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- Random walks on networks—basics:

Imagine a single random walker moving around

on a network.
At t = 0, start walker at node j and take time to be

discrete.
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- Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

COcoNuTS

Random walks on

CocoNuTs

The O]
ﬁ UNIVERSITY |9|
2l VERMONT |0

DA 40of9


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node .
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Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node .

We want to characterize the evolution of p(¢).
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Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
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Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
Let's call our walker Barry.
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Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
Let's call our walker Barry.

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.
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Random walks on networks—basics:

Imagine a single random walker moving around
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
Let's call our walker Barry.

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.

Worse still: Barry is hopelessly drunk.
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- Where is Bafry?

Consider simple undirected, ergodic (strongly
connected) networks.
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- Where is Barry?
Consider simple undirected, ergodic (strongly
connected) networks.
As usual, represent network by adjacency matrix
A where

a;; = 1if i has an edge leading to j,

a;; = 0 otherwise.
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- Where is Barry?
Consider simple undirected, ergodic (strongly
connected) networks.
As usual, represent network by adjacency matrix
A where

a;; = 1if i has an edge leading to j,

a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p,(t).
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- Where is Barry?
Consider simple undirected, ergodic (strongly
connected) networks.
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p,(t).

In the next time step, he randomly lurches toward
one of j's neighbors.
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Where is Barry?
Consider simple undirected, ergodic (strongly
connected) networks.
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p,(t).
In the next time step, he randomly lurches toward
one of j's neighbors.

Barry arrives at node i from node j with
probability ,L if an edge connects j to i.
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Where is Barry? N
Consider simple undirected, ergodic (strongly :
connected) networks. e
As usual, represent network by adjacency matrix
A where

a;; = 1if i has an edge leading to j,

a;; = 0 otherwise.
Barry is at node j at time ¢ with probability p,(t).
In the next time step, he randomly lurches toward
one of j's neighbors.

Barry arrives at node i from node j with
probability ,L if an edge connects j to i.

Equatlon—W|se.
1
i(t+1) Z /? ﬂpa
Jj=1

where k; is j's degree.
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Where is Barry?

Consider simple undirected, ergodic (strongly

connected) networks.

As usual, represent network by adjacency matrix

A where

a;; = 1if i has an edge leading to j,

a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p,(t).
In the next time step, he randomly lurches toward

one of j's neighbors.
Barry arrives at node i from node j with
probability ,L if an edge connects j to i.

Equatlon—W|se.
1
i(t+1) Z /? ﬂpa
Jj=1

where k; is j's degree. Note: k; = }_

n
Jj=1

aw.
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| Inebriatioh and diffusion:

Random walks on

networks
Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.
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| Inebriatioh and diffusion:

Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.

x,;(t) = amount of stuff at node i at time ¢.
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Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.

x,(t) = amount of stuff at node i at time ¢.
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Inebriatioh and diffusion:

Random walks on

networks
Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.
x,(t) = amount of stuff at node i at time ¢.
sl
i(t+1) Z 1? ji%(
g=1
Random walking is equivalent to diffusion (4. " coconus
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- Where is Barry?

Linear algebra-based excitement:
D, (ke Z;?:l ajikijpj(t) is more usefully viewed
as

B(t+1) = ATK'p(t)

where [K, ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
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- Where is Bakry?

Linear algebra-based excitement:
D, (ke Z;‘Vl a;;72p;(t) is more usefully viewed
= e .
as
pt+1) = ATK1p(¢)
where [K, ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
ATt
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Where is Barry?

Linear algebra-based excitement:
D, (ke Z;?:l a;;72p;(t) is more usefully viewed
as

Bt +1) = ATK'5(t)
where [K, ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
ATt
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).
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Where is Barry?

Linear algebra-based excitement:
D, (ke Z?Zl a;;72p;(t) is more usefully viewed
as

Bt +1) = ATK'5(t)
where [K, ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
ATt
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).

The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).
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Where is Barry? B

Random walks on*

Linear algebra-based excitement: AeRAGIRS TR
D, (ke Z;ﬂl a;;72p;(t) is more usefully viewed

3 J
as

pt+1) = ATK1p(¢)
where [K, ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
ATt
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).
The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

Extra concerns: multiplicity of eigenvalue = 1, and
network connectedness. P 2
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- Where is Barry?
By inspection, we see that
B(00) = =k
ZiZl k’L

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
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- Where is Barry?

By inspection, we see that

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability

p(oo) = 5

e

i=1""%

proportional to its degree k,.
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Where is Barry?

By inspection, we see that

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability

B(o0) =

i=1""%

proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

k
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Where is Barry?

By inspection, we see that

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability

p(o0) = 27

i=1""%

proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

Diffusion in real space smooths things out.

k
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Where is Barry?

By inspection, we see that

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability

p(oo) = 5

e

i=1""%

proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

Diffusion in real space smooths things out.
On networks, uniformity occurs on edges.
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Where is Barry?

By inspection, we see that

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability

p(oo) = 5

e

i=1""%

proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

Diffusion in real space smooths things out.
On networks, uniformity occurs on edges.

So in fact, diffusion in real space is about the
edges too but we just don't see that.
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Random walks on

Goodness: ATK ! is similar to a real symmetric OELORKS
matrix if A = AT.
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 Other pieceé:

Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,
Consider the transformation M = K~ 1/2:

K*l/QATK71K1/2 e K71/2ATK71/2'
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 Other pieceé:

Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,
Consider the transformation M = K 1/2:

K71/2ATK71K1/2 it K71/2ATK71/2'
Since AT = A4, we have

(K—I/QAK—l/Q)T e K_1/2AK_1/2.
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F Other pieces:

Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,
Consider the transformation M = K 1/2:

}(71/2f4T}(71](1/2 ::}(71/2[4T}(71/2'
Since AT = A, we have
(K—I/QAK—l/Q)T e K_1/2AK_1/2.

Upshot: ATK—' = AK~! has real eigenvalues and
a complete set of orthogonal eigenvectors.
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Other pieces:

Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,

Consider the transformation M = K 1/2:
}(71/2f4T}(71](1/2 ::I(71/214T}(71/2'
Since AT = A, we have
(K—I/QAK—l/Q)T e K_1/2AK_1/2.

Upshot: ATK—' = AK~! has real eigenvalues and
a complete set of orthogonal eigenvectors.

Can also show that maximum eigenvalue
magnitude is indeed 1.
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