

These slides are brought to you by:

VERMONT ୬ ର. ଫ. 1 of 82

COcoNuTS

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

VERMONT

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

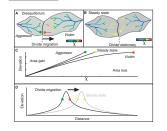
Models

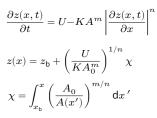
Nutshell

References

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins" Willett et al., Science Magazine, **343**, 1248765, 2014.^[21]





Piracy on the high χ 's:

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

COcoNuTS

More: How river networks move across a landscape 🗹

UNIVERSITY � q ॡ 5 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

VERMONT

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- ▶ In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_{\ell} = R_{s}$. Insert question from assignment 1 🖸
- ▶ To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

COcoNuTS

Let us make them happy

We need one more ingredient:

Space-fillingness

- ► A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- ► For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream \ segment \ lengths}}{{\rm basin \ area}} = \frac{\sum_{\omega=1}^\Omega n_\omega \bar{s}}{a_\Omega}$$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

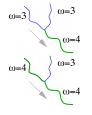
References

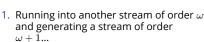
VERMONT ୬ ର. ୦. ୨ of 82

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n.$
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Observe that each stream of order ω terminates by either:





• $2n_{\omega+1}$ streams of order ω do this

- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

More with the happy-making thing

Putting things together:

- $n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{M} \underbrace{\frac{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}}_{\text{absorption}}$
- Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .
- ▶ Insert question from assignment 1 🖸
- Solution:

$$R_n = \frac{(2+R_T+T_1)\pm \sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

(The larger value is the one we want.)

Finding other Horton ratios

Connect Tokunaga to R_{\circ}

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\ k-1} \right) \\ \propto R_T^{\ \omega}$$

Horton ⇔ Tokunaga Reducing Horton

COcoNuTS

Scaling relations Fluctuations Models Nutshell References

VERMONT •ጋ ዓ. ભ 10 of 82

COcoNuTS

Horton Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

A UNIVERSITY ሳ ዓ ርጉ 11 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga are happy

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Suggests Horton's laws must contain some redundancy
- be generalized to relationships between non-trivial statistical distributions. [3, 4]

VERMONT

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

- Seems that R_a must as well...
- We'll in fact see that $R_a = R_n$.
- > Also: Both Tokunaga's law and Horton's laws can

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

 $R_n = \frac{(2+R_T+T_1) + \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$

• Recall
$$R_{\ell} = R_s$$
 so

$$R_\ell = R_s = R_T$$

And from before:

Horton and Tokunaga are happy

The other way round

- ▶ Note: We can invert the expressions for R_n and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters.

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R$$

 $R_T = R_\ell,$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

VERMONT ୬ ର. ୦. 13 of 82

COcoNuTS

COcoNuTS

Horton ⇔ Tokunaga

Fluctuations

Models

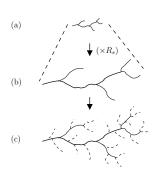
Nutshell

References

Reducing Hortor Scaling relations

Horton and Tokunaga are friends

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order $\omega - 1$ streams

Horton and Tokunaga are friends

...and in detail:

- Must retain same drainage density.
- ▶ Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right).$$

For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

COcoNuTS

Reducing Horton Scaling relations Fluctuations Models Nutshell

References

VERMONT かへで 15 of 82

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

 $T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{\ k-1}}{R_\ell - 1} = T_1 R_\ell^{\ k-1} \quad \text{... yep.} \end{split}$$

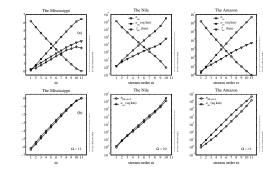
COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models Nutshell References

VERMONT

COcoNuTS



Horton's laws of area and number:

Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- In bottom plots, stream number graph has been flipped vertically.
- Highly suggestive that $R_n \equiv R_a$...

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

two largest orders.

Rule of thumb: discard data for two smallest and

•⊃ q (マ 17 of 82 COcoNuTS Horton ⇔ Tokunaga Reducing Horton

UNIVERSITY

Scaling relation Fluctuations Models Nutshell References

Fluctuations Models

Nutshell References

VERMONT

Reducing Horto Scaling relation:

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

 $a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathsf{dd}}$ $\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{n} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}}$ $=\frac{R_n^{\ \Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$

Horton ⇔ Tokunaga Reducing Horton Scaling relatio

COcoNuTS

Fluctuations Models Nutshell References

VERMONT • ኃ ዓ ር · 21 of 82

Reducing Horton's laws:

Reducing Horton's laws:

Continued ...

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

• 𝔍 𝔄 19 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

$$\begin{split} & \mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim \frac{R_n^{\Omega-1}}{1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{split}$$

• So, a_{Ω} is growing like R_n^{Ω} and therefore:

 $R_n \equiv R_a$

VERMONT

COcoNuTS

Fluctuations Models

UNIVERSITY

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Equipartitioning:

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \overline{n_\omega \bar{a}_\omega} = \text{const}$$

$$\begin{split} n_\omega \propto (R_n)^{-\omega} \\ \bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{split}$$

Models Nutshell References

COcoNuTS

Horton ⇔ Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Nutshell References

Not quite:

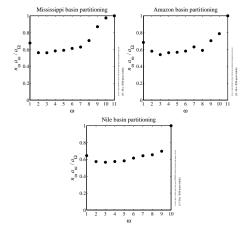
- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy Need to account for sidebranching.
- Insert question from assignment 2 Image: 2

VERMONT

References

Equipartitioning:

Some examples:



COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relatio Fluctuations Models Nutshell References

• n q (+ 25 of 82

Scaling laws

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}.$
- ▶ We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

VERMONT

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshel

References

Scaling laws

Scaling laws

►

►

Connecting exponents

optimization, ...

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story^[17, 1, 2]

Probability distributions with power-law decays

Earthquake magnitudes (Gutenberg-Richter law)

Wealth (maybe not—at least heavy tailed)

Statistical mechanics (phase transitions)^[5]

Our task is always to illuminate the mechanism...

We see them everywhere:

City sizes (Zipf's law)

Word frequency (Zipf's law)^[22]

A big part of the story of complex systems Arise from mechanisms: growth, randomness,

- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- ▶ The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

 $P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$

ŀ

Also known as the exceedance probability.

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

VERMONT

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations

Models Nutshell References

A UNIVERSITY

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nutshell References

Fluctuation Models Nutshell References

Scaling laws

A little further...

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network *p*.
- Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- Q: What is probability that the longest stream from *p* has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- Roughly observed: $1.3 \leq \tau \leq 1.5$ and $1.7 \leq \gamma \leq 2.0$

UNIVERSITY

COcoNuTS

Scaling laws

Finding γ :

- ▶ The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$\begin{split} P_{>}(\ell_{*}) &= \int_{\ell=\ell_{*}}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_{*}}^{\ell_{\max}} \frac{\ell^{-\gamma} \mathrm{d}\ell}{\ell_{\ell=\ell_{*}}} \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \Big|_{\ell=\ell_{*}}^{\ell_{\max}} \end{split}$$

 $\propto \ell_*^{-(\gamma-1)} \quad \text{for } \ell_{\max} \gg \ell_*$

VERMONT ୬ ୦ ୦ ୦ 32 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- Approximate $P_{\sim}(\ell_*)$ as

$$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}.$$

- where $N_{>}(\ell_{*}; \Delta)$ is the number of sites with main stream length $> \ell_*$.
- Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s...$

Scaling laws

Finding γ :

• Set $\ell_* = \overline{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

- $\blacktriangleright \Delta$'s cancel
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- ▶ So... using Horton's laws...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

VERMONT • ኃ ዓ ር · 34 of 82

Scaling laws

Finding γ :

▶ We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1\cdot R_n^{\,\Omega-\omega'})(\bar{s}_1\cdot R_s^{\,\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega - \omega'.$
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Scaling laws

Finding γ :

$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$$

Scaling laws

Finding γ :

Nearly there:

$$P_>(\bar{\ell}_\omega) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- Need to express right hand side in terms of $\overline{\ell}_{\omega}$.
- Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_s^{\,\omega} = e^{\,\omega \ln R}$$

VERMONT

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Scaling relations Fluctuations Models Nutshell

References

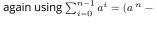
UNIVERSITY • う q (マ・ 36 of 82

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

F



COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

References

Scaling laws

Finding γ :

Þ

Therefore:

 $P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\,\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$

- $\propto ar{m\ell}$, . ln $(R_n/R_s)/\ln R_s$
- $\mathbf{E} = \bar{\ell}_{ci}^{-(\ln R_n \ln R_s) / \ln R_s}$
- τ_ω
- $= \bar{\ell}_{\omega}^{-\ln R_n / \ln R_s + 1}$
 - $= \bar{\ell}_{\omega}^{-\gamma+1}$

COcoNuTS

Horton ⇔ Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relations

Conversion 28 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

わくひ 39 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling laws

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

 $\tau=2-\ln R_s/\ln R_n=2-1/\gamma$

Insert question from assignment 2 🖸

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Scaling laws

Hack's law: [6]

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega} \text{ and } \bar{a}_{\omega} \propto R_n^{\,\omega}$$

 $\ell \propto a^h$

Observe:

$$\bar{\ell}_\omega \propto e^{\,\omega \ln R_s} \propto \left(e^{\,\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

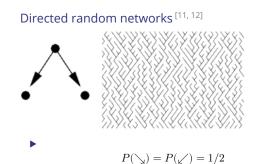
$$\propto \left(R_n^{\,\omega}\right)^{\ln R_s/\ln R_n} \propto \bar{a}_{\omega}^{\,\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Connecting exponents

Only 3 parameters are independent: e.g., take $d,\,R_n,$ and R_s

relation:	scaling relation/parameter: ^[2]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	$R_a = \frac{R_n}{R_n}$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}$	$R_{\ell} = \frac{R_s}{R_s}$
$\ell \sim a^h$	$h = \log \frac{R_s}{\log R_n}$
$a \sim L^D$	D = d/h
$L_\perp \sim L^H$	H = d/h - 1
$P(a) \sim a^{-\tau}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

Scheidegger's model



- Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14]
- Useful and interesting test case

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks

area a

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models Nutshell References

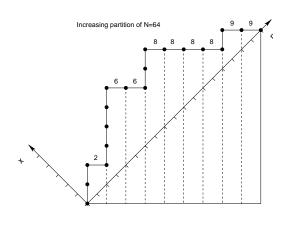
الم

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

DAC 43 of 82

Scheidegger's model



Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

 $P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$

and so $P(\ell) \propto \ell^{-3/2}.$

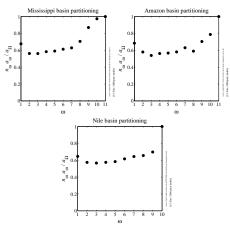
• Typical area for a walk of length n is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- R_n and R_ℓ have not been derived analytically.

Equipartitioning reexamined:

Recall this story:



COcoNuTS

VERMONT • ኃ ዓ ር · 46 of 82

Equipartitioning

What about

Fluctuations

Moving beyond the mean:

network structure

average properties, e.g.,

- $P(a) \sim a^{-\tau}$
- Since $\tau > 1$, suggests no equipartitioning:

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

?

- \blacktriangleright P(a) overcounts basins within basins...
- while stream ordering separates basins...

Both Horton's laws and Tokunaga's law relate

 $\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$

Natural generalization to consider relationships

Yields rich and full description of branching

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UNIVERSITY VERMONT

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

UNIVERSITY •⊃ < へ ↔ 49 of 82

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

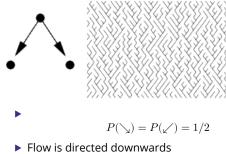
UNIVERSITY ∽ q (~ 50 of 82

A toy model—Scheidegger's model

between probability distributions

See into the heart of randomness...

Directed random networks^[11, 12]



Scaling relations Fluctuations Models Nutshell References

COcoNuTS

Horton ⇔ Tokunaga

Fluctuations

Models

Nutshell

References

VERMONT

୬ ର ୦୦ 44 of 82

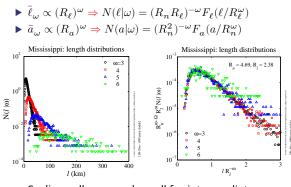
COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

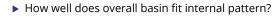
Reducing Horton Scaling relations

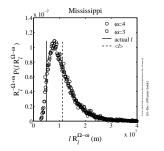
Generalizing Horton's laws

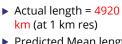


- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Generalizing Horton's laws







- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km Actual length/Mean

length = 44 %

Okay.

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

୬ ର. ୦. 51 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshel

References

VERMONT わくで 52 of 82

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3 km):

basin:	ℓ_{Ω}	$\bar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/\bar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	\bar{a}_{Ω}	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	σ_a/\bar{a}_Ω
Mississippi	a _Ω 2.74	$ar{a}_{\Omega}$ 7.55	σ _a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon					<i>a</i> , <i>u</i>
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

Combining stream segments distributions:

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Stream segments

stream lengths

sum to give main

▶ $P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

> VERMONT •ე < (ი 54 of 82

> > COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

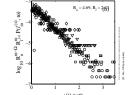
VERMONT

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

VERMONT かへで 56 of 82



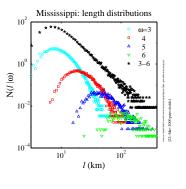
Generalizing Horton's laws

Next level up: Main stream length distributions must combine to give overall distribution for stream length

 $\blacktriangleright P(\ell) \sim \ell^{-\gamma}$

Interesting...

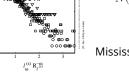
Another round of convolutions^[3]

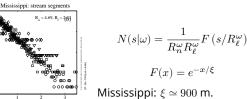


- COcoNuTS

Generalizing Horton's laws

convolution of distributions:





• Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to

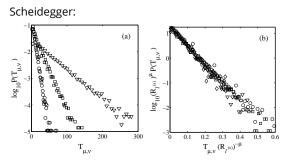
 $N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$

Generalizing Horton's laws

▶ $P(n_{1,6})$ versus $P(a_6)$ for a randomly selected $\omega = 6$ basin.

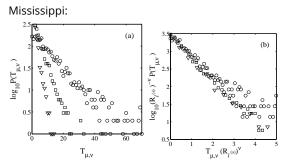
 $\times 10^{-4}$ 1.2 10⁻⁴ 0.8 0.6 0.4 0.2 0 x 10⁴

Generalizing Tokunaga's law



- Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Generalizing Tokunaga's law



Same data collapse for Mississippi...

Generalizing Tokunaga's law

So

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

୬ ୦ ୦ ୦ 57 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu} / (R_s)^{\mu} \right]$$
 where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$\boxed{P(s_\mu) \Leftrightarrow P(T_{\mu,\nu})}$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

 $-\nu -1$]

VERMONT •ጋ ዓ. ር • 60 of 82

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

1

 $\mu - 2$

Generalizing Tokunaga's law

Network architecture:

- Inter-tributary lengths exponentially distributed Leads to random
- spatial distribution of stream segments

beginning

order

 $\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$

Probability decays exponentially with stream

Inter-tributary lengths exponentially distributed

 \blacktriangleright \Rightarrow random spatial distribution of stream segments

Generalizing Tokunaga's law

terminating is constant:

Horton ⇔ Tokunaga Reducing Horton Follow streams segments down stream from their Scaling relations Fluctuations • Probability (or rate) of an order μ stream segment

COcoNuTS

UNIVERSITY

Models Nutshell References

VERMONT ∽ q (~ 62 of 82

COcoNuTS

VERMONT

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Generalizing Tokunaga's law

 Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} {s_{\mu}-1 \choose T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $\tilde{p}_{\mu} =$ probability of an order μ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Generalizing Tokunaga's law

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} {s_{\mu}-1 \choose T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- ▶ Set $(x,y) = (s_{\mu}, T_{\mu,\nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = N x^{-1/2} \left[F(y/x)\right]^x$$

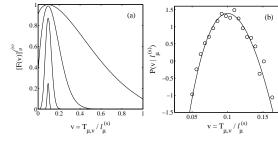
where

$$F(v) = \Bigl(\frac{1-v}{q}\Bigr)^{-(1-v)}\Bigl(\frac{v}{p}\Bigr)^{-v}.$$

Generalizing Tokunaga's law

• Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:



VERMONT

COcoNuTS

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

VERMONT

୬ ର.୦୦ 63 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

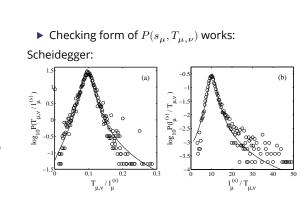
Fluctuations

Models

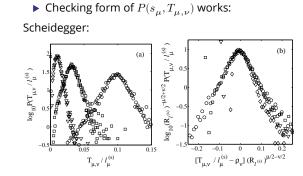
Nutshell

References

Generalizing Tokunaga's law



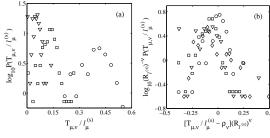
Generalizing Tokunaga's law



Generalizing Tokunaga's law

 \blacktriangleright Checking form of $P(s_{\mu},T_{\mu,\nu})$ works:

Mississippi:



COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

کی ^{Cuniversity} ا

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell References

Models

COcoNuTS

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

References

Models Nutshell

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al.^[10]

• Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.

Theoretical networks

Summary of universality classes:

network

Non-convergent flow

Directed random

Undirected random

Self-similar

OCN's (I)

OCN's (II)

OCN's (III)

Real rivers

And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

h

1

2/3

5/8

1/2

1/2

2/3

3/5

0.5-0.7

d

1

1

5/4

1

1

1

1

1.0-1.2

VERMONT • ⊃ < C + 72 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

References

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell

A UNIVERSITY

COcoNuTS

Reducing Horton Scaling relations Fluctuations Models Nutshell

VERMONT • う q C+ 74 of 82

COcoNuTS

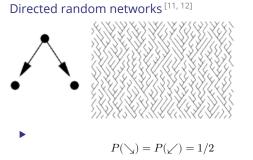
References

References

unconnected with surfaces.

VERMONT

Scheidegger's model



Random subnetworks on a Bethe lattice^[13]

Dominant theoretical

tractable.

(oops).

concept for several decades.

Bethe lattices are fun and

Led to idea of "Statistical

inevitability" of river

network statistics [7]

• In fact, Bethe lattices \simeq

infinite dimensional spaces

But Bethe lattices

So let's move on...

 Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

UNIVERSITY

Nutshell

Branching networks II Key Points:

▶ Horton's laws and Tokunaga law all fit together.

 $h \Rightarrow \ell \propto \overline{a^h}$ (Hack's law).

 $d \Rightarrow \ell \propto L^d_{\scriptscriptstyle \rm II}$ (stream self-affinity).

- For 2-d networks, these laws are 'planform' laws and ignore slope.
- > Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

COcoNuTS

VERMONT

୬ ର. ୦୦ 69 of 82

Reducing Hortor Scaling relations Fluctuations Models

Nutshel References

わくで 70 of 82

COcoNuTS

References I

- [1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541-3543, 1994. pdf 🗹
- [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf
- [3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

COcoNuTS

VERMONT

• ク < (や 75 of 82

COcoNuTS

Horton ⇔ Tokunaga

References II

- [4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf
- [5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992.
- [6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf 🗹

References III

- [7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf
- [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and I. R. Banavar. Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf
- [9] S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023-1029, 1995.

References IV

- [10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.
- [11] A. E. Scheidegger. A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdf 🕑
- [12] A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

VERMONT • ⊃ < C+ 78 of 82

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

References V

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf 🕑

- [14] H. Takayasu. Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563-2565, 1989. pdf 🖸
- [15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

References VI

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345–4347, 1989. pdf

- [17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdf 🖸
- [18] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1-19, 1966. pdf 🖸

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A UNIVERSITY

COcoNuTS

UNIVERSITY かへで 80 of 82

Horton ⇔ Tokunaga

Fluctuations Models Nutshell References

COcoNuTS

Nutshel References

UNIVERSITY

Reducing Horton Scaling relations Fluctuations Models

かへで 76 of 82

Physical Review A, 37(8):3110-3117, 1988.

References VII

 E. Tokunaga.
Consideration on the composition of drainage networks and their evolution.
Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf 27

[20] E. Tokunaga.
Ordering of divide segments and law of divide segment numbers.
Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins. <u>Science Magazine</u>, 343(6175):1248765, 2014. pdf Horton \Leftrightarrow Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

COcoNuTS

References

الم VERMONT &

COcoNuTS

References VIII

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

CNIVERSITY
VERMONT
S