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Get your own exciting generator here (.
As N 7, polyhedral die rapidly becomes a ball...

Random networks

Pure, abstract random networks:
Consider set of all networks with N labelled nodes

and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,

but it is always an assumption.

Known as Erd6és-Rényi random networks or ER
graphs.
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Random networks—basic features:
» Number of possible edges:

0<m§(N) NIN-1)

» Limit of m = 0: empty graph.

» Limit of m = (§): complete or fully-connected
graph.

» Number of possible networks with N labelled

nodes:
|

5
o

2(Y) ~ N7

&

> Given m edges, there are ((2)) different possible
networks.

» Crazy factorial explosion for 1 < m « (§).

» Real world: links are usually costly so real
networks are almost always sparse.

Random networks

How to build standard random networks:
» Given N and m.

» Two probablistic methods (we'll see a third later
on)

1. Connect each of the (¥) pairs with appropriate
probability p.
» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting

edges without replacement.

» Algorithm: Randomly choose a pair of nodes 7 and

j, 1 # j, and connect if unconnected; repeat until
all m edges are allocated.

» Best for adding relatively small numbers of links
(most cases).

» 1 and 2 are effectively equivalent for large N.

Random networks
A few more things:
» For method 1, # links is probabilistic:

1
:piN(N— 1)

—;;NW—U ;JNW') p(N —1).

» Which is what it should be...

» If we keep (k) constantthenp «x 1/N — 0 as
N — oo.
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Random networks: examples for N=500

Random networks: largest components

X%

Random networks: examples for N=500
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Random networks: largest components

Pure random Pure random
networks networks
W beges s . » So for large random
Generalized -l ‘o ,"_ networks (N — OO) Generalized
Random - , ! Random

vl Networks clustering drops to zero. Networks

Clustering in random networks:

m 250 m =250

(k=1 m =250 » Key structural feature of

(k)=1 random networks is that

m =250 . \ponent 2 X
(ky=1 oot . they locally look like
eferences k N .
M A N pure branching networks
T - » No small loops. ’
m =250 ) ) |
(k)=1 m =250 Pt Lo
(k) =1 iL iL 4
m =250
m =250
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Degree distribution:

Pure random » Recall P,, = probability that a randomly selected pure random

networks nOde haS degl’ee k. networks

» Consider method 1 for constructing random
networks: each possible link is realized with

Giant component

S probability p. o
1os P » Now consider one node: there are ‘N — 1 choose k' "'
' ) ways the node can be connected to & of the other
0.6 N —1 nodes.
» Each connection occurs with probability p, each
0.4 non-connection with probability (1 — p).
02 » Therefore have a binomial distribution (5"
o el Pkip,N)= (7 )pr(a—pN k.
0 1 2 3 4
kO 4 Ve S
> 180f69 a 230f69
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Limiting form of P(k;p, N):

» Our degree distribution: bure random
P(k;p,N) = (Nhp*(1—p) N1k e
» What happens as N — oo?

Clustering in random networks:

» For construction method 1, what is the clustering
coefficient for a finite network? Pure random
» Consider triangle/triple clustering coefficient: ! -

3 x #triangles

. — . , ) o
2 #triples e > We must end up with the normal distribution S
R(mdonm rlght? Random
e » If pis fixed, then we would end up with a Gaussian ..
’ » Recall: C, = probability that with average degree (k) = PN = oo.
L q two friends of a node are . - » But we want to keep <k‘> fixed...
) also friends. References » So examine limit of P(k;p, N) when p — 0 and
l( '\ F=C, » Or:C, = probability thata 1 N — oo with (k) = p(N — 1) = constant.
2 2 triple is part of a triangle. I ok B OANIE |
! » For standard random E‘ Y P(k;p,N) =~ % ( — %) — %G*W LN,
' networks, we have simply E— ’ B - E—
: that o— » This is a Poisson distribution (2 with mean (k). .UW,L,,“ 8
( 3 C'2 =p. JVERMONT IO0 oo o oo e e e / VERMONT
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Poisson basics:

k
P(k;\) = Y » A>0
kL > k=0,1,2,3,...
0.40 » Classic use: probability
03509 o A=l that an event occurs k
030 | $A times in a given time
\ o A=10 g
%222 | period, given an
< 0. Lee
Eois| 4 ® average rate of
ol /1 w0t occurrence.
oos| | 2 ”r!. %a, .
ool teneTa. Seaa T200 > eg.
0 5 w2 phone calls/minute,

horse-kick deaths.
%) » ‘Law of small numbers’

Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Using calculation similar to one for finding (k) we
find the second moment to be:

(k?) = (k)* + (k).

» Variance is then

» So standard deviation ¢ is equal to \/(k).

» Note: This is a special property of Poisson
distribution and can trip us up...

General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution P,..

Also known as the configuration model. !

» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some
distribution P,, and form links with probability

v

P(link between i and j) oc w;w;.

» But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.
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References

=264 =273 =282 =29
=16 (k) =1.862 (k)=1386 (k)=1
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986 (k) =2.306 (k)=25 =1

~ =255 ~ =264 v=27 ~=282 ~=291
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Generalized random networks:
» Arbitrary degree distribution P;..

» Create (unconnected) nodes with degrees
sampled from P,,.

» Wire nodes together randomly.

» Create ensemble to test deviations from
randomness.

Generalized
Random
Networks
Configuration model
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Building random networks: Stubs

Phase 1:

» Idea: start with a soup of unconnected nodes with
stubs (half-edges):

Rinute

IIII \T/\I/+ IIII » Randomly select stubs

(not nodes!) and
. °° H} connect them.
1!

R S vty
STkt

» Initially allow self- and
repeat connections.

Building random networks: First rewiring

Phase 2:

» Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

B (B) >©<
» Being careful: we can't change the degree of any

node, so we can’t simply move links around.

» Simplest solution: randomly rewire two edges at a
time.

General random rewiring algorithm
¢ b

h

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges are
disjoint.

» Rewire one end of each edge.
» Node degrees do not change.

» Works if e, is a self-loop or
repeated edge.

» Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks

Phase 2:

» Use rewiring algorithm to remove all self and
repeat loops.

Phase 3:
» Randomize network wiring by applying rewiring
algorithm liberally.
» Rule of thumb: # Rewirings ~ 10 x # edges !

Random sampling

» Problem with only joining up stubs is failure to
randomly sample from all possible networks.

» Example from Milo et al. (2003) !

(a) (b)

% frequency of oceurtence
T
L

1 configuration 90 confi

Sampling random networks

» What if we have P, instead of V,?

» Must now create nodes before start of the
construction algorithm.

» Generate N nodes by sampling from degree
distribution P,.

» Easy to do exactly numerically since k is discrete.

» Note: not all P, will always give nodes that can be
wired together.
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Network motifs

» Idea of motifs® introduced by Shen-Orr, Alon et

al. in 2002.

» Looked at gene expression within full context of

transcriptional regulation networks.
» Specific example of Escherichia coli.

» Directed network with 577 interactions (edges)

and 424 operons (nodes).
» Used network randomization to produce

ensemble of alternate networks with same degree

frequency N,.
» Looked for certain subnetworks (motifs) that
appeared more or less often than expected

Network motifs

feedforward loop
X @ [inpa] _
x EL
Y |
! Y

cp

|

araC

I

araBAD

» Z only turns on in response to sustained activity in

X.
» Turning off X rapidly turns off Z.
» Analogy to elevator doors.

Network motifs

single input module (SIM)

» Master switch.
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o nevertheless ad-hoc.

» For more, see work carried out by Wiggins et al. at
omponen Columbia.
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The edge-degree distribution:

. j » The degree distribution P, is fundamental for our
networks description of many complex networks

il » Again: P, is the degree of randomly chosen node.

iutions » A second very important distribution arises from
Generalized choosing randomly on edges rather than on nodes.

Random
Netv

» Define Q,, to be the probability the node at a random
end of a randomly chosen edge has degree k.

» Now choosing nodes based on their degree (i.e., size):

References Qk o kpk

» Normalized form:

Qu = kP kP
L X oK Py ()
IWEVRL‘.%\.} g » Big deal: Rich-get-richer mechanism is built into this

selection process.
vaQ 43of69
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» Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7,P,=2/7,P;=1/7,
Py =1/7.

\ » Probability of landing on a

Al node of degree k after

randomly selecting an edge

and then randomly choosing
one direction to travel:

Q, =3/16, Q, = 4/16,

Qs =3/16, Q¢ = 6/16.

esy oK< X » Probability of finding #
3 outgoing edges = k after
a/(\ W randomly selecting an edge

and then randomly choosing
one direction to travel:
Ry =3/16 R, = 4/16,
R, =3/16, Ry = 6/16.

The edge-degree distribution:

» For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

» Useful varianton Q,;:

R,, = probability that a friend of a random node
has k other friends.

|
(k+1)Pyq _(k+1)Py

oK+ )Py B (k)

R, =

» Equivalent to friend having degree k + 1.

» Natural question: what's the expected number of
other friends that one friend has?

The edge-degree distribution:

> Given R, is the probability that a friend has k other
friends, then the average number of friends’ other
friends is

= = k+1 P,c+1
=N kR

1

(k) £

8

k(k+1)Py,

>

=1
1
= E k+1)2—
(where we have sneakily matched up indices)
1 X, ., .
- — NP,
i U E,

-t
(k)

(k+1)) Py

(using j = k+1)

(k%) — (k)
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The edge-degree distribution:

» Note: our result, (k) , = 0l ((k%) — (k)), is true for
all random networks, independent of degree
distribution.

» For standard random networks, recall
(k?) = (k) + (k).

» Therefore:

» Again, neatness of results is a special property of
the Poisson distribution.

» So friends on average have (k) other friends, and
(k) + 1 total friends...

The edge-degree distribution:

» In fact, R,, is rather special for pure random
networks ...
» Substituting

k
p = %

k!
into ()P
+1) P
Rk -
(k)
we have
R, = (’f&;l) <(1;>"“+1;:67<k> :@ﬁm'mm
+ 1! !
k
= —UZ e =p,.
» #samesies.

Two reasons why this matters

Reason #1:

> Average # friends of friends per node is

(k2) = (k) x o (B2 = (k) = (k) — (k).

» Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

» Three peculiarities:

1. We might guess (k,) =
(k(k—1)).
2. If P, has alarge second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
3. Your friends really are different from you... 2 %]
4. See also: class size paradoxes (nod to: Gelman)

(k)((k) — 1) but it's actually

COcoNuTS

Pure random
networks

Generalized
Random
Networks

nwm.m TY |9|
o VERMONT

va 510f69
COcoNuTS

Pure random
networks

Generalized
Random
Networks

e o)
é{ UNvERsITY |a|
« VERMONT IOl

va 520f69
COcoNuTS

Pure random
networks

Generalized
Random
Networks

nwmml TY |9|
o VERMONT

Q> 530f69


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

Two reasons why this matters
More on peculiarity #3: g;;;;;;;;‘o'*
» A node’s average # of friends: (k) o

» Friend's average # of friends: {*°

)
(k) ons
> Comparlson: Generalized

Random
) _ o 02 _ o0+ () :

w = <k>W = <7<?>W = (k) (1 + W) 2 (k) ;a‘dromf‘e‘ds‘ae ‘

References

» So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

» Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend. .
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“Generalized friendship paradox in

29 | complex networks: The case of scientific networks
o | Collaboration” (S

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. "] s

Random

Your friends really are moensters #winners:'
» Go on, hurt me: Friends have more coauthors,
citations, and publications.
» Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

» The hope: Maybe they have more enemies and
diseases too.

ENIvERSITY | |
o VERMONT

'Some press here (' [MIT Tech Review]. DA 550f69
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Related disappointment:

» Nodes see their friends’
color choices. ﬁ;’;tii;:’;s

» Which color is more s
popular?’

» Again: thinking in edge
space changes everything.

References
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"https://www.washingtonpost . com/graphics/business/
wonkblog/majority-illusion/

Two reasons why this matters
(Big) Reason #2:

>

>

>

(k) g is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest

component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — oo.

Note: Component = Cluster

Giant component

0.8

0.6

0.4

0.2

Structure of random networks

Giant component:

>

>

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.
All of this is the same as requiring (k) > 1.
Giant component condition (or percolation
condition):

(k?) — (k)

Again, see that the second moment is an essential

part of the story.
Equivalent statement: (k2) > 2(k)
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Giant component

Giant Component for standard random networks: Pure random
» Recall (k?) = (k)2 + (k). networks » Carrying on:

Pure random

» Determine condition for giant component: R > (k)k
(K2) — (k) _ ()24 (k) — (R) a— e ZT
— v ) — Generalized - - Generalized
]g = = = k‘ Random Random
W =" ) W - e
e e (k) i
k=0

» Therefore when (k) > 1, standard random
networks have a giant component.

» When (k) < 1, all components are finite.
Fine example of a continuous phase transition (4.

— RS = =) e

References

References

7

v

» Now substitute in § = 1 — S; and rearrange to

e v
‘1 1 .

» We say (k) = 1 marks the critical point of the obtain: N
system. Sy =1—e RIS, ;L =]
Bove B B @
“vac 610f69 D a > 640f69
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Random networks with skewed P,: Giant component
> e. & if Pk ck™7 with 2 < 7 < 3, k> 1, then Pure random Pure random

networks networks

. — » We can figure out some limits and details for .
(k?) =c Z 2k . _(k)S
Sy =1—e 1.

k=1

o Generalized > FIrSt, we can write <k> in terms of Sl: Generalized
Rand Rand
~ / 2 de L Nerwars
xT

=1 <k> = ?1|n ﬁ

o 2377 (=00 (> (k).

= » As (k) = 0,S; —0. :
eferences eferences
' > As (k) — 00, S, — 1. '
» So giant component always exists for these kinds =9 » Notice that at (k) = 1, the critical point, S; = 0. =
of networks. ‘ 1| » Only solvable for S, > 0 when (k) > 1. |
» Cutoff scaling is £~3: if v > 3 then we have to look E e » Really a transcritical bifurcation. E N
harder at (k) 5 I ’ E—
> How about P, = 9y, ? Rz 8 4 [T
> 620f69 v a > 650f69
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Giant component Giant component

And how big is the largest component?

Pure random
networks

Pure random
networks

» Define S, as the size of the largest component.

» Consider an infinite ER random network with average

degree (k). prass 1,
Generalized Generalized
> Let's find S; with a back-of-the-envelope argument. fandom Sl 08 Fandom
» Define § as the probability that a randomly chosen Howtamildnpa ) ‘
node does not belong to the largest component. 06
» Simple connection: § =1 — S;. e
References
» Dirty trick: If a randomly chosen node is not part of the 0.4 N
largest component, then none of its neighbors are. g
> So 0.2
5= Z pP,6* 0 ‘LA‘
=0 0 1 2 3 4
» Substitute in Poisson distribution... A @ Ck O o @
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Giant component

Turns out we were lucky...

>
»

Our dirty trick only works for ER random networks.
The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k) g

We need a separate probability §” for the chance
that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot
of Generatingfunctionology. !
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