Organizational Networks: Information Exchange and Robustness

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

Overview

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

onclusion

These slides are brought to you by:

COcoNuTS -

Overview

Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing Results

onclusio

Outline

COCONUTS

Overview

Toyota
Ambiguous problems
Models of organizations:

Modelification

Goals Model Testing Results

Conclusion

References

Overview

Ambiguous problems
Models of organizations

Modelification

Goals Model

Testing Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

Task specification.

Message routing algorithm.

Results:

Performance measures.

Overview

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

- 4 hours supply ("just in time").
- \clubsuit 14,000 cars per day \rightarrow 0 cars per day.
- 6 months before new machines would arrive.
- Recovered in 5 days.

Case study performed by Nishiguchi and Beaudet [4]

"Fractal Design: Self-organizing Links in Supply

Chain"

in "Knowledge Creation: A New Source of Value"

Overview Toyota

Ambiguous problems Models of organizations

Modelification

Goals

Some details:

- 36 suppliers, 150 subcontractors
- 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:
 - 1. robustness
 - 2. searchability

Overview Toyota

Ambiguous problems Models of organizations

Modelification

Goals

Some things fall apart:

COCONUTS

Overview Toyota

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

COcoNuTS -

Overview

Toyota Ambiguous problems Models of organizations

Modelification

Goals Model

Testing Results

Conclusion

Rebirth:

COCONUTS

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

Motivation

Recovery from catastrophe involves solving problems that are:

- & Unanticipated,
- Unprecedented,
- Ambiguous (nothing is obvious),
- Distributed (knowledge/people/resources),
- Limited by existing resources,
- Critical for survival.

Frame:

Collective solving of ambiguous problems

Toyota
Ambiguous problems

Modelification

Goals Model

Testing Results

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- 🙈 Leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?
- How do we define ambiguity?

Toyota

Ambiguous problems

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Coriciasion

Modeling ambiguous problems is hard...

- Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- & Creative search is intrinsically inefficient.

Focus on robustness:

- 1. Avoidance of individual failures.
- 2. Survival of organization even when failures do occur.

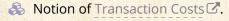
Toyota
Ambiguous problems

Modelification

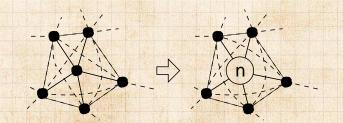
Model

Results

Conclusion



Why organizations exist:



"The Nature of the Firm"
Ronald H. Coase,

Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937. [1]

More efficient for individuals to cooperate outside of the market.

COcoNuTS

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model Testing

Testing Results

Correlation

Real organizations—Extremes

Hierarchy:

- Maximum efficiency,
- Suited to static environment,
- 🙈 Brittle.

Market:

- Resilient,
- Suited to rapidly changing environment,
- Requires costless or low cost interactions.

COCONUTS

Overview

Ambiguous problems

Models of organizations

Modelification

Modelifica

Model

Results

Lonclusion

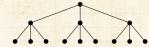
Organizations as efficient hierarchies

Overview

COCONUTS

Ambiguous problems Models of organizations:

Modelification

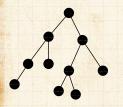

Goals

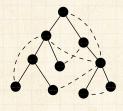
References

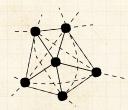
& Economics: Organizations \equiv Hierarchies.

🙈 e.g., Radner (1993) [5], Van Zandt (1998) [7]

Hierarchies performing associative operations:







But real, complex organizations are in the middle...

"Heterarchy" David Stark, The Biology of Business: Decoding the Natural Laws of the Enterprise., New Series, 4, 153-, 1999. [6]

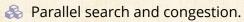
Overview

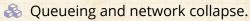
Ambiguous problems Models of organizations:

Modelification

Goals


Optimal network topologies for local search




"Optimal network topologies for local search with congestion"

Guimerà et al., Phys. Rev. Lett., **89**, 248701, 2002. [3]

& Exploration of random search mechanisms.

COcoNuTS

Overview

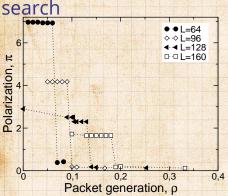
Ambiguous problems

Models of organizations:

Modelification

Modeliticat

Model Testing


Results

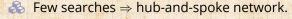
Optimal network topologies for local

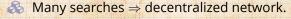
& Betweenness: β .

Polarization:

$$\pi = \frac{\max \beta}{\langle \beta \rangle} - 1$$

A L = number of links.




Models of organizations:

Modelification

References

Goal: minimize average search time.

Phase transition?

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':
 - I Congestion robustness
 (Resilience to failure due to information exchange);
 - Il Connectivity robustness (Recoverability in the event of failure).

COcoNuTS

Overview

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Conclusion

Small world problem:

- Can individuals pass a message to a target individual using only personal connections?
- Yes, large scale networks searchable if nodes have identities.
- "Identity and Search in Social Networks," Watts, Dodds, & Newman, 2002. [8]

Overview

Ambiguous problems

Models of organizations

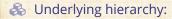
Modelification

Goals

Model

Results

Conclusion



"Information exchange and the robustness of organizational networks"

Dodds, Watts, and Sabel. Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Formal organizational structure:

- branching ratio b
- \bigcirc depth L
- $N = (b^L 1)/(b 1)$ nodes
- N-1 links

Additional informal ties:

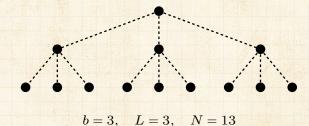
- \bigcirc Choose m links according to a two parameter probability distribution
- $0 \le m \le (N-1)(N-2)/2$

COCONUTS

Overview

Ambiguous problems Models of organizations:

Goals Model



Model—underlying hierarchy

Model—formal structure:

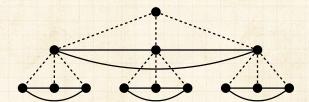
COcoNuTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model


Results

Team-based networks (m = 12):

COcoNuTS

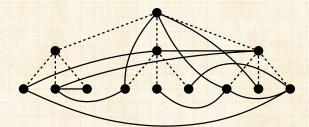
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Random networks (m = 12):

COcoNuTS

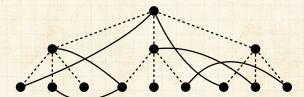
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Random interdivisional networks (m = 6):

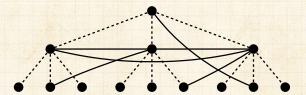
COcoNuTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model


Results

Core-periphery networks (m = 6):

COcoNuTS

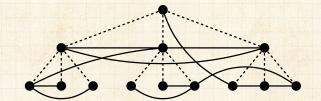
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Multiscale networks (m = 12):

COcoNuTS

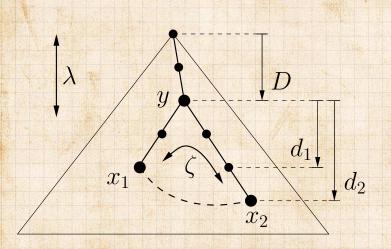
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Model—construction

COcoNuTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Model—construction

Overview Toyota

COCONUTS

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

Conclusion

References

Link addition probability:

$$P(D, d_1, d_2) \propto e^{-D/\lambda} e^{-f(d_1, d_2)/\zeta}$$

- \clubsuit First choose (D, d_1, d_2) .
- $\ensuremath{\&}$ Randomly choose (y,x_1,x_2) given (D,d_1,d_2) .
- Choose links without replacement.

Model—construction

COCONUTS

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. f is maximized when $d_1 = d_2$.

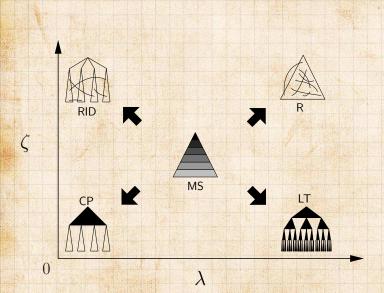
Simple function satisfying 1-4:

$$\begin{split} f(d_1,d_2) &= (d_1^2 + d_2^2 - 2)^{1/2} \\ \Rightarrow P(y,x_1,x_2) &\propto e^{-D/\lambda} e^{-(d_1^2 + d_2^2 - 2)^{1/2}/\zeta} \end{split}$$

Overview

Ambiguous problems Models of organizations

Modelification


Goals Model

Model—limiting cases

COCONUTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

- & Each of T time steps, each node generates a message with probability μ .
- Recipient of message chosen based on distance from sender.

 $P(\text{recipient at distance }d) \propto e^{-d/\xi}.$

- 1. ξ = measure of uncertainty;
- 2. $\xi = 0$: local message passing;
- 3. $\xi = \infty$: random message passing.

Ambiguous problems

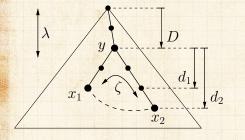
Models of organizations

Modelification

Model

Testing

Conclusion



Message passing pattern:

Distance d_1 , between two nodes x_1 and x_2 :

$$d_{12}=\max(d_1,d_2)=3$$

Overview

Ambiguous problems Models of organizations

Modelification Goals

Testing Results

References

Measure unchanged with presence of informal ties.

Message passing pattern

COCONUTS

Simple message routing algorithm:

- Look ahead one step: always choose neighbor closest to recipient node.
- Pseudo-global knowledge:
 - 1. Nodes understand hierarchy.
 - 2. Nodes know only local informal ties.

Overview

Ambiguous problems Models of organizations

Modelification

Testing

Message passing pattern

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- 3. Sender seeks specific information but recipient unknown.
- 4. Sender has a problem but information/recipient unknown.

COcoNuTS

Overview

Ambiguous problems

Models of organizations

Modelification Goals

Model

Testing

Conclusion

Performance:

- Measure Congestion Centrality ρ_i , fraction of messages passing through node i.
- Similar to betweenness centrality.
- 🙈 However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).
- & Congestion robustness comes from minimizing ρ_{max} .

Overview

Ambiguous problems

Models of organizations

Modelification

Model

Testing

Conclusion

Performance testing:

Parameter settings (unless varying):

- 3096 Underlying hierarchy: b = 5, L = 6, N = 3096;
- \clubsuit Number of informal ties: m = N.
- & Link addition algorithm: $\lambda = \zeta = 0.5$.
- \clubsuit Message passing: $\xi = 1$, $\mu = 10/N$, T = 1000.

COcoNuTS

Overview

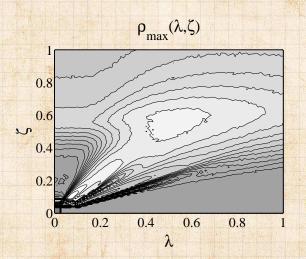
Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing Results


Conclusion

Results—congestion robustness

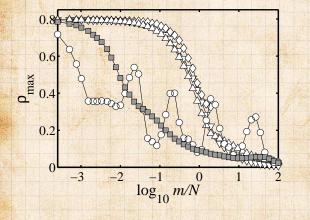
COcoNuTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model


Results

Results—varying number of links added:

COcoNuTS *

Overview

Ambiguous problems

Models of organizations

Modelification

Modelifi Goals

Model

Testing Results

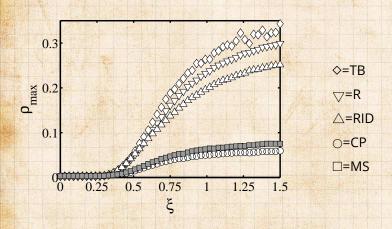
◇=TB

▽=R

△=RID

○=CP □=MS onclusion

References



20 € 46 of 57

Results—varying message passing pattern

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Results

Results—Maximum firm size

COCONUTS

Overview

Ambiguous problems

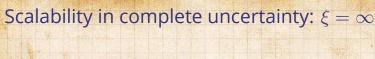
Models of organizations

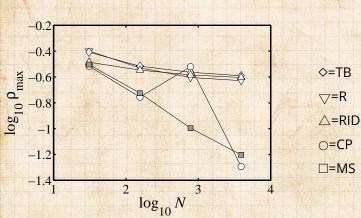
Modelifica

Goals Model

Model

Results


Lonciusion


- Congestion may increase with size of network.
- \Leftrightarrow Fix rate of message passing (μ) and Message pattern (ξ).
- Fix branching ratio of hierarchy and add more levels.
- § Individuals have limited capacity ⇒ limit to firm size.

COcoNuTS

Overview

Ambiguous problems Models of organizations

Modelification

Goals

Model

Results

Inducing catastrophic failure:

- Remove N_r nodes and measure relative size of largest component $C = S/(N-N_r)$.
- Four deletion sequences:
 - 1. Top-down;
 - 2. Random;
 - 3. Hub;
 - 4. Cascading failure.
- & Results largely independent of sequence.

Overview

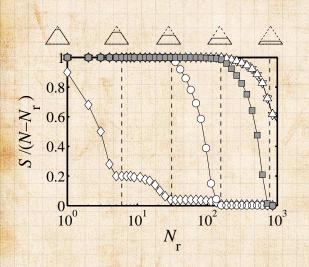
Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing Results


Conclusio

Results—Connectivity Robustness

COCONUTS

Overview

Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing Results

◇=TB

▽=R

△=RID ○=CP

□=MS

an elucio

Summary of results

Feature	Congestion Robustness	Connectivity Robustness	Scalability	Ambiguous proble Models of organiz Modelificatio Goals Model
Core-periphery	good	average	average	Results Conclusion
Random	poor	good		References
Rand. Interdivisional	poor	good	poor	
Team-based	poor	poor	poor	
Multiscale	good	good	good	1

Overview

Multi-scale networks:

- 1. Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;
- Above suggests existence of multi-scale structure is plausible.

Overview

Ambiguous problems Models of organizations

Modelification

Goals

Conclusion

Overview

Ambiguous problems

Models of organizations

Modelification

Model

Results

Conclusion

- Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).
- Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).
- Balance of generalists versus specialists—how many middle managers does an organization need?
- Still a need for data on real organizations...

[1] R. H. Coase.

congestion.

The nature of the firm.

Economica, New Series, 4(4):386-405, 1937. pdf 2

[2] P. S. Dodds, D. J. Watts, and C. F. Sabel. Information exchange and the robustness of organizational networks.

Proc. Natl. Acad. Sci., 100(21):12516-12521, 2003. pdf

[3] R. Guimerà, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales, and A. A.Optimal network topologies for local search with

Phys. Rev. Lett., 89:248701, 2002. pdf

Overview

Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing Results

Conclusion

[4] T. Nishiguchi and A. Beaudet.

Fractal design: Self-organizing links in supply chain.

In G. Von Krogh, I. Nonaka, and T. Nishiguchi, editors, Knowledge Creation: A New Source of Value, pages 199–230. MacMillan, London, 2000.

[5] R. Radner.

The organization of decentralized information processing.

Econometrica, 61(5):1109-1146, 1993. pdf

[6] D. Stark.

Heterarchy.

In J. Clippinger, editor, The Biology of Business:

Decoding the Natural Laws of the Enterprise., chapter 5, pages 153–. Jossey-Bass, San Francisco, 1999. pdf 🗷

Overview

Toyota Ambiguous problems

Ambiguous problems

Models of organizations

Modelification

Goals Model

Results

Conclusion

[7] T. Van Zandt.

Organizations with an endogenous number of information processing agents.

In Organizations with Incomplete Information, chapter 7. Cambridge University Press, New York, 1998.

[8] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302-1305, 2002, pdf 2

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

