Random Networks Nutshell

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS =

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest component

These slides are brought to you by:

COCONUTS

Pure random networks

How to build theoretically Some visual examples

Clustering Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Pure random networks

Definitions How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs Random friends are strange Largest component

References

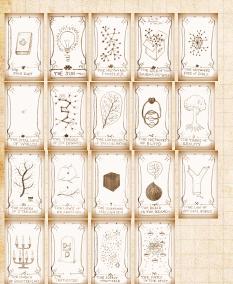
Pure random networks

How to build theoretically

Generalized Networks

How to build in practice Random friends are

COcoNuTS



Pure random networks

How to build theoretically Some visual examples

Clustering

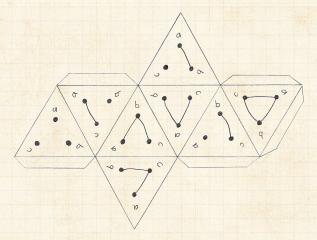
Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

Random network generator for N=3:



- ▶ Get your own exciting generator here .
- \blacktriangleright As $N \nearrow$, polyhedral die rapidly becomes a ball...

COcoNuTS -

Pure random networks

Demillions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest componen

Pure random networks Definitions

Pure random networks

Definitions

How to build theoretically Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Pure random networks

Definitions

How to build theoretically Clustering

Degree distributions Generalized

Networks How to build in practice Motifs

Random friends are

- Consider set of all networks with N labelled nodes and m edges.

Pure random networks

Definitions

How to build theoretically Clustering

Generalized

Networks How to build in practice

Random friends are

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.

Pure random

Definitions

How to build theoretically

Generalized

Networks How to build in practice

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- ▶ To be clear: each network is equally probable.

Pure random

Definitions

How to build theoretically

Generalized

Networks

How to build in practice

Random friends are

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- ▶ To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.

Pure random Definitions

How to build theoretically

Generalized Networks

How to build in practice

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- ▶ To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

Pure random Definitions

Generalized

Networks

Random networks—basic features:

Number of possible edges:

$$0 \leq m \leq {N \choose 2} = \frac{N(N-1)}{2}$$

- Limit of m=0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}$$

- ▶ Given m edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.
- ▶ Crazy factorial explosion for $1 \ll m \ll \binom{N}{2}$.
- Real worth links are usually costly so real networks are almost always sparse.

COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

andom friends are trange

Largest component

Random networks—basic features:

Number of possible edges:

$$0 \le m \le {N \choose 2} = \frac{N(N-1)}{2}$$

- \blacktriangleright Limit of m=0: empty graph.

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}.$$

COCONUTS

Pure random networks

Definitions

How to build theoretically Clustering Degree distributions

Generalized Networks

How to build in practice Random friends are

Random networks—basic features:

Number of possible edges:

$$0 \leq m \leq {N \choose 2} = \frac{N(N-1)}{2}$$

- \blacktriangleright Limit of m=0: empty graph.
- ▶ Limit of $m = \binom{N}{2}$: complete or fully-connected graph.

COCONUTS

Pure random networks

Definitions

How to build theoretically Clustering Degree distributions

Generalized Networks

How to build in practice

Random friends are

$$0 \le m \le {N \choose 2} = \frac{N(N-1)}{2}$$

- ▶ Limit of m = 0: empty graph.
- ▶ Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- ▶ Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}.$$

COCONUTS

Pure random networks

Definitions

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

$$0 \leq m \leq {N \choose 2} = \frac{N(N-1)}{2}$$

- \blacktriangleright Limit of m=0: empty graph.
- ▶ Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- ▶ Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}.$$

- Given m edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.

COCONUTS

Pure random networks

Definitions

How to build theoretically Clustering

Generalized Networks

How to build in practice Random friends are

$$0 \leq m \leq {N \choose 2} = \frac{N(N-1)}{2}$$

- ▶ Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}.$$

- ▶ Given m edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.
- ▶ Crazy factorial explosion for $1 \ll m \ll \binom{N}{2}$.
- Real world links are usually costly so real networks are almost always sparse.

COCONUTS

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

Strange Largest componen

$$0 \leq m \leq {N \choose 2} = \frac{N(N-1)}{2}$$

- ▶ Limit of m = 0: empty graph.
- ▶ Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}.$$

- ▶ Given m edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.
- ▶ Crazy factorial explosion for $1 \ll m \ll \binom{N}{2}$.
- ► Real world: links are usually costly so real networks are almost always sparse.

COcoNuTS

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

Pure random networks

How to build theoretically

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

- ightharpoonup Given N and m.

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

- ightharpoonup Given N and m.
- ▶ Two probablistic methods (we'll see a third later

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized

- Networks How to build in practice
- Random friends are

- ightharpoonup Given N and m.
- ▶ Two probablistic methods (we'll see a third later on)

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized

Networks

- How to build in practice
- Random friends are

- \blacktriangleright Given N and m.
- ▶ Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

Pure random networks

How to build theoretically

Clustering

Generalized

Networks How to build in practice

Random friends are

How to build standard random networks:

- ightharpoonup Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
- 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - 1 and 2 are effectively equivalent for large N.

Pure random networks
Definitions
How to build theoretically

Some visual examples

Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Deferences

- ightharpoonup Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
- 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - ▶ 1 and 2 are effectively equivalent for large N.

Pure random networks
Definitions
How to build theoretically

Clustering

Generalized

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

How to build standard random networks:

- ightharpoonup Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
- 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - ▶ Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - ▶ 1 and 2 are effectively equivalent for large N.

Pure random networks
Definitions
How to build theoretically

Some visual examples Clustering

Degree distribution

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends a strange

Largest component

How to build standard random networks:

- ightharpoonup Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
- 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - ▶ Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).

Pure random networks
Definitions
How to build theoretically

Some visual examples

Clustering Degree distribution

Generalized

Networks
Configuration model
How to build in practice
Motifs

Random friends at strange

Largest component

How to build standard random networks:

- \triangleright Given N and m.
- ▶ Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
- 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and $j, i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - ▶ 1 and 2 are effectively equivalent for large N.

Pure random How to build theoretically

Generalized

Networks

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p {N \choose 2} = p \frac{1}{2} N(N-1)$$

➤ So the expected or average degree is

$$\langle k \rangle = rac{2 \langle m \rangle}{N}$$

- ▶ Which is what it should be...
- If we keep (k) constant then $p \propto 1/N \to 0$ as $N \to \infty$

COcoNuTS -

Pure random networks

Definitions

How to build theoretically

Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

$$\langle k \rangle = rac{2 \langle m \rangle}{N}$$

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized

Random Networks

How to build in practice Motifs Random friends are

► For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

▶ So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N}p\frac{1}{2}N(N+1) = \frac{2}{N}p\frac{1}{2}\mathcal{N}(N-1) = p(N-1)$$

COCONUTS

Pure random networks

How to build theoretically

Clustering

Generalized Networks

How to build in practice

Random friends are

For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{N} p \frac{1}{2} N(N-1) = p(N-1).$$

- Which is what it should be...
- If we keep $\langle k \rangle$ constant then $p \propto 1/N \to 0$ as

Pure random networks

Definitions

How to build theoretically

Some visual examples
Clustering

Degree distribution

Generalized Random Networks

How to build in practice Motifs Random friends are

strange

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{\cancel{2}}{\cancel{\mathcal{M}}}p\frac{1}{\cancel{2}}\cancel{\mathcal{M}}(N-1)$$

- Which is what it should be...
- ▶ If we keep $\langle k \rangle$ constant then $p \propto 1/N \rightarrow 0$ as

COcoNuTS -

Pure random networks

Definitions

How to build theoretically

Clustering

Degree distri

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

Largest component

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{\mathcal{M}} p \frac{1}{2} \mathcal{N}(N-1) = p(N-1).$$

- Which is what it should be...
- If we keep $\langle k \rangle$ constant then $p \propto 1/N \to 0$ as

Pure random networks

Definitions

How to build theoretically

Clustering Degree distrib

Degree distril

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{\mathcal{M}} p \frac{1}{2} \mathcal{N}(N-1) = p(N-1).$$

- Which is what it should be...
- If we keep $\langle k \rangle$ constant then $p \propto 1/N \rightarrow 0$ as

Pure random networks

Definitions

How to build theoretically

Clustering Degree distril

Degree distri

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Largest component

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p{N \choose 2} = p\frac{1}{2}N(N-1)$$

▶ So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{\mathcal{M}} p \frac{1}{2} \mathcal{N}(N-1) = p(N-1).$$

- Which is what it should be...
- ▶ If we keep $\langle k \rangle$ constant then $p \propto 1/N \rightarrow 0$ as $N \to \infty$.

Pure random networks

How to build theoretically

Generalized Networks

How to build in practice

Random friends are

Pure random networks

Some visual examples

Pure random networks

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Random networks: examples

Next slides:

Example realizations of random networks

- N = 500
 - ▶ Vary m, the number of edges from 100 to 1000.
- Average degree (k) runs from 0.4 to 4
- ► Look at full network plus the largest component

COcoNuTS =

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering Degree distributions

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

strange

Largest componen

Example realizations of random networks

- N = 500

Pure random networks

Some visual examples

Degree distributions

Generalized

Networks How to build in practice

Random friends are

Example realizations of random networks

- N = 500
- \triangleright Vary m, the number of edges from 100 to 1000.

Pure random networks

Some visual examples

Generalized

Networks How to build in practice

Random friends are

Example realizations of random networks

- N = 500
- \triangleright Vary m, the number of edges from 100 to 1000.
- ▶ Average degree $\langle k \rangle$ runs from 0.4 to 4.

Pure random networks

Some visual examples

Generalized Networks

Random friends are

Example realizations of random networks

- N = 500
- \blacktriangleright Vary m, the number of edges from 100 to 1000.
- ▶ Average degree $\langle k \rangle$ runs from 0.4 to 4.
- ▶ Look at full network plus the largest component.

Pure random networks

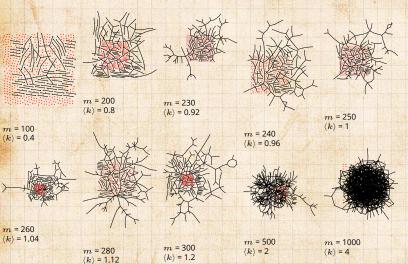
How to build theoretically Some visual examples

Generalized

Networks

Random networks: examples for N=500

COcoNuTS



Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

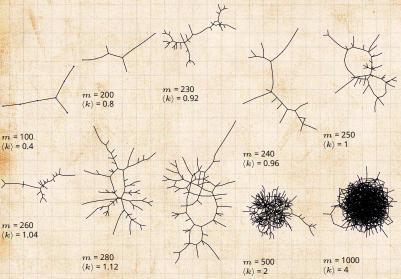
Configuration model

How to build in practice Motifs

Random friends are

Random networks: largest components

COcoNuTS



m = 300

 $\langle k \rangle = 1.2$

Pure random networks

How to build theoretically Some visual examples Clustering

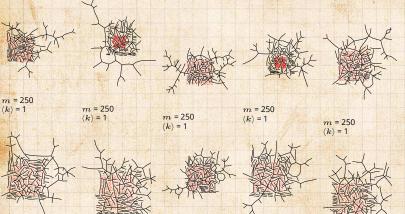
Degree distributions

Generalized Random Networks

How to build in practice

Motifs Random friends are

Random networks: examples for N=500



m = 250

 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250

m = 250

 $\langle k \rangle = 1$

 $\langle k \rangle = 1$

Pure random networks

How to build theoretically

Some visual examples Clustering

Degree distributions

Generalized Random Networks

How to build in practice

Motifs Random friends are

Random networks: largest components

Pure random networks

COCONUTS

How to build theoretically Some visual examples

Clustering

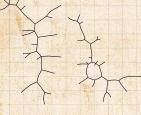
Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Motifs Random friends are

References



m = 250

 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

$$m = 250$$
 $\langle k \rangle = 1$

 $\langle k \rangle = 1$

$$m$$
 = 250 $\langle k \rangle$ = 1

m = 250

 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

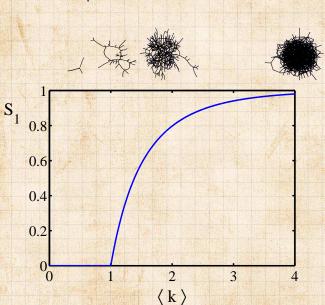
m = 250 $\langle k \rangle = 1$

m = 250/1/ - 1

m = 250

 $\langle k \rangle = 1$

Giant component



COcoNuTS

Pure random networks

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

Pure random networks

Clustering

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

▶ For construction method 1, what is the clustering coefficient for a finite network?

COCONUTS

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

- For construction method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient: [5]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$

COcoNuTS

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

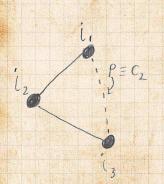
Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

- For construction method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient: [5]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$



ightharpoonup Recall: C_2 = probability that two friends of a node are also friends.

COCONUTS

Pure random

How to build theoretically

Clustering

Degree distributions

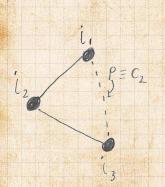
Generalized Networks

How to build in practice

Random friends are

- For construction method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient: [5]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$



- ightharpoonup Recall: C_2 = probability that two friends of a node are also friends.
- ightharpoonup Or: C_2 = probability that a triple is part of a triangle.

COCONUTS

Pure random

How to build theoretically

Clustering

Degree distributions

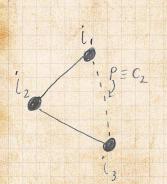
Generalized Networks

How to build in practice

Random friends are

- For construction method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient: [5]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$



- ▶ Recall: C₂ = probability that two friends of a node are also friends.
- ➤ Or: C₂ = probability that a triple is part of a triangle.
- For standard random networks, we have simply that

$$C_2 = p$$
.

COcoNuTS

Pure random networks Definitions

How to build theoretically Some visual examples

Clustering

Degree distr

Generalized Random Networks

Networks
Configuration model
How to build in practice

Random friends are strange

Largest componen

So for large random networks $(N \to \infty)$, clustering drops to zero. COCONUTS

Pure random networks

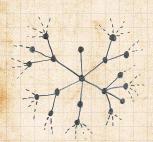
How to build theoretically

Clustering Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are



- So for large random networks $(N \to \infty)$, clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks

COCONUTS

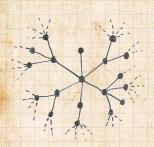
Pure random networks

How to build theoretically

Clustering

Generalized Networks

How to build in practice Random friends are



- So for large random networks $(N \to \infty)$, clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks
- ► No small loops.

COcoNuTS *

Pure random networks

How to build theoretically Some visual examples

Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

Pure random networks

Degree distributions

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Recall P_k = probability that a randomly selected node has degree k.

Pure random networks

How to build theoretically Clustering

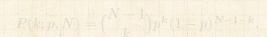
Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.



Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

- Recall P_k = probability that a randomly selected node has degree k.
- ► Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N-1 choose k' ways the node can be connected to k of the other N-1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1-p).
- Therefore have a prhomial distri

Pure random networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized Random

- Networks
 Configuration model
 How to build in practice
 Motifs
 Random friends are
 - strange Largest component

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are N-1 choose k'ways the node can be connected to k of the other N-1 nodes.
- \triangleright Each connection occurs with probability p, each non-connection with probability (1-p).

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

How to build in practice Random friends are

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are N-1 choose k'ways the node can be connected to k of the other N-1 nodes.
- ▶ Each connection occurs with probability p, each non-connection with probability (1-p).
- ▶ Therefore have a binomial distribution <a>C:

$$P(k;p,N) = {N-1 \choose k} p^k (1-p)^{N-1-k}.$$

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

How to build in practice Random friends are

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \to \frac{\langle k \rangle}{k!}$$

COCONUTS

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Networks

- How to build in practice Motifs
- Random friends are

- Our degree distribution: $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$.
- \blacktriangleright What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- ▶ But we want to keep $\langle k \rangle$ fixed..
- So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = |p(N-1)| = \text{constant.}$

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \rightarrow 0$$

This is a graph distributible with mean $\langle k \rangle$.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random

- Networks
 Configuration model
 How to build in practice
 Motifs
 - Random friends are strange
- Largest component

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}.$
- ▶ What happens as $N \to \infty$?

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \to$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

- Our degree distribution: $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$.
- ▶ What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- ▶ But we want to keep $\langle k \rangle$ fixed..
- So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = \langle p(N-1) \rangle = \text{constant.}$

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \rightarrow$$

This is a $\{a, b\}$ to $\{a, b\}$ with mean $\{k\}$.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}.$
- ▶ What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- \blacktriangleright If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k} \rightarrow$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

- How to build in practice
- Random friends are

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}.$
- ▶ What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- \blacktriangleright If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- ▶ But we want to keep $\langle k \rangle$ fixed...

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \to 0$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

- Our degree distribution: $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$.
- ▶ What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- ▶ If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- ▶ But we want to keep $\langle k \rangle$ fixed...
- ▶ So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = p(N-1)$ = constant.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k} \to \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

This is a property distribution \mathbb{Z} with mean $\langle k \rangle$.

Pure random networks

Definitions

How to build theoretically
Some visual examples

Degree distributions

Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

- Our degree distribution: $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$
- ▶ What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- ▶ If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- ▶ But we want to keep $\langle k \rangle$ fixed...
- ▶ So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = p(N-1)$ = constant.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k} \to \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

▶ This is a Poisson distribution \square with mean $\langle k \rangle$.

Pure random networks

Definitions
How to build theoretically
Some visual examples

Degree distributions

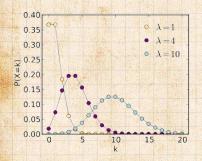
Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Poisson basics:

$$\boxed{P(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}}$$



- $\lambda > 0$
- k = 0, 1, 2, 3, ...
- Classic use: probability that an event occurs k times in a given time period, given an average rate of occurrence.
- e.g.: phone calls/minute, horse-kick deaths.
- 'Law of small numbers'

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

How to build in practice Random friends are

The variance of degree distributions for random networks turns out to be very important.

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

- ▶ The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Pure random

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice Motifs

- ▶ The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2$$

Pure random How to build theoretically

Clustering Degree distributions

Generalized

Networks How to build in practice

- ▶ The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2$$

Pure random

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

- ► The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k \rangle.$$

Pure random
networks
Definitions
How to build theoretically

Clustering

Degree distributions

Generalized Random

Networks
Configuration model
How to build in practice

Random friends are strange

- ▶ The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k \rangle.$$

▶ So standard deviation σ is equal to $\sqrt{\langle k \rangle}$.

Pure random How to build theoretically

Degree distributions

Generalized Networks

How to build in practice Random friends are

- The variance of degree distributions for random networks turns out to be very important.
- ▶ Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k \rangle.$$

- ▶ So standard deviation σ is equal to $\sqrt{\langle k \rangle}$.
- Note: This is a special property of Poisson distribution and can trip us up...

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are

strange Largest componen

Generalized Random Networks Configuration model

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Random Networks

Configuration model

How to build in practice Motifs

Random friends are

So... standard random networks have a Poisson degree distribution

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized

Networks

Configuration model How to build in practice

Motifs Random friends are

- So... standard random networks have a Poisson degree distribution
- \triangleright Generalize to arbitrary degree distribution P_k .

Pure random networks

How to build theoretically Clustering

Generalized Networks

Configuration model

How to build in practice Motifs

- So... standard random networks have a Poisson degree distribution
- \triangleright Generalize to arbitrary degree distribution P_k .
- ▶ Also known as the configuration model. [5]

Pure random networks

How to build theoretically Clustering

Generalized Networks

Configuration model

How to build in practice

- So... standard random networks have a Poisson degree distribution
- \triangleright Generalize to arbitrary degree distribution P_k .
- ▶ Also known as the configuration model. [5]
- Can generalize construction method from ER random networks.

Pure random

Generalized Networks

Configuration model

- So... standard random networks have a Poisson degree distribution
- ▶ Generalize to arbitrary degree distribution P_k .
- ► Also known as the configuration model. [5]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j$.

Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest component

- So... standard random networks have a Poisson degree distribution
- ▶ Generalize to arbitrary degree distribution P_k .
- ► Also known as the configuration model. [5]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$

But we'll be more interested in

Pure random networks Definitions How to build theoretically

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

- So... standard random networks have a Poisson degree distribution
- ▶ Generalize to arbitrary degree distribution P_k .
- ▶ Also known as the configuration model. [5]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$

- But we'll be more interested in
 - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.

Pure random networks
Definitions
How to build theoretically
Some visual examples

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

- So... standard random networks have a Poisson degree distribution
- ▶ Generalize to arbitrary degree distribution P_k .
- ► Also known as the configuration model. [5]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$

- But we'll be more interested in
 - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
 - 2. Examining mechanisms that lead to networks with certain degree distributions.

Pure random networks
Definitions
How to build theoretically

Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practic
Motifs

Random friends are strange

Example realizations of random networks with power law degree distributions:

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

Configuration model

How to build in practice

Example realizations of random networks with power law degree distributions:

- N = 1000.

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

Configuration model

How to build in practice

Random friends are

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $P_k \propto k^{-\gamma}$ for $k \geq 1$.
- ► Set $P_0 = 0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.9
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice Motifs

trange

5

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $ightharpoonup P_k \propto k^{-\gamma}$ for $k \geq 1$.
- ▶ Set $P_0 = 0$ (no isolated nodes).
- ▶ Vary exponent γ between 2.10 and 2.9
- Again, look at full network plus the largest component.
- ▶ Apart from degree distribution, wiring is random.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random

Networks
Configuration model

How to build in practice Motifs

strange

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $ightharpoonup P_k \propto k^{-\gamma}$ for $k \geq 1$.
- ▶ Set $P_0 = 0$ (no isolated nodes).
- \blacktriangleright Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree dist

Generalized Random Networks

Configuration model

How to build in practice

Random friends are strange

Largest componen

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $ightharpoonup P_k \propto k^{-\gamma} \text{ for } k \geq 1.$
- ▶ Set $P_0 = 0$ (no isolated nodes).
- \blacktriangleright Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

Pure random networks

Definitions

How to build theoreticall Some visual examples Clustering

Degree distr

Generalized Random Networks

Configuration model

How to build in practic Motifs

Random friends are strange

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $ightharpoonup P_k \propto k^{-\gamma} \text{ for } k \geq 1.$
- ▶ Set $P_0 = 0$ (no isolated nodes).
- \blacktriangleright Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- ▶ Apart from degree distribution, wiring is random.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions
Generalized

Random Networks

Configuration model

How to build in practice

Motifs
Random friends are strange

Largest compone

COCONUTS

Random networks: examples for N=1000

How to build in practice

 $\gamma = 2.19$ $\langle k \rangle = 2.986$

 $\gamma = 2.28$ $\langle k \rangle = 2.306$

 $\gamma = 2.37$ $\langle k \rangle = 2.504$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$

Networks Configuration model

Motifs Random friends are

 $\gamma = 2.55$ $\langle k \rangle = 1.712$

 $\gamma = 2.64$ $\langle k \rangle = 1.6$

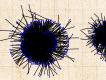
 $\gamma = 2.82$ $\langle k \rangle = 1.386$

 $\gamma = 2.91$ $\langle k \rangle = 1.49$

Random networks: largest components

COCONUTS

Pure random networks How to build theoretically Some visual examples



 $\gamma = 2.19$ $\langle k \rangle = 2.986$

 $\gamma = 2.28$ $\langle k \rangle = 2.306$

 $\gamma = 2.37$ $\langle k \rangle = 2.504$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$

How to build in practice

 $\gamma = 2.64$ $\langle k \rangle = 1.6$

 $\gamma = 2.73$ $\langle k \rangle = 1.862$

 $\gamma = 2.91$ $\langle k \rangle = 1.49$

Outline

Generalized Random Networks

How to build in practice

COCONUTS

Pure random networks How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice

Random friends are

Pure random networks

How to build theoretically Clustering

Degree distributions Generalized

Random Networks

How to build in practice Motifs

- \blacktriangleright Arbitrary degree distribution P_k .
- Create (unconnected) nodes with degrees sampled from P_b.
- ➤ Wire nodes together randomly.
- Create ensemble to test deviations from randomness.

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Degree dis

Generalized Random Networks

Configuration model

How to build in practice

Motifs Random friends are

trange

- \triangleright Arbitrary degree distribution P_k .
- Create (unconnected) nodes with degrees sampled from P_{h} .

Pure random networks

How to build theoretically Clustering

Degree distributions Generalized

Networks

How to build in practice

- \blacktriangleright Arbitrary degree distribution P_k .
- ► Create (unconnected) nodes with degrees sampled from P_k .
- ▶ Wire nodes together randomly.
- Create ensemble to test deviations from randomness

Pure random networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributi

Networks
Configuration model

How to build in practice

Random friends are

Largest component

oforoncos

- \triangleright Arbitrary degree distribution P_k .
- Create (unconnected) nodes with degrees sampled from P_{ν} .
- ▶ Wire nodes together randomly.
- Create ensemble to test deviations from randomness.

Pure random networks

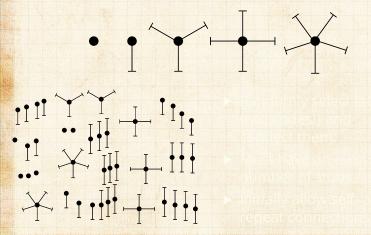
How to build theoretically Clustering

Generalized

Networks

How to build in practice

► Idea: start with a soup of unconnected nodes with stubs (half-edges):



Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering

Degree distributions
Generalized
Random
Networks

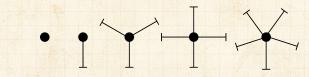
Configuration model

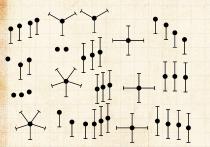
How to build in practice

Random friends are strange

strange Largest component

► Idea: start with a soup of unconnected nodes with stubs (half-edges):





- Randomly select stubs (not nodes!) and connect them.
 - Must have an even number of stubs.
 - Initially allow self- and rebeat connections.

Pure random networks

Definitions

How to build theoretically

Some visual examples

Clustering

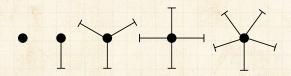
Degree distributions

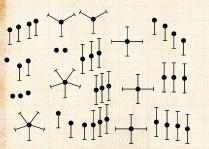
Generalized Random Networks

How to build in practice
Motifs

Random friends are strange

► Idea: start with a soup of unconnected nodes with stubs (half-edges):





- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and connections.

Pure random networks Definitions

Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized Random Networks

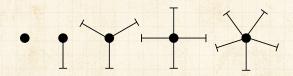
Configuration model

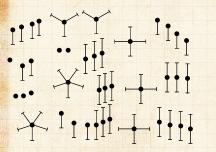
How to build in practice

Motifs

Random friends are strange

► Idea: start with a soup of unconnected nodes with stubs (half-edges):





- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.

Initially allow self- and repeat connections.

Pure random networks

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model

How to build in practice

Motifs

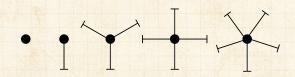
Random friends are strange

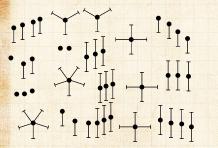
strange Largest component

Building random networks: Stubs

Phase 1:

► Idea: start with a soup of unconnected nodes with stubs (half-edges):





- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

Pure random networks
Definitions
How to build theoretically

Generalized Random Networks

Clustering

Configuration model

How to build in practice

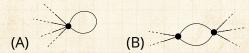
Motifs

Random friends are strange

References

2 9 Q € 34 of 69

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.



- Being careful: we can't change the degree of any node, so we can't simply move links around.
- Simplest solution: randomly rewire two edges at a time

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions
Generalized

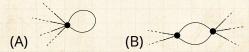
Networks
Configuration model

How to build in practice

Random friends are strange

Largest componen

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.



- ▶ Being careful: we can't change the degree of any node, so we can't simply move links around.

Pure random networks

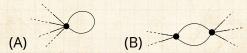
How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.



- ▶ Being careful: we can't change the degree of any node, so we can't simply move links around.
- ➤ Simplest solution: randomly rewire two edges at a time.

Pure random networks

Generalized

How to build theoretically Some visual examples Clustering

Random Networks Configuration model

How to build in practice
Motifs
Random friends are

strange Largest component



- Randomly choose two edges.
 (Or choose problem edge and a random edge)
 - Check to make sure edges are disjoint.

COcoNuTS -

Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

How to build in practice

Random friends are

argest component

- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

COcoNuTS -

Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions
Generalized

Random
Networks
Configuration model

How to build in practice

Random friends are strange



- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- ▶ Node degree:
- ► Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off
 4-cycles, and rotating them.

COcoNuTS -

Pure random networks

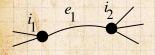
Definitions
How to build theoretically
Some visual examples
Clustering

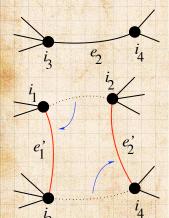
Degree distributions
Generalized

Random Networks Configuration model

How to build in practice

Random friends are strange





- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off
 4-cycles, and rotating them.

COcoNuTS -

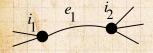
Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering

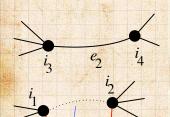
Degree distributions
Generalized

Random Networks Configuration model

How to build in practice Motifs

Random friends are strange Largest component





- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- ▶ Node degrees do not change.
- Works if e_1 is a self-loop or repeated edge.
- Same as finding on/off/on/off
 4-cycles, and rotating them.

COcoNuTS *

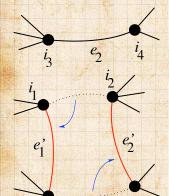
Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Random Networks Configuration model

Generalized

How to build in practice Motifs

Random friends are strange Largest component



- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e_1 is a self-loop or repeated edge.
- ➤ Same as finding on/off/on/off 4-cycles. and rotating them.

COcoNuTS -

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice Motifs

Random friends are strange Largest component

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

COcoNuTS =

Pure random networks

Definition

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

onfiguration model

How to build in practice

Random friends are strange

Largest componen

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- Rule of thumb: # Rewirings ≈ 10 × # edges

Pure random networks Definitions

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model

How to build in practice

Motifs Random friends are

strange
Largest component

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- ▶ Rule of thumb: # Rewirings $\simeq 10 \times \text{# edges}^{[3]}$.

Pure random networks Definitions How to build theoretic

How to build theoreticall Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Problem with only joining up stubs is failure to randomly sample from all possible networks. Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

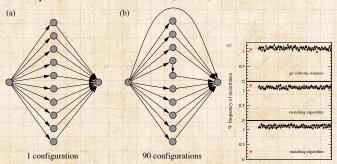
Degree distributions
Generalized

Random Networks

How to build in practice Motifs

Random friends are strange

- Problem with only joining up stubs is failure to randomly sample from all possible networks.
- ► Example from Milo et al. (2003) [3]:



How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random Networks

Configuration model

How to build in practice

Random friends are

Deference

Sampling random networks

▶ What if we have P_k instead of N_k ?

COCONUTS

Pure random networks

How to build theoretically

Clustering Degree distributions Generalized

Random Networks

How to build in practice

Random friends are

Sampling random networks

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.

COCONUTS

Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs
Random friends are

trange argest component

Pure random networks
Definitions
How to build theoretically

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k .

Generalized Random Networks

Configuration model

How to build in practice

Random friends are strange

Defende

Generalized

Networks

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k .
- ▶ Easy to do exactly numerically since *k* is discrete.

How to build in practice

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k .
- ▶ Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Pure random networks
Definitions
How to build theoretical
Some visual examples
Clustering

Random
Networks
Configuration model

Generalized

How to build in practice Motifs Random friends are

strange Largest component

Outline

Generalized Random Networks

Motifs

COCONUTS

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

▶ Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Random Networks

How to build in practice

Motifs Random friends are

- ▶ Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.

How to build theoretically Clustering

Generalized Networks

How to build in practice

Motifs Random friends are

- ▶ Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.

How to build theoretically

Generalized Networks

How to build in practice

Motifs Random friends are

- ► Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).

Definitions

How to build theoretically Some visual examples Clustering

Generalized

Networks
Configuration model
How to build in practice

Motifs
Random friends are

strange

- ► Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.
- ► Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- lacktriangle Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .

Definitions

How to build theoretically
Some visual examples
Clustering

Generalized Random Networks

Configuration model

How to build in practice

Random friends are strange

Network motifs

- ► Idea of motifs [6] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .
- ► Looked for certain subnetworks (motifs) that appeared more or less often than expected

Pure random networks
Definitions
How to build theoretica

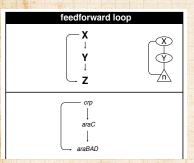
Some visual examples
Clustering
Degree distributions

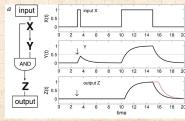
Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Deference





▶ Z only turns on in response to sustained activity in X.

Pure random networks

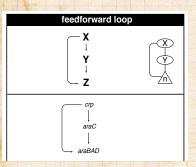
How to build theoretically Clustering

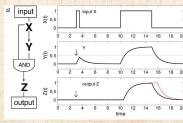
Degree distributions

Generalized Random Networks

How to build in practice

Motifs Random friends are





- ▶ Z only turns on in response to sustained activity in X.
- ightharpoonup Turning off X rapidly turns off Z.

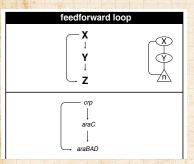
How to build theoretically Clustering

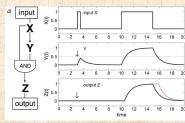
Degree distributions

Generalized Random

Networks How to build in practice

Motifs Random friends are





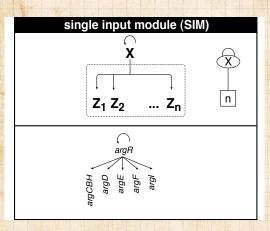
- ▶ Z only turns on in response to sustained activity in X.
- ightharpoonup Turning off X rapidly turns off Z.
- Analogy to elevator doors.

How to build theoretically Clustering Degree distributions

Generalized

Networks How to build in practice

Motifs Random friends are



Master switch.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model

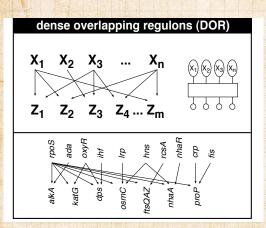
How to build in practice

Motifs

Random friends are strange

Largest component

Network motifs



COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Motifs
Random friends are

Largest component

Note: selection of motifs to test is reasonable but nevertheless ad-hoc.

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

strange Largest component

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- For more, see work carried out by Wiggins *et al.* at Columbia.

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Outline

Definitions
How to build theoretically
Some Visual examples
Christering
Degree distributions

Generalized Random Networks

Configuration model
How to build in gractice
Motifs

Random friends are strange

Largest component

References

COcoNuTS -

Pure random networks

Definitions

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Largest compone

 \blacktriangleright The degree distribution P_k is fundamental for our description of many complex networks

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are strange

The edge-degree distribution:

- The degree distribution P_k is fundamental for our description of many complex networks
- \blacktriangleright Again: P_k is the degree of randomly chosen node.

COcoNuTS -

Pure random networks

Definitions

How to build theoretical

Clustering

Degree distr

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

5

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- ➤ A second very important distribution arises from choosing randomly on edges rather than on nodes.

COcoNuTS -

Pure random networks

efinitions

Some visual examples

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

- \blacktriangleright Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- ▶ Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.

Pure random

Generalized Networks

- \blacktriangleright The degree distribution P_k is fundamental for our description of many complex networks
- ▶ Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- ▶ Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

Pure random

Generalized Networks

- The degree distribution P_k is fundamental for our description of many complex networks
- ightharpoonup Again: P_k is the degree of randomly chosen node.
- ➤ A second very important distribution arises from choosing randomly on edges rather than on nodes.
- ▶ Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$Q_k \propto k P_k$$

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k' P_{k'}}$$

Pure random networks Definitions How to build theoretics Some visual examples

Degree distributions

Generalized Random Networks

How to build in practice
Motifs
Random friends are

range orgest component

- The degree distribution P_k is fundamental for our description of many complex networks
- ightharpoonup Again: P_k is the degree of randomly chosen node.
- ➤ A second very important distribution arises from choosing randomly on edges rather than on nodes.
- ▶ Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$Q_k \propto k P_k$$

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k' P_{k'}} = \frac{kP_k}{\langle k \rangle}.$$

Pure random networks Definitions How to build theoretic

Degree distributions
Generalized

Random Networks Configuration model

Motifs
Random friends are

argest component

- The degree distribution P_k is fundamental for our description of many complex networks
- ightharpoonup Again: P_k is the degree of randomly chosen node.
- ▶ A second very important distribution arises from choosing randomly on edges rather than on nodes.
- ▶ Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- ▶ Now choosing nodes based on their degree (i.e., size):

$$Q_k \propto k P_k$$

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k' P_{k'}} = \frac{kP_k}{\langle k \rangle}.$$

▶ Big deal: Rich-get-richer mechanism is built into this selection process.

Pure random networks
Definitions
How to build theoretical Some visual examples

Generalized Random Networks

Configuration model

How to build in practice

Random friends are strange

- Probability of randomly selecting a node of degree k by choosing from nodes: $P_1 = 3/7$, $P_2 = 2/7$, $P_3 = 1/7$, $P_6 = 1/7$.

Pure random networks

How to build theoretically Clustering

Degree distributions Generalized

Networks How to build in practice

Motifs Random friends are

- Probability of randomly selecting a node of degree k by choosing from nodes: $P_1 = 3/7, P_2 = 2/7, P_3 = 1/7,$ $P_6 = 1/7$.
- Probability of landing on a node of degree k after randomly selecting an edge and then randomly choosing one direction to travel:

$$Q_1 = 3/16, Q_2 = 4/16, Q_3 = 3/16, Q_6 = 6/16.$$

Pure random networks

How to build theoretically Clustering Degree distributions

Generalized Networks

How to build in practice

Random friends are

- Probability of randomly selecting a node of degree k by choosing from nodes: $P_1=3/7,\,P_2=2/7,\,P_3=1/7,\,P_6=1/7.$
- ▶ Probability of landing on a node of degree *k* after randomly selecting an edge and then randomly choosing one direction to travel:

$$Q_1 = 3/16, Q_2 = 4/16, \ Q_3 = 3/16, Q_6 = 6/16.$$

▶ Probability of finding # outgoing edges = k after randomly selecting an edge and then randomly choosing one direction to travel:

$$R_0 = 3/16 \ R_1 = 4/16,$$

 $R_2 = 3/16, R_5 = 6/16.$

Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

 \triangleright For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are strange

- \triangleright For random networks, Q_k is also the probability that a friend (neighbor) of a random node has kfriends.
- \triangleright Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

Pure random

Generalized Networks

How to build in practice

- \triangleright For random networks, Q_k is also the probability that a friend (neighbor) of a random node has kfriends.
- \triangleright Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

 $R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}}$

Pure random

How to build theoretically

Generalized Networks

How to build in practice

- For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
- ightharpoonup Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

 $R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$

Pure random networks

Definitions

How to build theoretically

Some visual examples
Clustering

Degree distri

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest componen

- For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
- ightharpoonup Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

▶ Equivalent to friend having degree k + 1.

Pure random networks Definitions

How to build theoretically Some visual examples Clustering

Degree distrib

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Poforoncos

- For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
- ightharpoonup Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- ▶ Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

Pure random
networks
Definitions
How to build theoretically

How to build theoretical Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

• Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\left\langle k\right\rangle _{R}=\sum_{k=0}^{\infty}kR_{k}$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Generalized Random Networks

How to build in practice Motifs

Random friends are strange

• Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\left\langle k\right\rangle _{R}=\sum_{k=0}^{\infty}kR_{k}=\sum_{k=0}^{\infty}k\frac{(k+1)P_{k+1}}{\left\langle k\right\rangle }$$

Pure random networks

How to build theoretically

Generalized Random Networks

How to build in practice Motifs

Random friends are strange

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k (k+1)P_{k+1} \end{split}$$

COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

argest componer

 \blacktriangleright Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k(k+1)P_{k+1} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty \left((k+1)^2 - (k+1)\right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

How to build in practice

▶ Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k(k+1)P_{k+1} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty \left((k+1)^2 - (k+1)\right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$

Pure random networks

Definitions

How to build theoretically Some visual examples

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest componen

 \blacktriangleright Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k(k+1)P_{k+1} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty \left((k+1)^2 - (k+1)\right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

$$=\frac{1}{\langle k\rangle}\sum_{j=0}^{\infty}(j^2-j)P_j\quad \text{(using j = k+1)}$$

$$=\frac{1}{\langle k\rangle}\left(\langle k^2\rangle-\langle k\rangle\right)$$

Pure random networks

How to build theoretically

Generalized Networks

How to build in practice

Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.

Pure random networks

efinitions

How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

argest component

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Pure random

How to build theoretically

Generalized Networks

How to build in practice

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

► Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right)$$

Pure random

How to build theoretically

Generalized Networks

How to build in practice

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

► Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

Pure random

How to build theoretically

Generalized Networks

How to build in practice

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

► Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

Again, neatness of results is a special property of the Poisson distribution.

Pure random networks

efinitions

How to build theoretically Some visual examples Clustering

Generalized

Random

Configuration model
How to build in practice

Random friends are strange

D 6

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} (\langle k^2 \rangle \langle k \rangle)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

▶ Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have $\langle k \rangle$ other friends, and $\langle k \rangle + 1$ total friends...

Pure random networks

efinitions

How to build theoretically Some visual examples Clustering

Generalized Random

Networks
Configuration model
How to build in practice

Random friends are strange

Largest componen

In fact, R_k is rather special for pure random networks ...

COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

argest componer

- In fact, R_k is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are strange

- In fact, R_k is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle}$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice Motifs

Random friends are strange

- In fact, R_k is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)k!} e^{-\langle k \rangle}$$

COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

argest component

teferences

- In fact, R_k is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)k!} e^{-\langle k \rangle}$$

$$=\frac{\langle k \rangle^k}{k!}e^{-\langle k \rangle}$$

COcoNuTS -

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

argest component

- \triangleright In fact, R_{k} is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)k!} e^{-\langle k \rangle}$$

$$=\frac{\langle k \rangle^k}{k!}e^{-\langle k \rangle} \equiv P_k.$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are strange

- \triangleright In fact, R_{k} is rather special for pure random networks ...
- Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)k!} e^{-\langle k \rangle}$$

$$=\frac{\langle k \rangle^k}{k!}e^{-\langle k \rangle} \equiv P_k.$$

#samesies.

COCONUTS

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are strange

Two reasons why this matters

Reason #1:

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R$$

COCONUTS

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are strange

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

COCONUTS

Pure random networks

How to build theoretically Clustering Degree distributions

Generalized

Random Networks

How to build in practice Motifs

Random friends are

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right)$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Random Networks

How to build in practice

Random friends are

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- ▶ Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.

COCONUTS

Pure random networks

Generalized Networks

How to build in practice

Random friends are

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- ▶ Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- ▶ Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment then $\langle k_2 \rangle$ will be big.
 - 3. Your friends really are different from you...
 - 4. See also; class size paradoxes (nod to: Gelman)

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized

Networks
Configuration model
How to build in practice

Motifs
Random friends are

Largest component

Poforoncos

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- ▶ Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big.

(e.g., in the case of a power-law distribution)

- 3. Your friends really are different from you...
- 4. See also: class size paradoxes (nod to: Gelman)

Pure random networks

Definitions

How to build theoreticall Some visual examples Clustering

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

and the second

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_{h} and not just the 1st moment.
- ▶ Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1)\rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big. (e.g., in the case of a power-law distribution)

Pure random networks

Generalized Networks

How to build in practice

Random friends are

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- ► Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle -1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big. (e.g., in the case of a power-law distribution)
 - 3. Your friends really are different from you... [2, 4]

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized

Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- ▶ Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle -1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big. (e.g., in the case of a power-law distribution)
 - 3. Your friends really are different from you... [2, 4]
 - 4. See also: class size paradoxes (nod to: Gelman)

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized

Networks
Configuration model
How to build in practice

Random friends are strange

- ▶ A node's average # of friends: $\langle k \rangle$

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = 0$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized

Networks

How to build in practice

Random friends are

- ▶ A node's average # of friends: $\langle k \rangle$
- ▶ Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \pi$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

- ▶ A node's average # of friends: $\langle k \rangle$
- ▶ Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ▶ Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k \rangle}{\langle k \rangle^2} = \langle k \rangle \left(\frac{1}{1 + \frac{\sigma^2}{\langle k \rangle^2}} \right) \geq \frac{\langle k \rangle}{\langle k \rangle^2} = \frac{\langle k \rangle}{\langle k \rangle^2}$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

- ▶ A node's average # of friends: $\langle k \rangle$
- ▶ Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ▶ Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) \ge \frac{\sigma^2}{\langle k \rangle^2} = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left(\frac{\sigma^2}{\langle k \rangle^2}$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

- ▶ A node's average # of friends: $\langle k \rangle$
- ▶ Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ▶ Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right)$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

More on peculiarity #3:

- \blacktriangleright A node's average # of friends: $\langle k \rangle$
- ▶ Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ▶ Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

More on peculiarity #3:

- \blacktriangleright A node's average # of friends: $\langle k \rangle$
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ▶ Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.

Pure random networks

How to build theoretically

Generalized Networks

How to build in practice

Random friends are

More on peculiarity #3:

- ▶ A node's average # of friends: $\langle k \rangle$
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ► Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.
- ▶ Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Pure random networks

How to build theoretically Some visual examples

Degree distrib

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. [1]

Your friends really are monsters #winners:1

- Go on that mer Friends have more coauthors, citations, and publications.
- ► Other horrific studies: your connections on Twitter have more followers than you, your sexua partners more partners than you, ...
- ▶ The hope. Maybe they have more enemies and diseases too.

Pure random networks

Deficieland

How to build theoretically Some visual examples Clustering

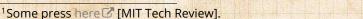
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest componen



Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. [1]

Your friends really are monsters #winners:1

- ► Go on, hurt me: Friends have more coauthors, citations, and publications.
- ➤ Other horrific studies: your connections on Twitter have more followers than you, your sexua partners more partners than you, ...
- ▶ The hope. Maybe they have more enemies and diseases too.

Pure random

Definition .

How to build theoretically Some visual examples Clustering

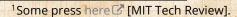
Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Largest componer



Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. [1]

Your friends really are monsters #winners:1

- ► Go on, hurt me: Friends have more coauthors, citations, and publications.
- ► Other horrific studies: your connections on Twitter have more followers than you, your sexual partners more partners than you, ...
- The hope. Maybe they have more enemies and

Pure random

etworks

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Edi gest compon

Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. [1]

Your friends really are monsters #winners:1

- ► Go on, hurt me: Friends have more coauthors, citations, and publications.
- ► Other horrific studies: your connections on Twitter have more followers than you, your sexual partners more partners than you, ...
- ► The hope: Maybe they have more enemies and diseases too.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

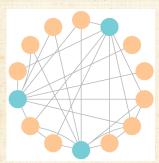
Generalized Random

Networks
Configuration model
How to build in practice

Random friends are strange

argest componen

Related disappointment:



- Nodes see their friends' color choices.

Pure random networks

How to build theoretically Clustering

Degree distributions

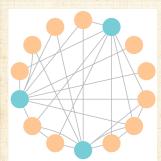
Generalized Networks

How to build in practice Motifs

Random friends are strange

¹https://www.washingtonpost.com/graphics/business/ wonkblog/majority-illusion/

Related disappointment:



- Nodes see their friends' color choices.
- Which color is more popular?1

Pure random networks

How to build theoretically Clustering

Degree distributions

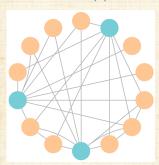
Generalized Networks

How to build in practice Motifs

Random friends are strange

¹https://www.washingtonpost.com/graphics/business/ wonkblog/majority-illusion/

Related disappointment:



- Nodes see their friends' color choices.
- Which color is more popular?1
- Again: thinking in edge space changes everything.

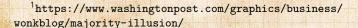
Pure random networks

How to build theoretically

Generalized Networks

How to build in practice

Random friends are



- $\triangleright \langle k \rangle_B$ is key to understanding how well random networks are connected together.

Pure random

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

(Big) Reason #2:

- $\triangleright \langle k \rangle_B$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.

Pure random

How to build theoretically

Generalized Networks

How to build in practice

Random friends are

(Big) Reason #2:

- $\triangleright \langle k \rangle_B$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- \blacktriangleright As $N \to \infty$, does our network have a giant component?

Pure random

How to build theoretically

Generalized Networks

How to build in practice

Random friends are

(Big) Reason #2:

- $\triangleright \langle k \rangle_R$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- ► As $N \to \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as $N \to \infty$.
- Note: Component = Cluster

Pure random networks

Definitions

How to build theoretically

Some visual examples

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

(Big) Reason #2:

- $\triangleright \langle k \rangle_R$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- ► As $N \to \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as $N \to \infty$.
- Note: Component = Cluster

Pure random networks

Definitions

How to build theoreticall

Some visual examples

Clustering

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

(Big) Reason #2:

- $ightharpoonup \langle k
 angle_R$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- ► As $N \to \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as $N \to \infty$.
- ▶ Note: Component = Cluster

Pure random networks

Definitions

How to build theoretically some visual examples

Clustering

Degree dist

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Definitions
Flow to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are strang
Largest component

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model

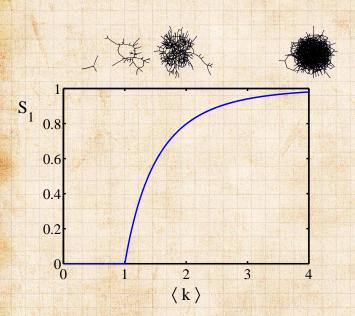
How to build in practice

Motifs

Random friends are strange

Largest component

Giant component



Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions Generalized

Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

Largest component

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- lacktriangle All of this is the same as requiring $\langle k \rangle_R$
- ▶ Giant-component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} >$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\langle k^2 \rangle > 1$

Pure random networks

How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Deferences

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- ► Equivalently, expect exponential growth in node number as we move out from a random node.
- ► All of this is the same as requiring (
- ► Giant-component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} >$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\langle k^2 \rangle$

Pure random networks

Definitions
How to build theoretically

Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

Giant component:

- ▶ A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- ► Equivalently, expect exponential growth in node number as we move out from a random node.
- ▶ All of this is the same as requiring $\langle k \rangle_R > 1$.
- ► Glant-component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} >$$

- Again, see that the second moment is an essentia part of the story.
- Equivalent statement: $\langle k^2 \rangle$

Pure random networks

How to build theoretically Some visual examples Clustering

Generalized

Networks
Configuration model
How to build in practice

Motifs
Random friends are strange

Largest component

Giant component:

- ➤ A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- ► Equivalently, expect exponential growth in node number as we move out from a random node.
- ▶ All of this is the same as requiring $\langle k \rangle_R > 1$.
- ► Giant component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\langle k^2 \rangle$

Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- ► Equivalently, expect exponential growth in node number as we move out from a random node.
- ▶ All of this is the same as requiring $\langle k \rangle_R > 1$.
- ► Giant component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- ▶ Equivalent statement: $\langle k^2 \rangle > 2 \langle k^2 \rangle$

Pure random networks
Definitions
How to build theoretically

Clustering
Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange Largest component

Doforonsos

- ➤ A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- ► Equivalently, expect exponential growth in node number as we move out from a random node.
- ▶ All of this is the same as requiring $\langle k \rangle_R > 1$.
- ► Giant component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- ▶ Equivalent statement: $\langle k^2 \rangle > 2 \langle k \rangle$

Pure random
networks
Definitions
How to build theoretically
Some visual examples

Generalized Random

Clustering

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Giant component for standard random networks:

- ightharpoonup Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.

$$\langle k \rangle \begin{vmatrix} \mathbf{c} \\ \mathbf{k} \end{vmatrix} = \begin{vmatrix} \langle k^2 \rangle - \langle k \rangle \\ \langle k \rangle \end{vmatrix}$$

Pure random networks

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized

Networks How to build in practice

Motifs Random friends are

Largest component

- ightharpoonup Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

Largest component

Giant component for standard random networks:

- ightharpoonup Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized

Networks How to build in practice

Random friends are

Largest component

- ightharpoonup Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Networks

How to build in practice Motifs

Random friends are

Largest component

Giant component for standard random networks:

- ightharpoonup Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ▶ Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.

Pure random networks

How to build theoretically

Clustering

Generalized

Networks How to build in practice

Random friends are

- ▶ Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ▶ Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.
- ▶ When $\langle k \rangle$ < 1, all components are finite.
- ► Fine example of a continuous
- We say $\langle k \rangle = 1$ marks the critical point of the system.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distri

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

Giant component for standard random networks:

- ▶ Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ▶ Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.
- ▶ When $\langle k \rangle$ < 1, all components are finite.
- ▶ Fine example of a continuous phase transition ☑.
- We say $\langle k \rangle = 1$ marks the critical point of the system.

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distril

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

Giant component for standard random networks:

- ▶ Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- ▶ Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ▶ Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.
- ▶ When $\langle k \rangle$ < 1, all components are finite.
- ▶ Fine example of a continuous phase transition ☑.
- We say $\langle k \rangle = 1$ marks the critical point of the system.

Pure random networks

Definitions

How to build theoreticall Some visual examples Clustering

Generalized Random

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Deferences

 $lackbox{ e.g, if } P_k = ck^{-\gamma} ext{ with } 2 < \gamma < 3 ext{, } k \geq 1 ext{, then}$

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

 $\propto x^{3-\gamma}$

- So giant component always exists for these kinds of networks
- Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_B$.
- How about $P_k = \delta_{kk_0}$?

COcoNuTS

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

COCONUTS

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Random

Networks Configuration model How to build in practice Motifs

Random friends are

Largest component

lacktriangle e.g, if $P_k=ck^{-\gamma}$ with $2<\gamma<3$, $k\geq 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma} \Big|_{x=1}^{\infty}$$

- So giant component always exists for these kinds of networks
- Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_B$.
- ► How about $P_k + \delta_{kk}$?

COcoNuTS

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized

Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\big|_{x=1}^{\infty} = \infty$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Random

Networks Configuration model How to build in practice

Random friends are

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

COCONUTS

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Random friends are

lacktriangle e.g, if $P_k=ck^{-\gamma}$ with $2<\gamma<3$, $k\geq 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

- So giant component always exists for these kinds of networks.
- ► Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_B$.
- \blacktriangleright How about $P_k = \delta_{kk_0}$?

COcoNuTS

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random

Networks
Configuration model
How to build in practice

Motifs

Random friends are strange

Largest component

ightharpoonup e.g, if $P_k=ck^{-\gamma}$ with $2<\gamma<3$, $k\geq 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

- So giant component always exists for these kinds of networks.
- ▶ Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_B$.

 \blacktriangleright How about $P_k + \delta_{kk}$?

COCONUTS

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized

Random Networks

Configuration model

How to build in practice

Motifs

Random friends are

Random friends a strange

Largest component

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\begin{split} \langle k^2 \rangle &= c \sum_{k=1}^\infty k^2 k^{-\gamma} \\ &\sim \int_{x=1}^\infty x^{2-\gamma} \mathrm{d}x \\ &\propto x^{3-\gamma} \big|_{x=1}^\infty = \infty \quad (\gg \langle k \rangle). \end{split}$$

- So giant component always exists for these kinds of networks.
- ▶ Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_R$.
- \blacktriangleright How about $P_k = \delta_{kk_0}$?

COCONUTS

Pure random networks

How to build theoretically

Clustering

Generalized

Networks How to build in practice

Random friends are

And how big is the largest component?

- \blacktriangleright Define S_1 as the size of the largest component.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Pure random networks

How to build theoretically Clustering

Degree distributions

Generalized Networks

How to build in practice

Random friends are

Largest component

And how big is the largest component?

- \blacktriangleright Define S_1 as the size of the largest component.
- ▶ Consider an infinite ER random network with average degree $\langle k \rangle$.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

Largest component

And how big is the largest component?

- \blacktriangleright Define S_1 as the size of the largest component.
- ▶ Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Pure random

How to build theoretically

Clustering

Generalized Networks

How to build in practice

Random friends are

Largest component

And how big is the largest component?

- ightharpoonup Define S_1 as the size of the largest component.
- ▶ Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.
- ▶ Define δ as the probability that a randomly chosen node does not belong to the largest component.
- ▶ Simple connection: $\delta = 1 S_1$.
- ▶ Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► Sc

Substitute in Poisson distribution...

Pure random networks Definitions

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

Deferences

And how big is the largest component?

- ightharpoonup Define S_1 as the size of the largest component.
- ► Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.
- ▶ Define δ as the probability that a randomly chosen node does not belong to the largest component.
- ▶ Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► Sc

Substitute in Poisson distribution...

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component

And how big is the largest component?

- \blacktriangleright Define S_1 as the size of the largest component.
- ▶ Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.
- \triangleright Define δ as the probability that a randomly chosen node does not belong to the largest component.
- \blacktriangleright Simple connection: $\delta = 1 S_1$.
- ▶ Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

Pure random

Generalized Networks

Random friends are

Largest component

And how big is the largest component?

- ightharpoonup Define S_1 as the size of the largest component.
- ► Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.
- ▶ Define δ as the probability that a randomly chosen node does not belong to the largest component.
- ▶ Simple connection: $\delta = 1 S_1$.
- ▶ Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are
strange

Largest component

And how big is the largest component?

- ightharpoonup Define S_1 as the size of the largest component.
- ► Consider an infinite ER random network with average degree $\langle k \rangle$.
- \blacktriangleright Let's find S_1 with a back-of-the-envelope argument.
- ▶ Define δ as the probability that a randomly chosen node does not belong to the largest component.
- ▶ Simple connection: $\delta = 1 S_1$.
- ▶ Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

Generalized Random Networks

How to build in practice
Motifs
Random friends are
strange

Carrying on:

$$\frac{\delta}{\delta} = \sum_{k=0}^{\infty} P_k \delta^k$$

COcoNuTS

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

Largest component

$$\frac{\delta}{\delta} = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Largest component

$$egin{aligned} oldsymbol{\delta} &= \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} rac{\langle k
angle^k}{k!} e^{-\langle k
angle} \delta^k \ &= e^{-\langle k
angle} \sum_{k=0}^{\infty} rac{(\langle k
angle \delta)^k}{k!} \end{aligned}$$

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Largest component

$$\begin{split} & \delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k \\ & = e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!} \\ & = e^{-\langle k \rangle} e^{\langle k \rangle \delta} \end{split}$$

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

$$\begin{split} & \delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k \\ & = e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!} \\ & = e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1 - \delta)}. \end{split}$$

Pure random networks

How to build theoretically

Clustering Degree distributions

Generalized

Random Networks

How to build in practice Motifs

Random friends are

Carrying on:

$$\begin{split} \frac{\delta}{\delta} &= \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k \\ &= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!} \\ &= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1 - \delta)}. \end{split}$$

Now substitute in $\delta = 1 - S_1$ and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}.$$

Pure random networks

How to build theoretically

Clustering

Generalized Random

Networks How to build in practice

Random friends are

We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

Pure random networks

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

How to build in practice Motifs

Random friends are

Largest component

- ▶ We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}.$
- First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

Pure random networks

How to build theoretically Clustering

Generalized Random

Networks Configuration model How to build in practice Motifs

Random friends are

- ▶ We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.
- \blacktriangleright First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

 \blacktriangleright As $\langle k \rangle \rightarrow 0$, $S_1 \rightarrow 0$.

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

- ▶ We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.
- \blacktriangleright First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

- \blacktriangleright As $\langle k \rangle \rightarrow 0$, $S_1 \rightarrow 0$.
- ightharpoonup As $\langle k \rangle \to \infty$, $S_1 \to 1$.

Pure random networks

How to build theoretically Clustering

Generalized Networks

How to build in practice

Random friends are

- ▶ We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.
- \blacktriangleright First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

- \blacktriangleright As $\langle k \rangle \rightarrow 0$, $S_1 \rightarrow 0$.
- ightharpoonup As $\langle k \rangle \to \infty$, $S_1 \to 1$.
- Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.

Pure random networks

How to build theoretically

Generalized

Networks

How to build in practice

- ▶ We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.
- \blacktriangleright First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

- ightharpoonup As $\langle k \rangle \to 0$, $S_1 \to 0$.
- \blacktriangleright As $\langle k \rangle \to \infty$, $S_1 \to 1$.
- Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.
- ▶ Only solvable for $S_1 > 0$ when $\langle k \rangle > 1$.

Pure random networks

How to build theoretically

Generalized Networks

How to build in practice

Largest component

- We can figure out some limits and details for $S_1 = 1 e^{-\langle k \rangle S_1}$.
- First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1-S_1}.$$

- ightharpoonup As $\langle k \rangle \to 0$, $S_1 \to 0$.
- ightharpoonup As $\langle k \rangle
 ightharpoonup \infty$, $S_1
 ightharpoonup 1$.
- Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.
- ▶ Only solvable for $S_1 > 0$ when $\langle k \rangle > 1$.
- ▶ Really a transcritical bifurcation. [7]

Pure random networks

How to build theoretically Some visual examples

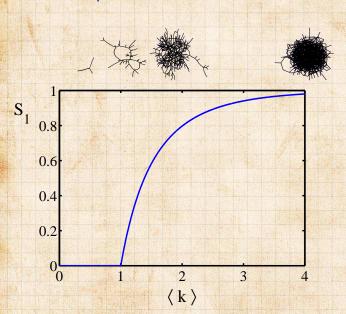
Degree dist

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest component



Pure random networks

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.

Pure random networks

How to build theoretically Some visual examples Clustering Degree distributions

Generalized Networks

How to build in practice

Random friends are

Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.

Pure random networks

How to build theoretically Clustering Degree distributions

Generalized

Networks Configuration model How to build in practice

Random friends are

Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability 8' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generating Unctionology.

Pure random networks

How to build theoretically Some visual examples Clustering

Generalized

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Deferences

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- ▶ But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- we need a separate probability of for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generating unctionology.

Pure random networks Definitions

How to build theoretically Some visual examples Clustering

Generalized Random

Networks
Configuration model
How to build in practice
Motifs

Random friends are strange Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_{B}$.
- \blacktriangleright We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.

Pure random networks

Generalized

Networks How to build in practice

Random friends are Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- ▶ But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generating unctionology.

Pure random networks
Definitions
How to build theoretically
Some visual examples

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- ▶ The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- ▶ But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generatingfunctionology. [8]

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering

Generalized Random Networks

How to build in practic Motifs Random friends are strange Largest component

- [1] Y.-H. Eom and H.-H. Jo.
 Generalized friendship paradox in complex networks: The case of scientific collaboration.
 Nature Scientific Reports, 4:4603, 2014. pdf
- [3] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf

Pure random networks Definitions How to build theoretically Some visual examples Clustering

Generalized Random Networks

How to build in practice Motifs Random friends are

Largest componer

- [5] M. E. J. Newman.
 The structure and function of complex networks.
 SIAM Rev., 45(2):167–256, 2003. pdf
- [6] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nature Genetics, 31:64–68, 2002. pdf
- [7] S. H. Strogatz.
 Nonlinear Dynamics and Chaos.
 Addison Wesley, Reading, Massachusetts, 1994.
- [8] H. S. Wilf.

 Generatingfunctionology.

 A K Peters, Natick, MA, 3rd edition, 2006. pdf

Pure random networks
Definitions
How to build theoretical Some visual examples

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

