Branching Networks II

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

UNIVERSITY

VERMONT

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS -

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

uctuations

Models

These slides are brought to you by:

COcoNuTS

Horton Art Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

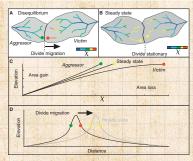
Models

Nutshell

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins"

Willett et al., Science Magazine, **343**, 1248765, 2014. [21]



$$\begin{split} \frac{\partial z(x,t)}{\partial t} &= U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n \\ z(x) &= z_{\rm b} + \left(\frac{U}{KA_0^m} \right)^{1/n} \chi \\ \chi &= \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x' \end{split}$$

Horton A Tokunaga

Reducing Horton

Scaling relations

Huctuations

Models

Nutshell

References

More: How river networks move across a landscape ☑ (Science Daily)

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question from assignment 1 🗷
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

com g rendero.

Fluctuations

Models

We need one more ingredient:

Space-fillingness

- ► A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- ► For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ▶ In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} ar{s}_{\omega}}{a_{\Omega}}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

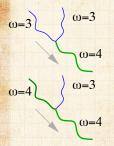
riactaatic

Models

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1}=R_n$.
- ► Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

-

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- ▶ Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .
- ▶ Insert question from assignment 1 🖸
- ▶ Solution:

$$R_n = \frac{(2+R_T+T_1) \pm \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \propto R_T^{\;\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Altogether then:

•

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

ightharpoonup Recall $R_{\ell}=R_{s}$ so

$$R_{\ell} = R_s = R_T$$

▶ And from before:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- \triangleright Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- ▶ Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_{\ell}$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$$

➤ Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

(a) (b)

- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order $\omega 1$ streams

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

...and in detail:

- Must retain same drainage density.
- ▶ Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$

 $T_k = (R_{\ell} - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_{\ell}^{i-1} \right)$ $= (R_{\ell} - 1) \left(1 + T_1 \frac{R_{\ell}^{k-1} - 1}{R_{\ell} - 1} \right)$

 $\simeq (R_{\ell}-1)T_1 rac{R_{\ell}^{\ k-1}}{R_{\ell}-1} = T_1 R_{\ell}^{k-1} \quad ... \ {
m yep.}$

Horton ⇔ Tokunaga

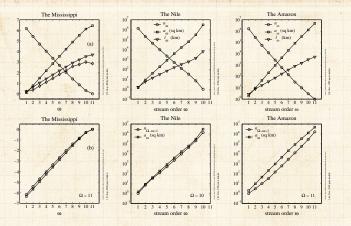
Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Horton's laws of area and number:



- ► In bottom plots, stream number graph has been flipped vertically.
- ► Highly suggestive that $R_n \equiv R_a$...

COCONUTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

The UNIVERSITY VERMONT

୬ q ॡ 18 of 82

- ► How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Rough first effort to show $R_n \equiv R_a$:

- $ightharpoonup a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$\begin{split} a_{\Omega} &\simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\ &\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\ &= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \end{split}$$

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

$$\begin{split} &a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim R_n^{\Omega-1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{split}$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ▶ Insert question from assignment 2 🗹

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Equipartitioning:

Intriguing division of area:

- ▶ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

► Reason:

$$n_\omega \propto (R_n)^{-\omega}$$

$$\bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

Horton ⇔ Tokunaga

Reducing Horton

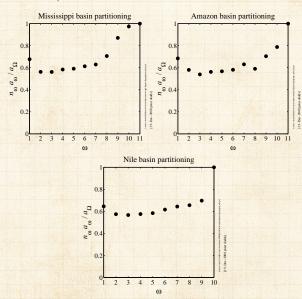
Scaling relations

Fluctuations

Models Nutshell

Equipartitioning:

Some examples:



COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Neural reboot (NR):

Fwoompff

COCONUTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- ▶ Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent $(R_n = R_a)$
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

A little further...

- Ignore stream ordering for the moment
- ightharpoonup Pick a random location on a branching network p.
- ► Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

Tokunaga Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Probability distributions with power-law decays

- ▶ We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ▶ Word frequency (Zipf's law) [22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- ▶ A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Tokunaga Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- ➤ The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$

-

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

- ▶ The connection between P(x) and $P_{\sim}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$\begin{split} P_>(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \frac{\ell^{-\gamma} \, \mathrm{d}\ell}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \\ &\propto \ell_*^{-(\gamma-1)} \quad \text{for } \ell_{\mathsf{max}} \gg \ell_* \end{split}$$

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell References

Scaling laws

Finding γ :

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- ightharpoonup Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_>(\ell_*;\Delta)$ is the number of sites with main stream length $>\ell_*$.

• Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s...$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations Models

Nutshell

Finding γ :

- ▶ Set $\ell_* = \bar{\ell}_{\omega}$, for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

▶ We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

•

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n-1)/(a-1)$

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton ⇔

► Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} \\ = e^{-\omega \ln(R_n/R_s)}$$

- $lackbox{ Need to express right hand side in terms of } \bar{\ell}_{\omega}.$
- ▶ Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_{s}^{\,\omega} = e^{\,\omega \ln R_{s}}$$

Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

► Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(\underline{e}^{\;\omega \ln R_s} \right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\pmb{\omega}} - \ln(R_n/R_s) / \ln R_s$$

$$=\bar{\ell}_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$

$$=\bar{\ell}_{\omega}^{-\gamma+1}$$

Tokunaga Reducing Horton

Scaling relations

Fluctuations

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question from assignment 2 2

- ► Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Tokunaga Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Hack's law: [6]

-

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect h to Horton ratios:

$$ar{\ell}_\omega \propto R_s^{\;\omega}$$
 and $ar{a}_\omega \propto R_n^{\;\omega}$

Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega \ln R_s} \propto \left(e^{\,\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto \bar{a}_\omega^{\,\ln R_s/\ln R_n} \Rightarrow \boxed{ \textcolor{red}{\hbar = \ln R_s/\ln R_n}}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = R_{s}$
$\ell \sim a^h$	$h = \log R_s / \log R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

Scheidegger's model

Directed random networks [11, 12]

•

$$P(\searrow) = P(\swarrow) = 1/2$$

- ► Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

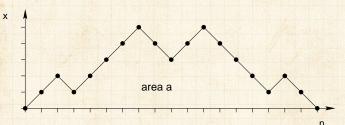
Models

Nutshell

A toy model—Scheidegger's model

Random walk basins:

▶ Boundaries of basins are random walks



COcoNuTS -

Horton ⇔ Tokunaga

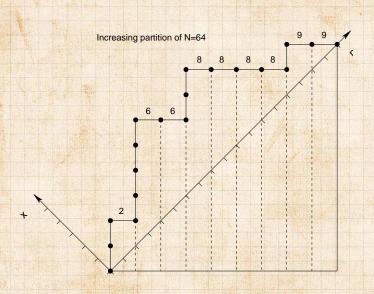
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model



COCONUTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Tokunaga Reducing Horton

Scaling relations

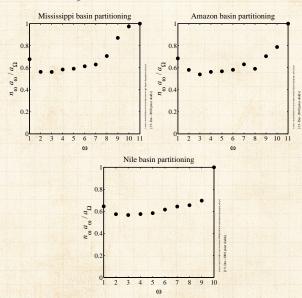
Fluctuations

Models

Nutshell

Equipartitioning reexamined:

Recall this story:



COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

▶ What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ightharpoonup P(a) overcounts basins within basins...
- while stream ordering separates basins...

Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Neural reboot (NR):

Feline elevation

COCONUTS

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Tokunaga
Reducing Horton
Scaling relations

Fluctuations Models

Nutshell

A toy model—Scheidegger's model

Directed random networks [11, 12]

 $P(\searrow) = P(\swarrow) = 1/2$

▶ Flow is directed downwards

COCONUTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

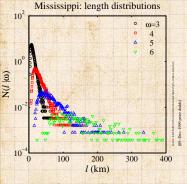
Models

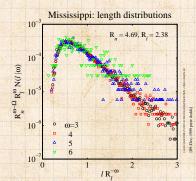
Nutshell

Generalizing Horton's laws

$$\blacktriangleright \ \bar{\ell}_\omega \propto (R_\ell)^\omega \Rightarrow N(\ell|\omega) = (R_n R_\ell)^{-\omega} F_\ell(\ell/R_\ell^\omega)$$

$$\blacktriangleright \ \bar{a}_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$$





- Scaling collapse works well for intermediate orders
- ► All moments grow exponentially with order

Horton ⇔ Tokunaga

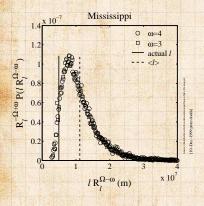
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

▶ How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- ► Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- ▶ Okay.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_Ω	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	$ar{a}_{\Omega}$	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	$\sigma_a/ar{a}_\Omega$
Mississippi	a_{Ω} 2.74	$ar{a}_{\Omega}$ 7.55	$\frac{\sigma_a}{5.58}$	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon				/	α, ιι
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

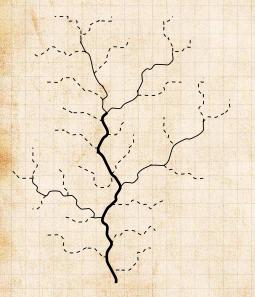
Fluctuations

Models

Nutshell

Combining stream segments distributions:

COCONUTS



Stream segments sum to give main stream lengths

$$\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$$

 $ightharpoonup P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Horton ⇔ Tokunaga

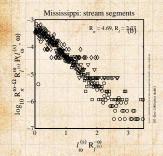
Reducing Horton Scaling relations

Fluctuations Models

Nutshell

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

Tokunaga

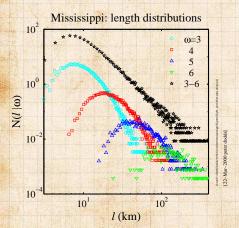
Reducing Horton Scaling relations

Fluctuations Models

Nutshell

Generalizing Horton's laws

Next level up: Main stream length distributions must combine to give overall distribution for stream length



- $P(\ell) \sim \ell^{-\gamma}$
- Another round of convolutions [3]
- ▶ Interesting...

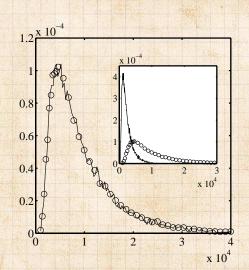
Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

- Number and area distributions for the Scheidegger model [3]
- $\triangleright P(n_{1.6})$ versus $P(a_6)$ for a randomly selected $\omega = 6$ basin.



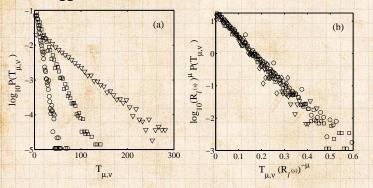
Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell

Scheidegger:



- $lackbox{ }$ Observe exponential distributions for $T_{\mu,\nu}$
- \triangleright Scaling collapse works using R_s

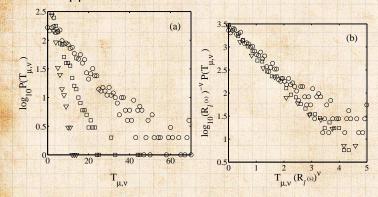
Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

Mississippi:



Same data collapse for Mississippi...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluetwations

Fluctuations Models

Nutshell

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- ▶ Look at joint probability $P(s_{\mu}, T_{\mu, \nu})$.

Tokunaga Reducing Horton

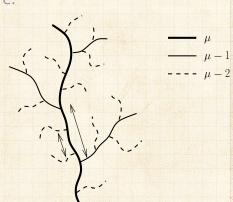
Scaling relations

Fluctuations

Nutshell

Network architecture:

- ▶ Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments



Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ▶ ⇒ random spatial distribution of stream segments

Tokunaga

Reducing Horton

Scaling relations

aling relation

Fluctuations Models

Nutshell

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} {s_{\mu}-1 \choose T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- $p_{\nu}=$ probability of absorbing an order ν side stream
- ullet $ilde{p}_{\mu}=$ probability of an order μ stream terminating
- \blacktriangleright Approximation: depends on distance units of s_μ
- ▶ In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} {s_{\mu}-1 \choose T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- ▶ Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

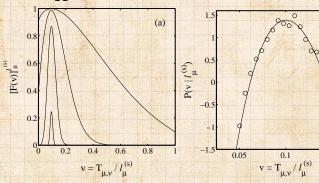
Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Scheidegger:



Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

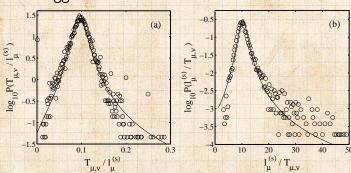
Fluctuations

Models Nutshell

(b)

0.15

Scheidegger:



Horton ⇔ Tokunaga

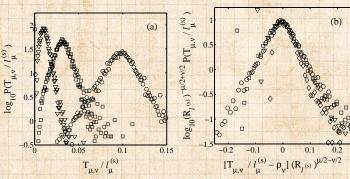
Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Scheidegger:



Horton ⇔ Tokunaga

Reducing Horton

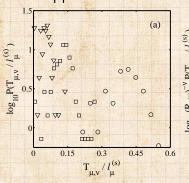
Scaling relations

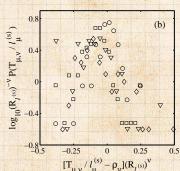
Fluctuations

Models

Nutshell

Mississippi:





Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton ⇔ Tokunaga

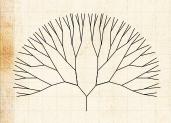
Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ▶ In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Tokunaga

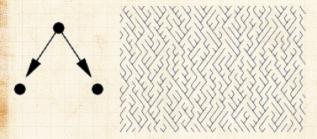
Reducing Horton Scaling relations

Fluctuations

Models Nutshell

Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

COCONUTS

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

Rodríguez-Iturbe, Rinaldo, et al. [10]

▶ Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \ (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^{\gamma}$$

- ► Landscapes obtained numerically give exponents near that of real networks.
- ▶ But: numerical method used matters.
- ▶ And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h\Rightarrow \ell \propto a^h$ (Hack's law). $d\Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- ► For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

[1] H. de Vries, T. Becker, and B. Eckhardt.
Power law distribution of discharge in ideal networks.

Water Posources Posearch, 30(12):35(1-35).

Water Resources Research, 30(12):3541–3543, 1994. pdf ☑

- [2] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf
- [3] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. II. Distributions of component size and number.
 Physical Review E, 63(1):016116, 2001. pdf

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

- [4] P. S. Dodds and D. H. Rothman.

 Geometry of river networks. III. Characterization of component connectivity.

 Physical Review E, 63(1):016117, 2001. pdf
- [5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992.
- [6] J. T. Hack.
 Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

[7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

- [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf
- [9] S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023–1029, 1995.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

[10] I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and
Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967. pdf♂

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

[13] R. L. Shreve.
Infinite topologically random channel networks.
Journal of Geology, 75:178–186, 1967. pdf

[14] H. Takayasu.
Steady-state distribution of generalized aggregation system with injection.
Physcial Review Letters, 63(23):2563–2565, 1989. pdf

[15] H. Takayasu, I. Nishikawa, and H. Tasaki.

Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110–3117, 1988.

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, 1989. pdf 2

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe.
Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso.
Water Resources Research, 26(9):2243–4, 1990.
pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966, pdf

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.

Dynamic reorganization of river basins.

Science Magazine, 343(6175):1248765, 2014.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

caming resource

Fluctuations

Models

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

