Measures of centrality

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Background

Centrality

Degree centrality
Closeness centralit
Betweenness

Eigenvalue centrality
Hubs and Authorities

Vutshell

These slides are brought to you by:

COcoNuTS -

Background

Centrality

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

Nutshell

Outline

COcoNuTS

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

Hubs and Authorities

Nutshell

References

Background

Centrality measures

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

Nutshell

How big is my node?

Basic question: how 'important' are specific nodes and edges in a network?

An important node or edge might:

- 1. handle a relatively large amount of the network's traffic (e.g., cars, information);
- bridge two or more distinct groups (e.g., liason, interpreter);
- 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility ...

Centrality Degree centrality

Eigenvalue centrality Hubs and Authorities

Centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- ldea of centrality comes from social networks literature [7].
- Many flavors of centrality ...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few ...
- (Later: see centrality useful in identifying communities in networks.)

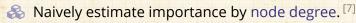
Background

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

Hubs and Authorities

Nutshell

Degree centrality



 \bigcirc Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)

Doh: doesn't take in any non-local information.

Background

Centrality neasures

Degree centrality Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

ldea: Nodes are more central if they can reach other nodes 'easily.'

Measure average shortest path from a node to all other nodes.

Define Closeness Centrality for node i as

 $\frac{N-1}{\sum_{j,j\neq i}(\text{shortest distance from } i \text{ to } j)}.$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Background

Centrality
measures
Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

References

CocoNuTs

Betweenness centrality

- Betweenness centrality is based on coherence of shortest paths in a network.
- ldea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node *i*, count how many shortest paths pass through *i*.
- 🚴 In the case of ties, divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i .
- Note: Exclude shortest paths between *i* and other nodes.
- Note: works for weighted and unweighted networks.

Background
Centrality
measures
Degree centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

Solution Consider a network with N nodes and m edges (possibly weighted).

Computational goal: Find $\binom{N}{2}$ shortest paths \checkmark between all pairs of nodes.

Traditionally use Floyd-Warshall
 algorithm.

 $\red {\Bbb S}$ Computation time grows as $O(N^3)$.

🙈 See also:

 Dijkstra's algorithm of for finding shortest path between two specific nodes,

2. and Johnson's algorithm \checkmark which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.

Newman (2001) [4,5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.

Computation times grow as:

1. O(mN) for unweighted graphs;

2. and $O(mN + N^2 \log N)$ for weighted graphs.

COcoNuTS

Background

entrality easures

Degree centrality Closeness centrali

Eigenvalue centrality
Hubs and Authorities

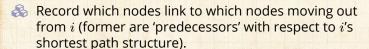
Nutshell

Shortest path between node i and all others:

Consider unweighted networks.

Use breadth-first search:

- 1. Start at node i, giving it a distance d = 0 from itself.
- 2. Create a list of all of i's neighbors and label them being at a distance d=1.
- 3. Go through list of most recently visited nodes and find all of their neighbors.
- 4. Exclude any nodes already assigned a distance.
- 5. Increment distance d by 1.
- 6. Label newly reached nodes as being at distance d.
- Repeat steps 3 through 6 until all nodes are visited.



Runs in O(m) time and gives N-1 shortest paths.

Find all shortest paths in O(mN) time

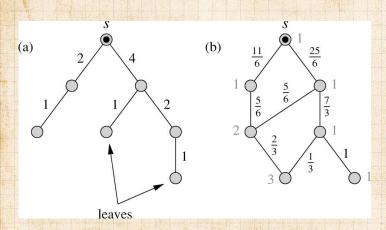
COCONUTS

Degree centrality

Hubs and Authorities

Nutshell

Newman's Betweenness algorithm: [4]



COcoNuTS -

Background

Centrality

measures

Degree centrality

Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

Nutshell

COCONUTS

- 1. Set all nodes to have a value $c_{ij}=0$, j=1,... (c for count).
- 2. Select one node i and find shortest paths to all other N-1 nodes using breadth-first search.
- 3. Record # equal shortest paths reaching each node.
- 4. Move through nodes according to their distance from *i*, starting with the furthest.
- 5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 7. Exclude starting node j and i from increment.
- 8. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.

For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.

Same algorithm for computing drainage area in river networks (with 1 added across the board).

For edge betweenness, use exact same algorithm but now

- 1. j indexes edges,
- 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as

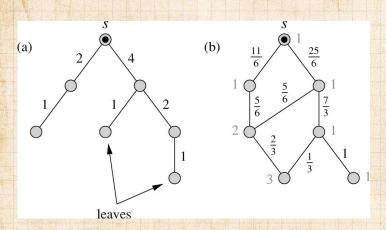
O(mN).

Centrality
measures
Degree centrality
Closeness centrality

Eigenvalue centrality Hubs and Authorities

Nutshell References

Newman's Betweenness algorithm: [4]



COcoNuTS *

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

Nutshell

Important nodes have important friends:

 \bigotimes Define x_i as the 'importance' of node i.

Idea: x_i depends (somehow) on x_j if j is a neighbor of i.

Recursive: importance is transmitted through a network.

🚳 Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- \clubsuit Above gives $\vec{x} = c\mathbf{A}^{\mathsf{T}}\vec{x}$ or $\mathbf{A}^{\mathsf{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.
- 🙈 Eigenvalue equation based on adjacency matrix ...
- Note: Lots of despair over size of the largest eigenvalue. [7] Lose sight of original assumption's non-physicality.

COcoNuTS

Background

Centrality
measures

Degree centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

Important nodes have important friends:

So: solve $\mathbf{A}^{\mathsf{T}}\vec{x} = \lambda \vec{x}$.

But which eigenvalue and eigenvector?

& We, the people, would like:

- 1. A unique solution. <
- 2. λ to be real. \checkmark
- 3. Entries of \vec{x} to be real. \checkmark
- 4. Entries of \vec{x} to be non-negative. \checkmark
- 5. λ to actually mean something ... (maybe too much)
- 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative ...) (maybe too much)
- 7. λ to equal 1 would be nice ... (maybe too much)
- 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)

We rummage around in bag of tricks and pull out the Perron-Frobenius theorem ...

Eigenvalue centrality Hubs and Authorities

Perron-Frobenius theorem: \square If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i=2,\ldots,N$.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_i \sum_{j=1}^N a_{ij} \leq \lambda_1 \leq \max_i \sum_{j=1}^N a_{ij}$$

- 4. All other eigenvectors have one or more negative entries.
- 5. The matrix *A* can make toast.
- 6. Note: Proof is relatively short for symmetric matrices that are strictly positive [6] and just non-negative [3].

COcoNuTS

Background

Centrality

Degree centrality Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

Assuming our network is irreducible , meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.

Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.

Analogous to notion of ergodicity: every state is reachable.

(Another term: Primitive graphs and matrices.)

Background

Centrality neasures

Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities.
- Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
- More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
- Known as the HITS algorithm (Hyperlink-Induced Topics Search).

Background

Centrality
measures
Degree centrality
Closeness centra

Eigenvalue centrality Hubs and Authorities

Nutshell

Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- $ext{\&}$ Means x_i should increase as $\sum_{j=1}^N a_{ji} y_j$ increases.
- Note: indices are ji meaning j has a directed link to i.
- New story II: good hubs point to good authorities.
- & Means y_i should increase as $\sum_{i=1}^{N} a_{ij} x_j$ increases.
- Linearity assumption:

 $ec{x} \propto A^T ec{y}$ and $ec{y} \propto A ec{x}$

Centrality
measures
Degree centrality
Closeness central

Eigenvalue centrality Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y} \text{ and } \vec{y} = c_2 A \vec{x}$$

where c_1 and c_2 must be positive.

Above equations combine to give

$$\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x}.$$

where $\lambda = c_1 c_2 > 0$.

It's all good: we have the heart of singular value decomposition before us ...

Degree centrality

Eigenvalue centrality **Hubs and Authorities** Nutshell

We can do this:

- A^TA is symmetric.
- A^TA is semi-positive definite so its eigenvalues are all ≥ 0 .
- A^TA' s eigenvalues are the square of A's singular values.
- $A^T A$'s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- 🚵 So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

Hubs and Authorities

Nutshell:

- Measuring centrality is well motivated if hard to carry out well.
- 🙈 We've only looked at a few major ones.
- Methods are often taken to be more sophisticated than they really are.
- Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
- Focus on nodes rather than groups or modules is a homo narrativus constraint.
- Possible that better approaches will be developed.

Background

measures
Degree centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

- [1] U. Brandes.

 A faster algorithm for betweenness centrality.

 J. Math. Sociol., 25:163–177, 2001. pdf
- [2] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf
- [3] K. Y. Lin.
 An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices.
 Chinese Journal of Physics, 15:283–285, 1977.
 pdf

Background

Centrality

Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Nutshell

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.

Phys. Rev. E, 64(1):016132, 2001. pdf

[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, 2004. pdf

[6] F. Ninio.
 A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.
 J. Phys. A.: Math. Gen., 9:1281–1282, 1976. pdf

Background
Centrality
measures

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality Hubs and Authorities

Nutsnell

References III

COcoNuTS

Background Centrality

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

Nutshell

References

[7] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

