finite.

» Fine example of a continuous phase transition (4.,
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Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (4,

We say (k) = 1 marks the critical point of the
system.
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. Random networks with skewed P,

R.e.g.if P, =ckrMwith 2 < v < 3, k= 1, then

e o> 2n
k=1
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e o> 2n
k=1
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» So giant component always exists for these kinds
of networks.

» Cutoff scaling is k~3: if v > 3 then we have to look
harder at (k) .
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» So giant component always exists for these kinds
of networks.

» Cutoff scaling is k~3: if v > 3 then we have to look
harder at (k) .
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. And how big is the largest component?

» Define S, as the size of the largest component.
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Giant component

And how big is the largest component?

» Define S, as the size of the largest component.

» Consider an infinite ER random network with average
degree (k).
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And how big is the largest component?

» Define S; as the size of the largest component.

» Consider an infinite ER random network with average
degree (k).

» Let's find S; with a back-of-the-envelope argument.
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» Define S; as the size of the largest component. S

» Consider an infinite ER random network with average
degree (k).
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» Let's find S; with a back-of-the-envelope argument. Raluain

» Define § as the probability that a randomly chosen
node does not belong to the largest component.
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» Define S; as the size of the largest component. S

» Consider an infinite ER random network with average
degree (k).

Generalized

» Let's find S; with a back-of-the-envelope argument. Raluain

Networks

» Define § as the probability that a randomly chosen
node does not belong to the largest component.

» Simple connection: 6 =1 — S;.
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» Define S; as the size of the largest component. Defntions

» Consider an infinite ER random network with average
degree (k).

Generalized

» Let's find S; with a back-of-the-envelope argument. Raluain

Networks

» Define § as the probability that a randomly chosen
node does not belong to the largest component.

» Simple connection: § =1 —S;.

» Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.
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~ Giant compdnent

» Define S, as the size of the largest component.

» Consider an infinite ER random network with average

degree (k).

> Let's find S, with a back-of-the-envelope argument.

» Define § as the probability that a randomly chosen
node does not belong to the largest component.

» Simple connection: 6 =1—5;.

» Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

» So

5=3 Pt
k=0
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» Define S, as the size of the largest component. Detitns

» Consider an infinite ER random network with average
degree (k).

Generalized
Random
Networks

> Let's find S, with a back-of-the-envelope argument.

» Define § as the probability that a randomly chosen
node does not belong to the largest component.

» Simple connection: 6 =1—5;.

» Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

» So
oo
d— N B.o%
k=0
me e (9]
» Substitute in Poisson distribution... 2’%’3&\‘}?&'} |6|
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» Carrying on: networks
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2. ((k)6)E
0 $2 (899
k=0

_ (k)RS _ —(k)(1-6),

» Now substitute in § =1 — S; and rearrange to
obtain:

Sl = ]. i €7<k>sl.
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» We can figure out some limits and details for
Sl s ]_ —_ 6*<k>sl‘
» First, we can write (k) in terms of S;:
1 1
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» We can figure out some limits and details for
Sl = ]. == 6;<k>sl.

» First, we can write (k) in terms of S;:
1 1

» As (k) —» 0, 5; — 0.
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» We can figure out some limits and details for
S]. = ]_ — 67<k>sl‘
» First, we can write (k) in terms of S;:
1 1

» As (k) —» 0, 5; — 0.
» As (k) — 00, S; — 1.
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» We can figure out some limits and details for
S]_ = ]. == €7<k>sl.

» First, we can write (k) in terms of S;:

Degree distributions

Generalized
Random
<k> 1 |n 1 !\Ilslyvtjrks “k
Sl e :

» As (k) — 0, S; — 0.
» As (k) — 00, S; — 1.
» Notice that at (k) = 1, the critical point, S; = 0.
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» We can figure out some limits and details for
S]_ = ]. == 67<k>sl.

» First, we can write (k) in terms of S;:

Generalized
Random
Networks
<k’> o i In 1 Configuration mode
Sl e Sl o ) practice

» As (k) — 0, S; — 0.

» As (k) — 00, S; — 1.

» Notice that at (k) = 1, the critical point, S; = 0.
» Only solvable for §; > 0 when (k) > 1.
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» We can figure out some limits and details for i adentc 1
Sl o= ]_ — 67<k>sl‘ Sorr nple:

» First, we can write (k) in terms of S;:

Degree distributions

Generalized
Random
Networks
<k> i i |n 1 Configuration mode
e S

As (kY —» 0,5, — 0.

As (k) — o0, S; — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. !’
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Turns out we were lucky...
» Our dirty trick only works for ER random networks.
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» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.
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» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

» But we know our friends are different from us...
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» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

» But we know our friends are different from us...

» Works for ER random networks because
(k) = (k) g-
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» Our dirty trick only works for ER random networks. ..

» The problem: We assumed that neighbors have
the same probability § of belonging to the largest Degree isrbytions
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» But we know our friends are different from us...

» Works for ER random networks because
(k) = (k) r-

» We need a separate probability 6" for the chance
that an edge leads to the giant (infinite)
component.
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» The problem: We assumed that neighbors have
the same probability § of belonging to the largest
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» But we know our friends are different from us... =

» Works for ER random networks because
(k) = (k) r-

» We need a separate probability 6" for the chance
that an edge leads to the giant (infinite)
component.

» We can sort many things out with sensible
probabilistic arguments...
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» Our dirty trick only works for ER random networks. ..

» The problem: We assumed that neighbors have
the same probability § of belonging to the largest
Component, Generalized

Random

ibutions
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» But we know our friends are different from us... =

» Works for ER random networks because
(k) = (k) r-

» We need a separate probability 6" for the chance
that an edge leads to the giant (infinite)
component.

» We can sort many things out with sensible
probabilistic arguments...

» More detailed investigations will profit from a spot
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