Generalized Contagion

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS *

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

These slides are brought to you by:

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model
Homogeneous version
Heterogeneous version

Nutshell

Appendix

References

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Generalized contagion model

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Vutshell

Appendix

Mathematical Epidemiology (recap)

The standard SIR model [10]

- 🚓 = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$$S(t) + I(t) + R(t) = 1$$

- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version

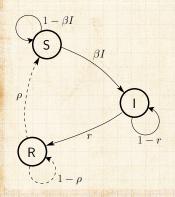
Heterogeneous version

Vutshell

Appendix

Independent Interaction Models

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Appendix

Independent Interaction Models

Original models attributed to

4 1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick [7, 9, 8]

Coupled differential equations with a mass-action principle

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Independent Interaction models

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta \underline{IS} + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta \underline{IS} - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

- R_0 = expected number of infected individuals resulting from a single initial infective
- \clubsuit Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- \aleph Probability of transmission = β
- At time t=1, single Infective remains infected with probability 1-r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version

Homogeneous version Heterogeneous version

Nutshell

Appendix

Reproduction Number R_0

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta\left(1+(1-r)+(1-r)^2+(1-r)^3+...\right)$$

$$=\beta \frac{1}{1-(1-r)} = \beta/r$$

Similar story for continuous model.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

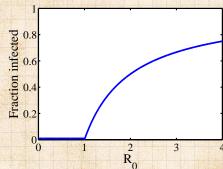
Generalized Model

Homogeneous version Heterogeneous version

Appendix

Independent Interaction models

Example of epidemic threshold:



Continuous phase transition.

Fine idea from a simple model.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964) [6]
- Spread of rumors (Daley & Kendall, 1964, 1965) [2, 3]
- Diffusion of innovations (Bass, 1969) [1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

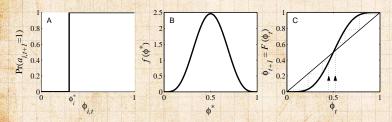
Homogeneous version Heterogeneous version

Vutshell

Appendix

Granovetter's model (recap of recap)

Action based on perceived behavior of others.



- Two states: S and I.
- Recovery now possible (SIS).
- $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting).
- Discrete time, synchronous update.
- This is a Critical mass model.
- Interdependent interaction model.

COcoNuTS *

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous versio

Nutshell

Appendix

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Vutshell

Appendix

Basic ingredients:

- Incorporate memory of a contagious element [4, 5]
- $\ensuremath{\mathfrak{S}}$ Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of <u>contact</u> with infected individual
- & With probability p, contact with infective leads to an exposure.
- A lf exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Vutshell

Appendix

Generalized model—ingredients

 $S \Rightarrow I$

8 Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \ge d_i^*$$

 \Leftrightarrow Threshold d_i^* drawn from arbitrary distribution g at t=0.

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

Generalized model—ingredients

When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

Once in state R, individuals become susceptible again with probability ρ .

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

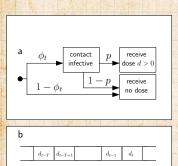
Generalized Model

Heterogeneous version

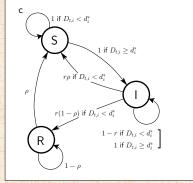
Nutshell

Appendix

A visual explanation



 $\Sigma = D_{t,i}$



COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

$$\rho = 1$$
.

- Look for steady-state behavior as a function of exposure probability p.
- & Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Vutshell

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

r < 1 means recovery is probabilistic.

T = 1 means individuals forget past interactions.

 $d^* = 1$ means one positive interaction will infect an individual.

Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathsf{b}} \underbrace{(1-r)}_{\mathsf{C}}.$$

- a: Fraction infected between t and t+1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

$$\clubsuit$$
 Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = rac{1 - r/p}{1 - r}$$
 and $\phi^* = 0$.

- $\red {}_{\sim}$ Critical point at $p=p_c=r$.
- \clubsuit Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- \Leftrightarrow Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version
Heterogeneous version

All I

Nutsnell

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- \Leftrightarrow Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version
Heterogeneous version

Vutshell

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

& Closed form expression for ϕ^* :

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

& Look for critical infection probability p_c .

 \Leftrightarrow As $\phi^* \to 0$, we see

$$\phi^* \simeq pT\phi^* \Rightarrow p_c = 1/T.$$

Again find continuous phase transition...

 \clubsuit Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

COCONUTS

Introduction

Independen Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version
Heterogeneous version

Nutshell

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- \Leftrightarrow For r < 1, add to right hand side fraction who:
 - 1. Did not receive any infections in last T time steps,
 - 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

With history H_1 , probability of being infected (not recovering in one time step) is 1-r.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Model Homogeneous version

Vutshell

Generalized

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's}}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{c}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T + m time steps since)
- c: $Pr(no\ recovery\ in\ m\ chances)$

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

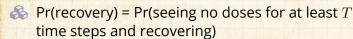
Generalized
Model
Homogeneous version
Heterogeneous version

NE se le - II

vutsiieli

Appendix

Fixed points for r < 1, $d^* = 1$, and T > 1



$$\begin{split} &= \underset{m=0}{r} \sum_{m=0}^{\infty} P(H_{T+m}) = \underset{m=0}{r} \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m \\ &= \underset{1}{r} \frac{p \phi^* (1 - p \phi^*)^T}{1 - (1 - n \phi^*)(1 - r)}. \end{split}$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1-p\phi^*)^T}{1-(1-p\phi^*)(1-r)}.$$

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Sind critical exposure probability by examining above as $\phi^* \to 0$.

$$\Rightarrow p_c = \frac{1}{T + 1/r - 1} = \frac{1}{T + \tau}.$$

where τ = mean recovery time for simple relaxation process.

 \Leftrightarrow Decreasing r keeps individuals infected for longer and decreases p_c .

COcoNuTS

Introduction

Independent Interaction models

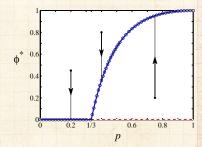
Interdependent interaction models

Generalized
Model
Homogeneous version
Heterogeneous version

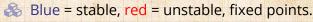
Jutchall

Appendix

$$p_c = 1/(T+\tau)$$



 \clubsuit Example details: $T=2 \& r=1/2 \Rightarrow p_c=1/3$.



$$\approx \tau = 1/r - 1$$
 = characteristic recovery time = 1.

 $T + \tau \simeq \text{average memory in system} = 3.$

Phase transition can be seen as a transcritical bifurcation. [11]

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Appendix

Homogeneous, multi-hit models:

All right: $d^* = 1$ models correspond to simple disease spreading models.

 \Longrightarrow What if we allow $d^* \geq 2$?

Again first consider SIS with immediate recovery (r = 1)

Also continue to assume unit dose sizes $(f(d) = \delta(d-1))$.

To be infected, must have at least d^* exposures in last T time steps.

Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

 \clubsuit As always, $\phi^* = 0$ works too.

COcoNuTS *

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

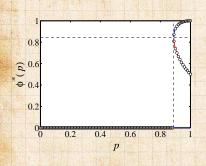
Nutshell

Appendix

Fixed points for r=1, $d^*>1$, and T>1

& Exactly solvable for small T.

& e.g., for $d^* = 2$, T = 3:



Fixed point equation: $\phi^* =$

$$3p^2\phi^{*2}(1-p\phi^*)+p^3\phi^{*3}$$

bifurcation [11] appears as p increases.

Behavior akin to output of Granovetter's threshold model.

Interaction models

Interdependent interaction models

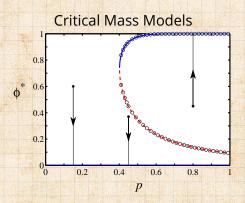
Generalized Homogeneous version

Appendix

Homogeneous, multi-hit models:

COCONUTS

Another example:



Introduction

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

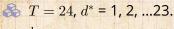
Heterogeneous version

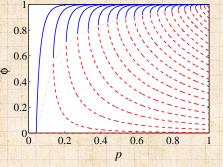
Appendix

References

$$r = 1, d^* = 3, T = 12$$

Saddle-node bifurcation.





 $d^* = 1 \rightarrow d^* > 1$:

jump between

continuous

phase transition

and pure critical

mass model.

Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$.

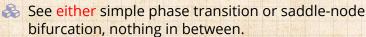
Introduction
Independent
Interaction
models

Interdependent interaction models

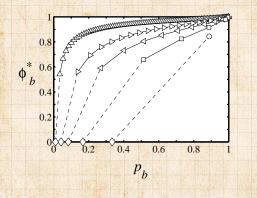
Generalized
Model
Homogeneous version
Heterogeneous version

Nutshell

Appendix



Bifurcation points for example fixed T, varying d^* :



$$35 T = 96 ()$$
.

$$T = 24 (\triangleright)$$

$$3 T = 12 (<),$$

$$3$$
 $T=6 (\square),$

Introduction

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Appendix

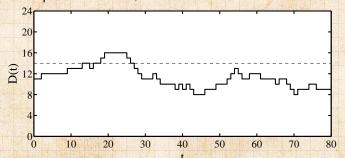
Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.

Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

Second Example for T = 24, $d^* = 14$:



COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

 \bigcirc Define γ_m as fraction of individuals for whom D(t)last equaled, and has since been below, their threshold m time steps ago,

Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^{\infty} (1-r)^m \gamma_m(p,\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Example: T = 3, $d^* = 2$

Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, \mathbf{0}\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, \mathbf{0}, \mathbf{0}\}.$

Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.

To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$.

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutchall

Appendix

Determine number of sequences of length m that keep dose load below $d^* = 2$.

 N_a = number of $a = \{0\}$ subsequences.

 N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0,1,2,\ldots,\left\lfloor \frac{m}{3} \right\rfloor.$$

where | | means floor.

& Corresponding possible values for N_a :

$$m, m-3, m-6, \ldots, m-3 \left\lfloor \frac{m}{3} \right\rfloor$$
.

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Vutshell

Appendix

 \aleph How many ways to arrange N_a a's and N_b b's?

Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\dots,Z_{N_a+N_b}\}$$

 $N_a + N_b$ slots for subsequences.

& Choose positions of either a's or b's:

$${N_a+N_b\choose N_a}={N_a+N_b\choose N_b}.$$

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

 \mathbb{R} Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} {N_b+N_a\choose N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} {m-2k\choose k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

$$P(a) = (1 - p\phi^*) \text{ and } P(b) = p\phi^*(1 - p\phi^*)^2$$

Total probability of allowable sequences of length m:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} {m-2k \choose k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as $D_m^{a,b}$.

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Nearly there... must account for details of sequence endings.
- ♣ Three endings ⇒ Six possible sequences:

$$D_1 = \{1, 1, 0, 0, D_{m-1}^{a,b}\}$$

$$D_2 = \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\}$$

$$P_1 = (p\phi)^2 (1 - p\phi)^2 \chi_{m-1}(p, \phi)$$

$$D_3 = \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\}$$

$$P_2 = (p\phi)^3 (1 - p\phi)^2 \chi_{m-2}(p, \phi)$$

 $P_3 = (p\phi)^3 (1 - p\phi)^3 \chi_{m-3}(p,\phi)$

$$D_4 = \{1, 0, 1, 0, 0, D_{m-2}^{a,b}\}$$

$$P_4 = (p\phi)^2 (1 - p\phi)^3 \chi_{m-2}(p, \phi)$$

$$D_5 = \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\}$$

$$P_5 = (p\phi)^3 (1-p\phi)^3 \chi_{m-3}(p,\phi)$$

$$D_6 = \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\}$$

$$P_6=(p\phi)^3(1-p\phi)^4\chi_{m-4}(p,\phi)$$
 Winnersty Wernont

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Appendix

F.P. Eq:
$$\phi^* = \Gamma(p,\phi^*;r) + \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

where $\Gamma(p, \phi^*; r) =$

$$(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times$$

 $\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$

and

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3\rfloor} {m-2k \choose k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1,0,1,0\}$ sequence.

Introduction

Independer Interaction models

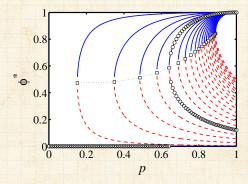
Interdependent interaction models

Generalized
Model
Homogeneous version
Heterogeneous version

Nutshell

Appendix

$$T=3, d^*=2$$



 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

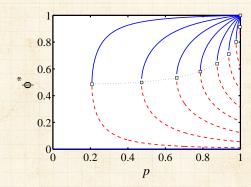
Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

$$T=2, d^*=2$$



 $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$

 $Arr No spreading for <math>r \gtrsim 0.382$.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshell

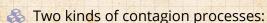
Appendix

What we have now:

COCONUTS

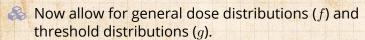
- Interaction models
- Interdependent interaction models
- Model
- Homogeneous version
- Appendix
- References

Generalized



- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized model



Key quantities:

$$P_k = \int_0^\infty \mathrm{d} d^* g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*\right) \text{ where } 1 \leq k \leq T.$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

备 e.g.,

 P_1 = Probability that one dose will exceed the threshold of a random individual = Fraction of most vulnerable individuals.

Interaction models

Interdependent interaction models

Generalized Homogeneous version

Heterogeneous version

Appendix

Generalized model—heterogeneity, r = 1

Fixed point equation:

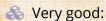
$$\phi^* = \sum_{k=1}^T {T \choose k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

 \clubsuit Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \ge 1$$

or

$$\Rightarrow p_c = 1/(TP_1)$$



- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- 2. pP_1T is : the expected number of successful infections (equivalent to R_0).
- from a small seed.

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Appendix

- Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- Find slope depends on $(P_1 P_2/2)^{[5]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find three basic universal classes of contagion models...

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- \clubsuit Memory span: T=10.
- Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Introduction

Independent Interaction models

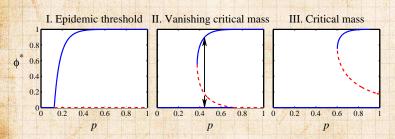
Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix



Epidemic threshold:

$$P_1 > P_2/2$$
, $p_c = 1/(TP_1) < 1$

Vanishing critical mass:

$$P_1 < P_2/2$$
,

 $p_c = 1/(TP_1) < 1$

Pure critical mass:

 $P_1 < P_2/2$, $p_c = 1/(TP_1) > 1$

Interaction models

Interdependent interaction models

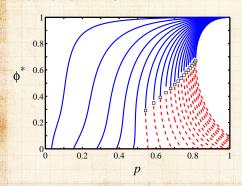
Generalized Model

Heterogeneous version

Appendix

Heterogeneous case

Now allow r < 1:



 II-III transition generalizes: $p_c=1/[P_1(T+\tau)]$ where $\tau=1/r-1=$ expected recovery time

🚴 I-II transition less pleasant analytically.

COcoNuTS

Introduction

Independer Interaction models

Interdependent interaction models

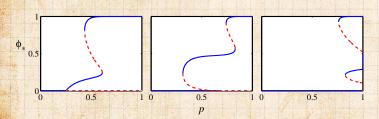
Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

More complicated models



Due to heterogeneity in individual thresholds.

Three classes based on behavior for small seeds.

Same model classification holds: I, II, and III.

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

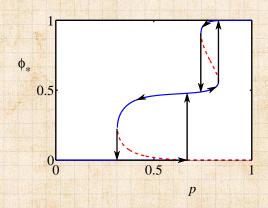
Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

Hysteresis in vanishing critical mass models



COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

- Memory is a natural ingredient.
- - Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- - Dramatic changes in behavior possible.
 - To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ, ρ) P_1 , and/or P_2).
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0) .

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

- Single seed infects others if $pP_1(T+\tau) \geq 1$.
- \Re Key quantity: $p_c = 1/[P_1(T+\tau)]$
- A If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k .
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Appendix: Details for Class I-II transition:

COCONUTS

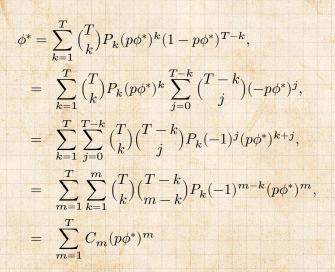
Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix



Appendix: Details for Class I-II transition:

$$C_m = (-1)^m {T \choose m} \sum_{k=1}^m (-1)^k {m \choose k} P_k,$$

since

$${T \choose k} {T-k \choose m-k} = \frac{T!}{k! (T-k)!} \frac{(T-k)!}{(m-k)! (T-m)!}$$

$$= \frac{T!}{m! (T-m)!} \frac{m!}{k! (m-k)!}$$

$$= {T \choose m} {m \choose k}.$$

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Appendix: Details for Class I-II transition:

COCONUTS

Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where $C_1 = TP_1 (= 1/p_c)$ and $C_2 = {\binom{T}{2}}(-2P_1 + P_2)$. \Leftrightarrow Using $p_c = 1/(TP_1)$:

 $\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p - p_c) = \frac{T^2 P_1^3}{(T - 1)(P_1 - P_2/2)} (p - p_c).$

Sign of derivative governed by $P_1 - P_2/2$.

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

[1] F. Bass.

A new product growth model for consumer durables.

Manage. Sci., 15:215–227, 1969. pdf

[2] D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204:1118, 1964. pdf

[3] D. J. Daley and D. G. Kendall.Stochastic rumours.J. Inst. Math. Appl., 1:42–55, 1965.

[4] P. S. Dodds and D. J. Watts.
Universal behavior in a generalized model of contagion.
Phys. Rev. Lett., 92:218701, 2004. pdf

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

[5] P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion. J. Theor. Biol., 232:587–604, 2005. pdf

[6] W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204:225–228, 1964. pdf

[7] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf

Introduction

Independent Interaction models

Interdependent interaction models

Generalized
Model
Homogeneous version

Heterogeneous version

Nutshell

Appendix

[8] W. O. Kermack and A. G. McKendrick.
A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf 2

[9] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf

[10] J. D. Murray.

Mathematical Biology.

Springer, New York, Third edition, 2002.

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References IV

[11] S. H. Strogatz.

Nonlinear Dynamics and Chaos.

Addison Wesley, Reading, Massachusetts, 1994.

COcoNuTS -

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshel

Appendix

