Branching Networks I

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS -

ntroduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

These slides are brought to you by:

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

COcoNuTS =

Introduction

Definitions

Allometry

Laws

Stream Ordering

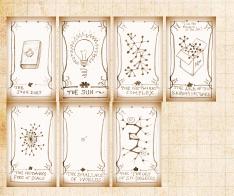
Horton's Laws

Tokunaga's Law Nutshell

oforoncos

Allometry Laws

Stream Ordering


Horton's Laws

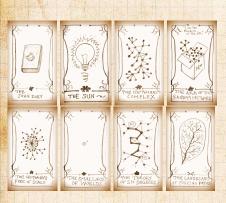
Tokunaga's Law Nutshell

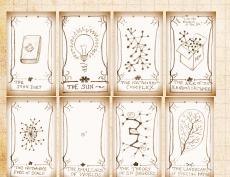
Laws

Nutshell

Stream Ordering

Horton's Laws


Tokunaga's Law



THE SMALLNESS OF WORLDS

THE NETWORKS

THE LANDSCAME

Introduction

Allometry Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Branching networks are useful things:

- Fundamental to material supply and collection

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- ▶ Collection: From many sources to one sink in 2- or 3-d.

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- ► Typically observe hierarchical, recursive self-similar structure

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Fundamental to material supply and collection
- ➤ Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- Fundamental to material supply and collection
- ➤ Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- Fundamental to material supply and collection
- ➤ Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- Fundamental to material supply and collection
- ➤ Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- ▶ Plants
- Evolutionary trees
- Organizations (only in theory...

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

References

- Fundamental to material supply and collection
- ➤ Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- ▶ Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

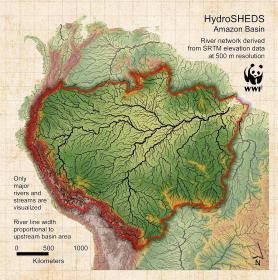
- Fundamental to material supply and collection
- ► Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

- River networks (our focus)
- Cardiovascular networks
- ▶ Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction

Allometry Laws

Stream Ordering


Horton's Laws

Tokunaga's Law Nutshell

Branching networks are everywhere...

http://hydrosheds.cr.usgs.gov/

COcoNuTS

Introduction

Allometr

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG

COcoNuTS -

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View"

Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. [?]

Initiation, Elongation

Elaboration, Piracy.

Abstraction, Absorption.

COcoNuTS

Introduction

Allometry

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Fig. 8—An ideal diagrammatic summary of the development of a drainage system given for purposes of comparison only. The first four parts show extension, thus: 1, initiation; 2, elongation; 3, elaboration; and 4, maximum extension. Parts 3 and 6 represent steps during integration.

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

COcoNuTS -

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Shaw and Magnasco's beautiful erosion simulations

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Outline

Introduction Definitions

Allometry

Stream Ordering

Horton's Jaws

Tokunaga's Law

Nutshel

Reference

COCONUTS *

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream
- Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Geomorphological networks

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Geomorphological networks

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks.

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- ► Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks.

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Geomorphological networks

Definitions

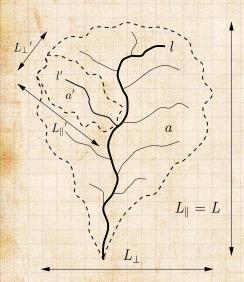
- ▶ Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- ▶ In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

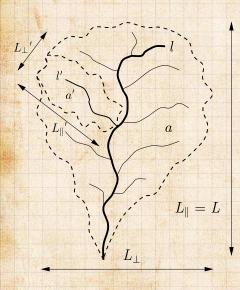
Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :

COCONUTS

Introduction Definitions Laws

Stream Ordering

Horton's Laws


Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :

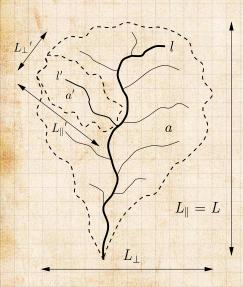
 $\triangleright a = drainage$ basin area

COcoNuTS

Introduction Definitions Laws

Stream Ordering

Horton's Laws


Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\parallel} :

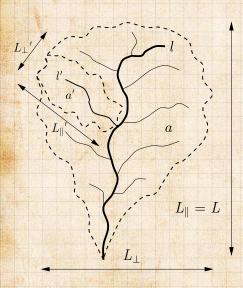
- $\triangleright a = drainage$ basin area
- ▶ ℓ = length of longest (main) stream (which may be fractal)

COcoNuTS

Introduction Definitions

Stream Ordering

Horton's Laws


Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\parallel} :

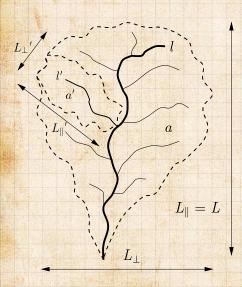
- $\triangleright a = drainage$ basin area
- ▶ ℓ = length of longest (main) stream (which may be fractal)
- $ightharpoonup L = L_{\parallel} =$ longitudinal length of basin

COCONUTS

Definitions

Stream Ordering

Horton's Laws


Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :

- a = drainagebasin area
- ▶ ℓ = length of longest (main) stream (which may be fractal)
- $\begin{array}{l} \blacktriangleright \ L = L_{\parallel} = \\ \text{longitudinal} \\ \text{length of basin} \end{array}$
- $L = L_{\perp} =$ width of basin

COCONUTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Outline

Introduction Definitions Allometry

Stream Ordering

Hortan's Laws

Tokunaga's Law

Nutshel

Beference

COcoNuTS =

Introduction

Definitions

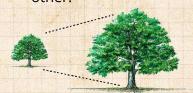
Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



Allometry

▶ Isometry: dimensions scale linearly with each other.

COCONUTS

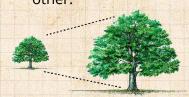
Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

► Isometry: dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.

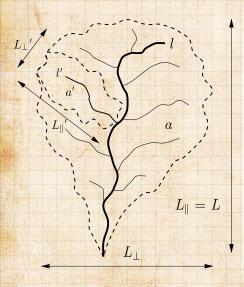
Introduction

Definitions

Allometry

Allometry

Stream Ordering


Horton's Laws

Tokunaga's Law Nutshell

Allometric relationships:

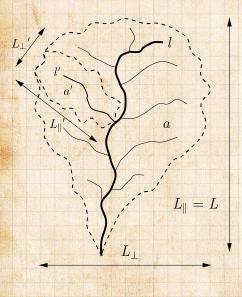
COCONUTS

Introduction Definitions Allometry

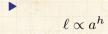
Stream Ordering Horton's Laws Tokunaga's Law

Allometric relationships:

COCONUTS


Introduction Definitions Allometry

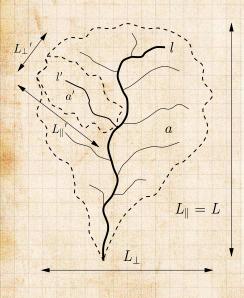
Stream Ordering Horton's Laws Tokunaga's Law



Allometric relationships:

 $\ell \propto L^d$

COCONUTS


Introduction Definitions Allometry

Stream Ordering Horton's Laws Tokunaga's Law

Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

► Combine above:

 $a \propto L^{d/h} \equiv L^D$

COCONUTS

Introduction Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

'Laws'

▶ Hack's law (1957) [2]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

COCONUTS

Introduction Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

▶ Hack's law (1957) [2]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

reportedly 1.0 < d < 1.1

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

▶ Hack's law (1957) [2]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Stream Ordering

Horton's Laws

Tokunaga's Law

Outline

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshel

Reference

COcoNuTS *

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Relation: Name or description:

 $T_k = T_1(R_T)^k$ Tokunaga's law $\ell \sim L^d$ self-affinity of single channels $n_{\omega}/n_{\omega+1}=R_n$ Horton's law of stream numbers $\ell_{\ldots,\perp,1}/\ell_{\ldots}=R_{\ell}$ Horton's law of main stream lengths Horton's law of basin areas $\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$ Horton's law of stream segment lengths $\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_{s}$ $L_{\perp} \sim L^{H}$ scaling of basin widths $P(a) \sim a^{-\tau}$ probability of basin areas probability of stream lengths $P(\ell) \sim \ell^{-\gamma}$ $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas $\Lambda \sim a^{\beta}$ Langbein's law $\lambda \sim L^{\varphi}$ variation of Langbein's law

efinitions lometry ws

ream Ordering

orton's Laws okunaga's Law

utshell

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
arphi	1.05 ± 0.05

Introduction Definitions Allometry Laws

Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

Laws Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Order of business:

- 1. Find out how these relationships are connected.

Laws Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.

Kind of a mess...

COcoNuTS

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

Introduction Definitions
Allometry
Laws
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

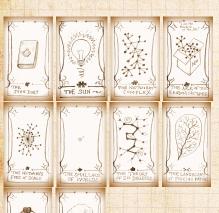
Introduction

Definitions

Allometry

Laws

Stream Ordering


Horton's Laws

Tokunaga's Law

Nutshell

THE NETWORKS

THE TREES OF REALITY

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Method for describing network architecture:

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [3]
- ▶ Modified by Strahler (1957)
- ► Term: Horton-Strahler Stream Ordering
- Can be seen as iterative trimming of a network

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [3]
- ► Modified by Strahler (1957) [6]
- ► Term: Horton-Strahler Stream Ordering
- Can be seen as iterative trimming of a network.

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Laws

Tokunaga's Law

Nutshell

References

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [3]
- ▶ Modified by Strahler (1957) [6]
- ► Term: Horton-Strahler Stream Ordering [4]

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

The UNIVERSITY

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [3]
- ▶ Modified by Strahler (1957) [6]
- ► Term: Horton-Strahler Stream Ordering [4]
- Can be seen as iterative trimming of a network.

Some definitions:

- ► A channel head is a point in landscape where flow becomes focused enough to form a stream.
- ➤ A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels
- Use symbol $\omega = 1, 2, 3, ...$ for stream order

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► A channel head is a point in landscape where flow becomes focused enough to form a stream.
- ▶ A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, ...$ for stream order

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

- ▶ A channel head is a point in landscape where flow becomes focused enough to form a stream.
- ▶ A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.

Stream Ordering

Horton's Laws

Tokunaga's Law

Some definitions:

- ▶ A channel head is a point in landscape where flow becomes focused enough to form a stream.
- ▶ A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, ...$ for stream order.

Stream Ordering

Horton's Laws

Tokunaga's Law

COCONUTS

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

Label al Seu estreams as

3 Subsect (Siril & no stream in light (o) then = 13)

remaile s

In Elaboration was besined about to

COcoNuTS -

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

Ladelad sou a streams as

3 Series only one stream of the order of he had stream

TELEPHONE ISSUE STATES TO SERVER TO

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

COcoNuTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

COcoNuTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

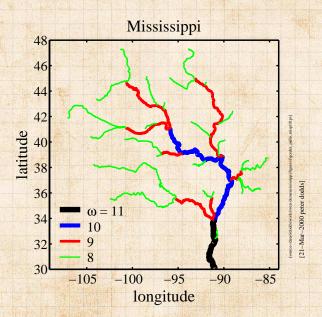
COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

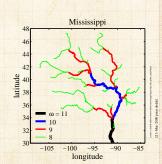
Stream Ordering—A large example:

COCONUTS

Introduction Definitions Allometry Laws

Stream Ordering

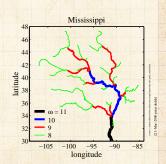
Horton's Laws


Tokunaga's Law

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

Horton's Laws Tokunaga's Law

Nutshell



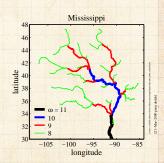
- As before, label all source streams as order $\omega = 1$.

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

Horton's Laws

Tokunaga's Law

Nutshell

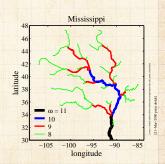


- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream

Horton's Laws

Tokunaga's Law

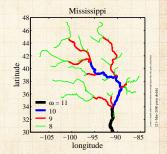
Nutshell



- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- \blacktriangleright Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).

Horton's Laws

Tokunaga's Law


Nutshell

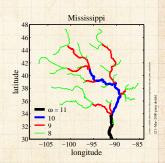
- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- \blacktriangleright Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- ▶ If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.

Horton's Laws

Tokunaga's Law

Nutshell

References


29 of 53

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- ► Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

- Resolution of data messes with ordering

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Utility:

- Stream ordering helpfully discretizes a network
- ► Goal: understand network architecture

COCONUTS

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Utility:

- Stream ordering helpfully discretizes a network.
- ► Goal: understand

Horton's Laws

Tokunaga's Law Nutshell

References

9 a @ 31 of 53

Utility:

- Stream ordering helpfully discretizes a network.
- ► Goal: understand network architecture

 \triangleright A basin of order Ω has n_{ω} streams (or sub-basins)

of order ω .

► An order w basin has area a

An order w basin has a main stream leng

An order ω basin has a stream segment length

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

References

- \blacktriangleright A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$
- ▶ An order ω basin has area a_{ω} .
- An order w basin has a main stream length
- An order ω basin has a stream segment length

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- \blacktriangleright A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$
- \blacktriangleright An order ω basin has area a_{ω} .
- \blacktriangleright An order ω basin has a main stream length ℓ_{ω} .

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$
- ▶ An order ω basin has area a_{ω} .
- \blacktriangleright An order ω basin has a main stream length ℓ_{ω} .
- lacktriangle An order ω basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$
- \blacktriangleright An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- lacktriangle An order ω basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $ightharpoonup n_{\omega} > n_{\omega+1}$
- \blacktriangleright An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- lacktriangle An order ω basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Introduction

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

少 a ○ 33 of 53

Self-similarity of river networks

First quantified by Horton (1945) , expanded by Schumm (1956)

Three law

had a tons law of stream numbers

► Horton's law of basin areas:

COcoNuTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Self-similarity of river networks

► First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

COCONUTS

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

► First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

Three laws:

▶ Horton's law of stream numbers

Horton's law of stream lengths:

Horton's law of basin areas:

COcoNuTS

ntroduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

▶ First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

► First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

Three laws:

▶ Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

► Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1$$

► Horton's law of basin areas:

COCONUTS

ntroduction

Definitions

Allowetry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Self-similarity of river networks

► First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

Three laws:

▶ Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

► Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1$$

Horton's law of basin areas:

$$\left| \bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a > 1 \right|$$

COcoNuTS

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Ratios:

► So ...laws are defined by three ratios:

 $R_n,\ R_\ell,\ {\rm and}\ R_a.$

Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$

$$= n_{\omega-2}/R_n^2$$

$$\vdots$$

$$= n_1/R_n^{|\omega-1|}$$

$$= n_0 e^{-(\omega-1)\ln R_n}$$

Introductio

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

So ...laws are defined by three ratios:

$$R_n,\ R_\ell,\ {\rm and}\ R_a.$$

► Horton's laws describe exponential decay or growth:

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^{\ 2} \\ &\vdots \\ &= n_1/R_n^{\ \omega-1} \\ &= n_1 e^{-(\omega-1) \ln R_n} \end{split}$$

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

$$\bar{a}_{\alpha} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$ar{\ell}_{\omega} = ar{\ell}_1 e^{(\omega-1) \ln R_{\ell}}$$

As stream order increases, number drops and area and length increase.

COcoNuTS :

Introduction
Definitions
Allometry
Laws

Stream Ordering Horton's Laws

Tokunaga's Law

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

As stream order increases, number drops and area and length increase.

COcoNuTS

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

 As stream order increases, number drops and area and length increase.

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Laws

Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

- Horton's laws are laws of averages.

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- Horton's laws are laws of averages.
- ▶ Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► Horton's laws are laws of averages.
- ▶ Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► Horton's laws are laws of averages.
- ▶ Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information.

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- ▶ But we need one other piece of information...

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

▶ Horton's law of stream segment lengths:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s>1$$

- ightharpoonup Can show that $R_s = R_{\ell}$
- ▶ Insert question from assignment 1 €

Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

▶ Horton's law of stream segment lengths:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s>1$$

- ▶ Can show that $R_s = R_{\ell}$.
- ▶ Insert question tourn assignment 1 🗹

Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

A bonus law:

▶ Horton's law of stream segment lengths:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1$$

- ▶ Can show that $R_s = R_\ell$.
- ▶ Insert question from assignment 1 🗹

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law


Nutshell

Horton's laws in the real world:

COcoNuTS

Introduction

Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Horton's laws-at-large

Blood networks:

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy.
- Vessel diameters obey an analogous Horton's law

troduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
 - Vessel diameters obey an analogous Horton's law.

Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
- ▶ Vessel diameters obey an analogous Horton's law.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

0				

Introduction

Network	R_n	R_r	R_{ℓ}	$-\frac{\ln R_r}{\ln R_n}$	$-rac{\ln R_\ell}{\ln R_n}$	α
West et al.	_	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
100 (1711)	2.70	1.50	1.00	0.15	0.10	0.75
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
` '	5.07	1.71	1./0	0.41	0.44	0.79
(Turcotte et al. $[10]$)						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
<u> </u>						
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
P.8 (2, 13)	3.3	1.0	2.02	0.15	0.50	0.03
burnan (DAT)	2.02	1.00	1 40	0.42	0.20	0.02
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law

Nutshell References

► Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

- No accepted explanation for these values
- Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are

ntroduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

► Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

- ▶ No accepted explanation for these values.
- ► Horton's laws tell us how quantities vary from level to level
- ... but they don't explain how networks are structured

ntroduction

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

► Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

- ▶ No accepted explanation for these values.
- ► Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are

Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

► Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

- ▶ No accepted explanation for these values.
- ► Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

ntroduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- ► Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- ► As per Horton-Strahler, use stream ordering
- Focus: describe how streams of different orders connect to each other.
- ▶ Tokunaga's law is also a law of averages.

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- ► As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- ► Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- ► As per Horton-Strahler, use stream ordering.
- ► Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- ► Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- ► As per Horton-Strahler, use stream ordering.
- ► Focus: describe how streams of different orders connect to each other.
- ► Tokunaga's law is also a law of averages.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

► $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- $\blacktriangleright \mu, \nu = 1, 2, 3, ...$
- $\mid \mu > \nu + 1$
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu 1$
- These generating streams are not considered side streams

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- ▶ $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- $\blacktriangleright \mu, \nu = 1, 2, 3, ...$
- ► Recall each stream segment of order μ is 'generated' by two streams of order $\mu 1$
- These generating streams are not considered side streams

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ► $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- $\blacktriangleright \mu, \nu = 1, 2, 3, ...$
- $\blacktriangleright \mu \ge \nu + 1$
- ▶ Recall each stream segment of order μ is 'generated' by two streams of order $\mu 1$
- These generating streams are not considered side streams

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- ► $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- μ , ν = 1, 2, 3, ...
- $\mu \geq \nu + 1$
- ► Recall each stream segment of order μ is 'generated' by two streams of order $\mu 1$
- ► These generating streams are not considered side streams.

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Property 1: Scale independence—depends only on difference between orders:

Property 2: Number of side streams grows exponentially with difference in orders:

► We usually write Tokunaga's law as

 $(R_T)^{k-1}$ where $R_T \simeq 2$

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Property 1: Scale independence—depends only on difference between orders:

Stream Ordering

Laws

Horton's Laws

Tokunaga's Law

Nutshell References

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grow exponentially with difference in orders:

► We usually write Tokunaga's law as

where $R_T \simeq 2$

ntroduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

Stream Ordering
Horton's Laws

Tokunaga's Law Nutshell References

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

▶ We usually write Tokunaga's law as

University |

Vermont of 53

 $(R_T)^{k+1}$ where $R_T \simeq 2$

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu}=T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu}=T_1(R_T)^{\mu-\nu-1}$$

▶ We usually write Tokunaga's law as:

$$\left| {T_k = T_1 (R_T)^{k - 1}}
ight|$$
 where $R_T \simeq 2$

ntroduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Tokunaga's law—an example:

 $T_1 \simeq 2$ $R_T \simeq 4$

COcoNuTS +

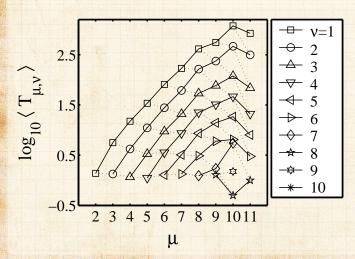
Introduction

Definitions

Allometry

Laws

Stream Ordering


Horton's Laws

Tokunaga's Law Nutshell

A Tokunaga graph:

Introduction
Definitions
Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

▶ There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Tokunaga's laws neatly describe network architecture.

- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically
- Surprisingly

 $R_{+} = (2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}$

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- ▶ Branching networks show remarkable self-similarity over many scales.
- ▶ There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically
- Surprisingly

 $R_{T} = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2 + R_T}$

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically
- Surprisingly

 $(2 + R_T^f + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}$

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- ► Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically
- Surprisingly

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Branching networks show remarkable self-similarity over many scales.
- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- ► Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically
- Surprisingly

COcoNuTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Branching networks show remarkable self-similarity over many scales.
- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- ► Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- ▶ Horton and Tokunaga can be connected analytically.

Surprisingly

COcoNuTS

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Nutshell:

- Branching networks show remarkable self-similarity over many scales.
- ▶ There are many interrelated scaling laws.
- ► Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- ► Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- ► Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- ▶ Horton and Tokunaga can be connected analytically.
- Surprisingly:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Crafting landscapes

Introduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Kerererices

- [1] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf
- [2] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf
- [3] R. E. Horton.

 Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf ☑

Introduction
Definitions
Allometry
Laws

Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell References

- [4] I. Rodríguez-Iturbe and A. Rinaldo.
 Fractal River Basins: Chance and
 Self-Organization.
 Cambridge University Press, Cambrigde, UK,
 1997.
- [5] S. A. Schumm. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67:597–646, 1956. pdf
- [6] A. N. Strahler.

 Hypsometric (area altitude) analysis of erosional topography.

 Bulletin of the Geological Society of America

Bulletin of the Geological Society of America, 63:1117–1142, 1952.

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

[7] E. Tokunaga.
The compositio

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf

[8] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf ☑

[9] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

References IV

COCONUTS

[10] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

