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- Random directed networks:

K

‘%R
s

So far, we've largely studied networks with
undirected, unweighted edges.

Now consider directed, unweighted edges.

Nodes have k; and k, incoming and outgoing
edges, otherwise random.
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Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.

Now consider directed, unweighted edges.
\5\/{” Nodes have k; and k, incoming and outgoing

edges, otherwise random.

Network defined by joint in- and out-degree
distribution: P, ;.
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Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.
Now consider directed, unweighted edges.
\5\/{” Nodes have k; and k, incoming and outgoing
edges, otherwise random.
Network defined by joint in- and out-degree
distribution: P, ;.

Normalization: 377° 57° P, =1
i 0 .
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- Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.
Now consider directed, unweighted edges.
% Nodes have k; and k, incoming and outgoing
edges, otherwise random.
Network defined by joint in- and out-degree
distribution: P, ;.
Normalization: Z:’:O ZZ:O Py g, =1
Marginal in-degree and out-degree distributions:

Pki = Z Pkiako and Pko & Z Pkiako
k.~0 KED
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- Random directed networks:

So far, we've largely studied networks with
}% undirected, unweighted edges.
Now consider directed, unweighted edges.
\5\/{” Nodes have k; and k, incoming and outgoing
. edges, otherwise random.

Network defined by joint in- and out-degree
distribution: P, ;.

Normalization: 377° 57° P, =1
i 0 .

Marginal in-degree and out-degree distributions:

Pki = Z Pkiako and Pko & Z Pkiako
k.~0 KED

Required balance:

<ki> °F Z Z kiPki,ko 3 Z Z kOPki,ko T <ko>
k=0 kg=0 k=0 ko=0
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Directed network structure:

"A\ DC

Gwee - &
// ST \’J

From Bogufia and Serano. !

GWCC = Giant Weakly
Connected Component
(directions removed);

GIN = Giant
In-Component;

GOUT = Giant
Out-Component;

GSCC = Giant Strongly

Connected Component;

DC = Disconnected
Components (finite).
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Directed network structure: i

GWCC = Giant Weakly Ditertetira ndo

i Connected Component petworks
- (directions removed); bt Fni
(;,,) /_\) \‘w‘efwml\x
7 oal o GIN = Giant S
//@/Eaif?,—fgm\\\ \\\\ |n-C0mp0nent; N\ETEL:)‘REHUQMW
\ Tendril| = <@) = ,\L ) GOUT = Giant C(?r’wm“%m‘n 5
“ N C» 3 r"“‘”‘i MH,
. M// Out-Component; o
\\\_ e _/’// GSCC = Giant Strongly Nutshell
Connected Component; References
From Bogufia and Serano. ! DC = Disconnected
Components (finite).
When moving through a family of increasingly %v‘%

connected directed random networks, GWCC
usually appears before GIN, GOUT, and GSCC 3
which tend to appear together. * '/ F o B
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Importaht observation:

& Directed and undirected random networks are
separate families ...
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Importaht observation:

Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.
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Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

COcoNuTS

Directed random
networks

Mixed random
networks
Definition

Correlations

Mixed Random
Network
Cantagion

Spreading cof

dition
Full generalization
riggering probabilities

Nutshell

References

The O
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

DA 70f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. k;incoming directed edges,
3. k, outgoing directed edges.
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Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. k;incoming directed edges,
3. k, outgoing directed edges.

Define a node by generalized degree:

E=[ky k k|
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Joint degree distribution:
P; where k= [k, k k.

As for directed networks, require in- and
out-degree averages to match up:

K= 3 S kR=3 33 kb=

k=0 k=0 k,=0 Fou=0 k=0 ko=0
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Joint degree distribution:
P, where k = [k, & ko]

As for directed networks, require in- and
out-degree averages to match up:

= 20 > D N = > Y S ke (k)
k,=0 k=0 k,=0 k,=0 k;=0 k,=0

Otherwise, no other restrictions and connections
are random.
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Joint degree distribution:
P, where k = [k, & ko]

As for directed networks, require in- and
out-degree averages to match up:

By = 30 S N BE = S 8 ST )
k,=0 k=0 k,=0 k,=0 k;=0 k,=0

Otherwise, no other restrictions and connections
are random.

Directed and undirected random networks are
disjoint subfamilies:

Undirected: P, = Py 65 o0y, 0

Directed: P, = 0y, P .-
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Correlations:

Now add correlations (two point or Markovian) [:

1. PW(k|k’) = probability that an undirected edge
leaving a degree &’ nodes arrives at a degree k
node.
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Correlations:

Now add correlations (two point or Markovian) [:

1. PW(k|k’) = probability that an undirected edge
leaving a degree k’ nodes arrives at a degree k
node.

2. PO(k|E’) = probability that an edge leaving a
degree &’ nodes arrives at a degree k node is an
in-directed edge relative to the destination node.
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Correlations:

Directed random

Now add correlations (two point or Markovian) [: negWorks

1. PY(k|E) = probability that an undirected edge Ml i
leaving a degree &’ nodes arrives at a degree k S
no,dg' % Mixed Random

2. PO(E| k:) = probability that an edgeleaving a Efffffﬁ;i,.
degree k’ nodes arrives at a degree k node is an s
in-directed edge relative to the destination node. Trigering probabic

3. PO(k| k") = probability that an edge leaving a Nutshell
degree k’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.
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Correlations:

Directed random

Now add correlations (two point or Markovian) [: negWorks

1. PY(k|E) = probability that an undirected edge Ml i
leaving a degree &’ nodes arrives at a degree k S
no,dg' % Mixed Random

2. PO(E| k:) = probability that an edgeleaving a Efffffﬁ;i,.
degree k’ nodes arrives at a degree k node is an s
in-directed edge relative to the destination node. Trigering probabic

3. PO(k| k") = probability that an edge leaving a Nutshell
degree k’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
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Correlations:

COcoNuTS
; 3 i Directed randon™
Now add correlations (two point or Markovian) [: negWorks
1. PY(k|E) = probability that an undirected edge i
leaving a degree k’ nodes arrives at a degree k il
nOde' Mixed Random
DR Ty = ili i etwor
2. PO(E| ]i) = probab|!|ty that an edgeqleavmg.a Qm‘wf)”
degree k’ nodes arrives at a degree k node is an i
in-directed edge relative to the destination node. TRk o i
3. PO(k|k’) = probability that an edge leaving a Nutshell
degree k’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. 7 %

The O]
ﬁ UNIVERSITY |9|
2l VERMONT |0

D 100f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

Correlations:
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Now add correlations (two point or Markovian) [: networks
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1. PW(k|k’) = probability that an undirected edge e
leaving a degree k’ nodes arrives at a degree k i
nOdg- ~ F\;Wi\’;\"eu ;Qrdndom

2. PO(E| kj) = probability that an edgeleaving a A
degree k’ nodes arrives at a degree k node is an preacm
in-directed edge relative to the destination node. Skl

3. PO(k| k") = probability that an edge leaving a Nutshell
degree &’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. 7%
1. PU (k| k") must be related to PW(E’ | k). &7

The O]
ﬁ UNIVERSITY |9|
2l VERMONT |0

D 100f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

Correlations:

Directed randon™

Now add correlations (two point or Markovian) [: networks

Mixed random

1. PW(k|k’) = probability that an undirected edge e
leaving a degree k’ nodes arrives at a degree k i
nOdg- ~ F\;Wi\’;\"eu ;Qrdndom

2. PO(E| kj) = probability that an edgeleaving a A
degree k’ nodes arrives at a degree k node is an preacm
in-directed edge relative to the destination node. Skl

3. PO(k| k") = probability that an edge leaving a Nutshell
degree &’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. 7%
PU)(k| k) must be related to PY(E’ | k). &7
2 P O)(k | K yand P! (k | K ) must be connected. |
Ao
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Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we fjnd a degree k node at this end, and a
degree k’ node at the other end.

COcoNuTS

Directed randonn'*
networks

Mixed random
networks
Definition
Correlations

Mixed Random
Network
Cantagion

ding condition

riggering probabilities
Nutshell

References

e O
ﬁ UNIVERSITY |9|
<8l ¥ VERMONT 10Ol

“2a 11 0f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we fjnd a degree k node at this end, and a
degree k’ node at the other end.

Define probability this happens as P (k, &/).
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Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose

one end.

Say we find a degree & node at this end, and a

degree &/ node at the other end.
Define probability this happens as PW
Observe we must have PV (k, k/) =

-

(
et

)

)
=

k'

(%
).
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Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we ﬁind a degree k node at this end, and a
degree k’ node at the other end.

Define probability this happens as P “)( Tk
Observe we must have PU (%, k) = PW(E/ k).

Conditional probability
connection:

(W)l (u) (7.7 kup(ic
POGE) = PO |E) B

PO = POEIRKEE)
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~ Correlations—Directed edge balance:
The quantities

koP(k) o kiP(E)
(ko) (i)

give the probabilities that in
starting at a random end of a
randomly selected edge, we
_ begin at a degree k node and
then find ourselves travelling:

1. along an outgoing edge, or

2. against the direction of an incoming edge.
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~ Correlations—Directed edge balance:
The quantities

and

ko P(k)

kiP(k)

(o)

give the probabilities that in

(ki)

starting at a random end of a

randomly selected edge, we

begin at a degree k node and
then find ourselves travelling:

1. along an outgoing edge, or

2. against the direction of an incoming edge.

We therefore have

PUN(E k) = P

k/

P

7.7
”(7% | %/)J_k

(ko)

)

LA D

ki P(%)
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~ Correlations—Directed edge balance: S
The quantities

Directed random

k. P ?(} kP % networks
- ( ) and : ( ) Mixed random
<k:0> <kl> rwetW()rk%
give the probabilities that in o

Mixed Random

starting at a random end of a

Network
randomly selected edge, we FHIaEO0ES
begin at a degree k£ node and S
then find ourselves travelling: Ntshall

1. along an outgoing edge, or References
2. against the direction of an incoming edge.

We therefore have

k/ (k ) O)(k/ | k‘) ) %}%/’7

%
(k) (i)

din)(J, 7/ (% 1) are | B, i
Note that P'( "(k, k') and PUN(K’ k) are in general  [Ptumm [3
not related if k£ + &’.

PED(E, &) = POk | k")~

D 120f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS =

- Outline

R
Directed randonm:*
networks

Mixed random
networks

| Definition

Correlations

Mixed Random
Network
Contag\'on

Full general }QZ‘;}"

Triggering probabilities

Mixed Random Network Contagion
Spreading condition

Nutshell

References

UN‘IVERSFI’Y I |
'JVERMONT

D 130f32



http://www.uvm.edu
http://www.uvm.edu/~pdodds

Global spreading condition:
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- When are cascades possible?:
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|

GIobaI spreadlng condltlon' 4
When are cascades possible?:

2 &5 Consider uncorrelated mixed networks first.
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~ Global sprea“diing condition: ™

Consider uncorrelated mixed networks first.
Recall our first result for undirected random

networks, that edge gain ratio must exceed 1:

kP
R = Z ul o(ky—1)e B, | >1.
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Global spreading condition:

Consider uncorrelated mixed networks first.
Recall our first result for undirected random

networks, that edge gain ratio must exceed 1:

J .(ku_l).Bku,l = 1

S
= Hinfie ek,e By 1> 1.
k=0 ku=0 (ki)
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 Global spreading condition:

Consider uncorrelated mixed networks first.

Recall our first result for undirected random
networks, that edge gain ratio must exceed 1:

R=Y"
k,=0
Similar form for purely directed networks:

o o>
Re D00
k=0 ko=0

Both are composed of (1) probability of
connection to a node of a given type; (2) number
of newly infected edges if successful; and (3)
probability of infection.

5Pk _1)eB 1
<ku> .(u_ ). ku,1> g

kiPy, k,
(ki)

[ ] k’O .Bk:i,l > 1
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Global sprea“d.i‘:ng condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).
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- Global spfea“diing condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).
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Global spfeéding condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).

Applies for discrete time and continuous time
contagion processes.
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- Global spfeading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1)=Rf(d).
Applies for discrete time and continuous time
contagion processes.

Now see B, , is the probability that an infected
edge eventually infects a node.
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- Global spfeading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).

Applies for discrete time and continuous time
contagion processes.

Now see B, , is the probability that an infected
edge eventually infects a node.

Also allows for recovery of nodes (SIR).
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Global spreading condition:

Mixed, uncorrelated random netwoks:

<= Now have two types of edges spreading infection:

directed and undirected.

P < R
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Global spfeéding condition:

Now have two types of edges spreading infection:

directed and undirected.
Gain ratio now more complicated:
1. Infected directed edges can lead to infected
directed or undirected edges.

2. Infected undirected edges can lead to infected
directed or undirected edges.
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- Global spfeading condition:

Now have two types of edges spreading infection:
directed and undirected.
Gain ratio now more complicated:

1. Infected directed edges can lead to infected
directed or undirected edges.

2. Infected undirected edges can lead to infected
directed or undirected edges.

Define fW(d) and f°(d) as the expected number
of infected undirected and directed edges leading
to nodes a distance d from seed.
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Gain ratio now has a matrix form:

[ fern ]l



Gain ratio now has a matrix form:

]

o[ ]

Two separate gain equations:

) = Y [’““P E o e By Y

(k)

kiP;

(ki)

ok,e Bku+ki,1f(o)(



Gain ratio now has a matrix form:

]

o[ ]

Two separate gain equations:

el kP
F(d+1) = Z [ <L;€ >k o(ky—1)e Bku+ki,1f(U)(d> 1 <Ik>k okye Bku+ki,1f(o)(

kol k,P;
PO = 3 | BT ¢ kB 1 1) 4 S e Koo B 1 SO



Gain ratio now has a matrix form:
et
fod+1) |

Two separate gain equations:

k= k; P;.
[ T @ Ueu = 1) @ By 1 SO(d) + 7 o by @ B 1 S
{

s Bl by
kv P k. P
O 1) Z [ <l;€ >k o koBku+ki,1f(u)(d) by <Ik:>k okye Bku+ki,1f(o)(d)

Gain ratio matrix:

(
nos| B Y IR e,




Gain ratio now has a matrix form:

| oot | == Joid

Two separate gain equations:

ko Py, ki Py
[ e (ky—1)e Bku+ki,1f(U)(d> i <Ik>k o ke Bk:quki,lf(o)(
i

(k)

fUd+1) =>"
ki P;
ey ko e Bku+ki,1f(o)(d)

fOxd+1) =Y [%‘j‘ ® koBi i1 Fd) +

Gain ratio matrix:

Spreading condition: max eigenvalue of R > 1.



Global spfeédihg condition:

Useful change of notation for making results more

general: write PW(J | %) = ’“3)‘ and
PO(F | %) = ®% where « indicates the starting

(k)
node’s degree is irrelevant (no correlations).
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COcoNuTS

Global spfeading condition:

Directed random

Useful change of notation for making results more ™"
% Mixed random
general: write P (k| %) = %Lk and hetwoike,
U Definitio
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COcoNuTS

- Global spfeading condition:

Directed random
networks

Useful change of notation for making results more

general: write PY(k | x) = ®+Z% and e
PO(k|«) = % where x indicates the starting
node’s degree is irrelevant (no correlations). gﬂt‘;“‘”
Also write B, , . toindicate a more general S
infection probablllty, but one that does not Triggering probabc
depend on the edge’s origin. Nutshell

References

Now have, for the example of mixed, uncorrelated
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] Summary of contaglon condltlons for
" uncorrelated networks:

<= |. Undirected, Uncorrelated—f(d + 1) = f(d):

R=) PY
ky

| *

)o(ky—1)e By ,
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. Summary of contagion conditions for
uncorrelated networks:

R=> PU(k,|+) e (k,—1) 0By,

<= II. Directed, Uncorrelated—f(d + 1) = f(d):

R = Z P(i)(khko’*).ko.Bki,*
ki, ko

<= |. Undirected, Uncorrelated—f(d + 1) = f(d):

) < R
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I. Undirected, Uncorrelated—f(d + 1) = f(d):

R = ZP“)k| o(k,—1)e B,

IIl. Directed, Uncorrelated—f(d + 1) = f(d):

R= Y POk ko|%) e koo By .
ki>ko

[Il. Mixed Directed and Undirected, Uncorrelated—

| Jotar |2 fois |

| %) o Ky
|
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Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %) and so on.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %) and so on.

Edge types are now more diverse beyond directed
and undirected as originating node type matters.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %) and so on.

Edge types are now more diverse beyond directed
and undirected as originating node type matters.
Sums are now over k.
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] Summary of‘contaglon condltlons for correlated
" networks:

<= IV. Undirected, ﬁ';{jﬁ;?ﬁsra”dm
Correlated—f, (d+1) = Zka Ry, w; fry (d) i
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COCoNUTS =

- networks:
& IV. Undirected, Dieci oo
L ot
\r : Correlated_fku (d - 1) = Zk(; Rkuk,j fk:,j (d) Mixed random
i networks
Definition
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IV. Undirected,
Correlated—f, (d+1) =X, , Ry, i Fi;(d)

Rkukg = P<u)(ku | k) e(ky—1)e Bkukg

V. Directed,
Correlated—fkiko(d +1)= Zk{,k{) Rk‘,kok(kgfki/kg(d)

Rkikoki’kg = POk, K, | ki, ko) e kg o Bkikoki’k{)

VI. Mixed Directed and Undirected, Correlated—
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_ Full generalization:

al = W, X)

R,/ is the gain ratio
matrix and has the form:
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Full generalization:

A (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

R&&/ = Pdd/ .kdd/ .Bd&"

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v
node.
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COcoNuTS

~ Full generalization:

A (V’, )\/)

f& (d + 1) = Z R&&/ f&/(d) Directed randorn*

)\/ 7 networks
a= (1/ )\) o Mixed random
3t : networks
R, 4 is the gain ratio
matrix and has the form:
4 A Mixed Random
Network
Cantagion

R&&/ = Pdd/ (] kdd/ o B&&/. Spreading condition

Full generalization

P, = conditional probability that a type \” edge Tigeeing probabiles

emanating from a type v’ node leads to a type v i

node. St

k44 = potential number of newly infected edges

of type A emanating from nodes of type v. %
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~ Full generalization:

A (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

R&&/ = Pdd/ .kdd/ .de/.

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v

node.

k44 = potential number of newly infected edges
of type A emanating from nodes of type v.

B, 4 = probability that a type v node is eventually
infected by a single infected type )’ link arriving
from a neighboring node of type /.
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Full generalization:

A (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

Rd&’ = Pdd/ .kdd/ .de/.

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v

node.

k44 = potential number of newly infected edges
of type A emanating from nodes of type v.

B, 4 = probability that a type v node is eventually
infected by a single infected type )’ link arriving
from a neighboring node of type /.

Generalized contagion condition:

max|u|: peo(R) >1
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined

with a straightforward physical argument.

Two good things:

kP,
Qtrig 2 Z <k>k

k=0

Ptrig = Strig

eB, e [1

BE

_(1

= Qtrig) kil] ’

Qtng) ] :
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

kP, -
CQtrig:l;J <k>k 'Bkl. [1_(1_Qtrig)k 1]a

Ptrig = Strig Z Pk Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

CQtrig Z ]zgk ® Bkl e [1 &) (1 =f Qtrig)kil] ’

k=0

Ptrig = Strig Z Pk Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.

Generating functions arguably make some kinds of
calculations easier (but perhaps we don't care about
component sizes that much).
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

kP, -
CQtrig 1;) <k>k ® Bkl e [1 &) (1 2 Qtrig)k 1] )

Ptrig = Strig Z Py e Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.

Generating functions arguably make some kinds of
calculations easier (but perhaps we don't care about
component sizes that much).

On the other hand, a plainspoken physical argument

helps us generalize to correlated networks more easily.
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Summary of triggering probabilities for

. uncorrelated networks: °! [J

& |. Undirected, Uncorrelated—

Qtrig B Zkﬁ P(”)U"JG | ‘)Bkﬁl [1 .

Ptrig = Strig i Z P(k"fj) [1
K}

oL Qtrig)kﬁ_l]
L Qtrig)k(’]
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I. Undirected, Uncorrelated—
Qtrig B Zkﬁ P<u)(7€6 | ')Bklﬁl [1 i (1 Tk Qtrig)ku_l]

Ptrig = Strig == Z P(k"(;) [1 = (1 s Qtrig)ka]
ki

IIl. Directed, Uncorrelated—
Qtrig T Zk{,k{, P(u)(ki/a k</)| )Bkl’l [1 e (1 oK Qtrig)ko]

Strig = Z P(k(a ké) {1 i (1 = Qtrig)ké]

KR4
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- Nutshell:

Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

COcoNuTS

Directed random
networks

Mixed random
networks
Defir ol

Mixed Random
Network
Caontagion

Spreading condition

alization

riggering probabilities

Nutshell

References
= -
The O]
ﬁ UNIVERSITY |g|
3l v VERMONT 0

DA 300f32


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Nutshell:

Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

Spreading conditions and triggering probabilities
of contagion processes can be determined using a
direct, physical approach.
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Nutshell:

Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

Spreading conditions and triggering probabilities
of contagion processes can be determined using a
direct, physical approach.

These conditions can be generalized to arbitrary
random networks with arbitrary node and edge

types.
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