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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.
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~ Basic idea:
Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.
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Basic idea:
Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.
Moving away from pure random networks was a
key first step.
We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
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Basic idea: A
Random networks with arbitrary degree =
distributions cover much territory but do not i
represent all networks.

Moving away from pure random networks was a

key first step.

We can extend in many other directions and a

natural one is to introduce correlations between

different kinds of nodes.

Node attributes may be anything, e.g.:

1. degree
2. demographics (age, gender, etc.)
3. group affiliation
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Random networks with arbitrary degree =
distributions cover much territory but do not i
represent all networks.

Moving away from pure random networks was a

key first step.

We can extend in many other directions and a

natural one is to introduce correlations between

different kinds of nodes.

Node attributes may be anything, e.g.:

1. degree
2. demographics (age, gender, etc.)
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Basic idea: Mani
Random networks with arbitrary degree =
distributions cover much territory but do not i
represent all networks.
Moving away from pure random networks was a
key first step.
We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)

3. group affiliation
We speak of mixing patterns, correlations, biases... 7 CocoNuTs
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more global structure. |
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represent all networks.
Moving away from pure random networks was a
key first step.
We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)

3. group affiliation
We speak of mixing patterns, correlations, biases... 7 CocoNuTs
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~ General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....
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 General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.

e;w:Pr<

an edge connects a node of type
to a node of type v
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 General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.

e, = Pr ( an edge connects a node of type )

a

o

to a node of type v

= Pr(an edge comes from a node of type u)
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 General mixing between node categories

Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

Consider networks with directed edges.

( an edge connects a node of type
€., = Pr

a

o

b

to a node of type v

)

= Pr(an edge comes from a node of type u)

v

= Pr(an edge leads to a node of type v)
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b, = Pr(an edge leads to a node of type v)
Write E = [e,,, ], @ = [a,],and b = [b,].
CocoNuTs
| g

A 50f39


http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, .... i o

Consider networks with directed edges. R R 5
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a,, = Pr(an edge comes from a node of type p)

b, = Pr(an edge leads to a node of type v)

Write E = [e,,, ], @ = [a,],and b = [b,].
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 Notes:

Varying e,,,, allows us to move between the
following:
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Notes:

Varying e,,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.
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Notes:

Varying e,,,, allows us to move between the

following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and Eu e, =1

COcoNuTS

Definition

General mixing

Assortativity by
degree

Contagion

References

‘CocoNuTs

The (o]
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

DA 60f39


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Notes:

Varying e,,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and Eu e, =1
2. Uncorrelated networks (as we have studied so far)
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Notes:

Varying e,,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and E” e, =1

2. Uncorrelated networks (as we have studied so far)

For these we must have independence:

Gl = auby.
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Notes:

Varying e,,,, allows us to move between the
following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, = 0if u # v and E” e, =1

2. Uncorrelated networks (as we have studied so far)
For these we must have independence:

Gl = auby.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.
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Notes:

Varying e,,,, allows us to move between the
following:

A

Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requirese,,, =0 if u #+ v and Z” e, =1
Uncorrelated networks (as we have studied so far)
For these we must have independence:

Gl = a,b,.

Disassortative networks where nodes connect to
nodes distinct from themselves.

Disassortative networks can be hard to build and
may require constraints on thee,, .
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- Notes:

Varying e,,,, allows us to move between the
following:

A

Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requirese,,, =0 if u #+ v and 2” e, =1
Uncorrelated networks (as we have studied so far)
For these we must have independence:

€ = auby.

Disassortative networks where nodes connect to
nodes distinct from themselves.

Disassortative networks can be hard to build and
may require constraints on thee,, .

Basic story: level of assortativity reflects the
degree to which nodes are connected to nodes
within their group.
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Correlation coefficient:

Quantify the level of assortativity with the
following assortativity coefficient [°!:

i 2 Cun 2, %by  TrE—||E?),
1_Zuapbp, 1_HE2||1

where || - ||; is the 1-norm = sum of a matrix’'s
entries.
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where || - ||; is the 1-norm = sum of a matrix's
entries.
Tr E is the fraction of edges that are within groups.
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- Correlation coefficient:

Quantify the level of assortativity with the gl it

following assortativity coefficient [°!; SenerslTing
Assortativity by
degree

2w 2, %be  TrE - ||B?), Coragon
TR WO 1 P
where || - ||; is the 1-norm = sum of a matrix's i
entries.
Tr E is the fraction of edges that are within groups.
||[E2||, is the fraction of edges that would be
within groups if connections were random.
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Tr E is the fraction of edges that are within groups.

||[E2||, is the fraction of edges that would be
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where || - ||; is the 1-norm = sum of a matrix’'s
entries.
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||[E2||, is the fraction of edges that would be
within groups if connections were random.

1 —||E?||; is a normalization factor so 7, = 1. 5| CocoNuTs
When Tre,, =1, we haver =1. v P

The O]
ﬁ UNIVERSITY |9|
2l VERMONT |0

DA 70f39


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

 Correlation coefficient:

Definition

Quantify the level of assortativity with the i
following assortativity coefficient [°!: SenerslTing

Assortativity by
degree
Z/.L eHH _ZN a’,u,bu TrE— ||E2||1 Contagion
e e == Spreadin,

30 eutl L o MRl

Expected si

References

where || - ||; is the 1-norm = sum of a matrix’'s

entries.

Tr E is the fraction of edges that are within groups.

||[E2||, is the fraction of edges that would be

within groups if connections were random.

1 —||E?||; is a normalization factor so 7, = 1. 5| CocoNuTs
When Tre,,,, =1, we haver = 1. ¥ e -

Whene,, =a,b,, we haver =0. v | .

DA 70f39


http://www.uvm.edu
http://www.uvm.edu/~pdodds

 Correlation coefficient:

Notes:

r = —1 is inaccessible if three or more types are
present.
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connected to unlike nodes—no measure of how
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- Correlation coefficient:

r = —1 is inaccessible if three or more types are
present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how
unlike nodes are.

Minimum value of r occurs when all links between
non-like nodes: Tr e, =0
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- Correlation coefficient:

r = —1 is inaccessible if three or more types are

present.

Disassortative networks simply have nodes
connected to unlike nodes—no measure of how

unlike nodes are.

Minimum value of r occurs when all links between

non-like nodes: Tr e, =0

Tmin =

where —1 < r,i, < 0.

—IIE%]l,

1—[|E2]y
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Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...

e, = Pr(arandomly chosen edge connects a
node with value j to a node with value k).
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...

e, = Pr(arandomly chosen edge connects a
node with value j to a node with value k).

a; and b, are defined as before.
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- Scalar quantities
Now consider nodes defined by a scalar integer
quantity.
Examples: age in years, height in inches, number
of friends, ...
e, = Pr(arandomly chosen edge connects a
node with value j to a node with value k).
a; and b, are defined as before.
Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (4"
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- Scalar quantities
Now consider nodes defined by a scalar integer

5 Defir
quantlty. GZr:;‘r:\O:waw
Examples: age in years, height in inches, number Asdoktatiiy by
of friends, ... S

Contagion
e, = Pr(arandomly chosen edge connects a oreacing condion
node with value j to a node with value k). et
a; and b, are defined as before. A
Can now measure correlations between nodes
based on this scalar quantity using standard
Pearson correlation coefficient(4
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Scalar quantities

Now consider nodes defined by a scalar integer

5 Definition
quantlty. : . ; : General mixing
Examples: age in years, height in inches, number Asdoktatiiy by
of friends, ... S

Contagion

e, = Pr(arandomly chosen edge connects a
node with value j to a node with value k). Espocied sice
a; and b, are defined as before. A
Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (4"

< XgedEen by (k) — (7)o (k)
o = 5 = ;.| CocoNuTs
et (Ve — ()24/ (k2 — (R)3 4
This is the observed normalized deviation from P 3]

randomness in the product jk. SiRaeh
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- Degree-degree correlations

Natural correlation is between the degrees of
connected nodes.
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- Degree-degree correlations

Natural correlation is between the degrees of
connected nodes.

Now define e, with a slight twist:

ejk:Pr<

an edge connects a degree j + 1 node
to a degree k + 1 node

)
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- Degree-degree correlations N

Natural correlation is between the degrees of Definition
connected nodes. General mixing

Now define e, with a slight twist:

Assortativity by

an edge connects a degree j + 1 node
e ik — PI‘
7 to a degree k + 1 node

References

_ppf @0 edge runs between a node of in-degree j
i and a node of out-degree k
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
connected nodes. General mixing

Now define e, with a slight twist: Aotk

an edge connects a degree j + 1 node
e ik — PI‘
7 to a degree k + 1 node

References

_ppf @0 edge runs between a node of in-degree j
i and a node of out-degree k

Useful for calculations (as per R;)
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
Connected nodes, General mixing

Now define e, with a slight twist: Aotk

an edge connects a degree j + 1 node
e ik — PI‘
7 to a degree k + 1 node

References

an edge runs between a node of in-degree j
—
and a node of out-degree k

Useful for calculations (as per R;)

Important: Must separately define P, as the {e;; }
contain no information about isolated nodes.

R CocoNuTs
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COcoNuTS

- Degree-degree correlations

Natural correlation is between the degrees of Definition
Connected nodes, General mixing
- . . < A i
Now define e, with a slight twist: Sl
Contagion

L R E edge connects a degree j + 1 node
287 to a degree k£ + 1 node " o

_pp[ N edge runs between a node of in-degree j

i and a node of out-degree k

Useful for calculations (as per R;)

Important: Must separately define P, as the {e;; } =7 coconuTs
contain no information about isolated nodes. (7 e
Directed networks still fine but we will assume

from here on that e, = e, 4 [EERe

2 130f39
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Degree-degree correlations

Definition

General mixing

Notation reconciliation for undirected networks: e
i ijjk(ejk_Rij>
A 2 babili
ORr
References
where, as before, R,, is the probability that a
randomly chosen edge leads to a node of degree
k+1,and
2
ok =D JPR;— |3 iR,
j J F: .CocoNuTs
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- Degree-degree correlations coconuTS

Definition

General mixing

: o

Error estimate for r: A;;‘ﬁg;t”'tyy
Remove edge i and recompute r to obtain r,. if:fjif{j‘m”

Triggering probabflity

Expected size

References
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- Degree-degree correlations

Definition

General mixing

Assortativity by

Remove edge i and recompute r to obtain r,.

Repeat for all edges and compute using the
jackknife method (2 [3] References
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COcoNuTS

Degree-degree correlations

Definition
General mixing

Assortativity by

Remove edge i and recompute r to obtain r,.

Repeat for all edges and compute using the
jackknife method (2 [3] Referefices

Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...
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Measurements of degree-degree

correlations

Group Network Type Size n Assortativity r  Error o,

a Physics coauthorship undirected 52909 0.363 0.002
a Biology coauthorship undirected 1520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002
Social c Film actor collaborations undirected 449913 0.208 0.0002

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 —=0.029 0.037

£ Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0.013

Technological h Internet undirected 10 697 —0.189 0.002
i World Wide Web directed 269 504 —=0.067 0.0002

j Software dependencies directed 3162 —-0.016 0.020

k Protein interactions undirected 251415 —0.156 0.010

1 Metabolic network undirected 765 —0.240 0.007

Biological m Neural network directed 307 —0.226 0.016

n Marine food web directed 134 —0.263 0.037

o Freshwater food web directed 92 —0.326 0.031

Social networks tend to be assortative (homophily)

Technological and biological networks tend to be

disassortative
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Contagion
Spreading condition
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Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
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- Spreading on degree-correlated networks

Definition
General mixing

Assortativity by

Next: Generalize our work for random networks S vy

to degree-correlated networks. R
As before, by allowing that a node of degree k is Eised
activated by one neighbor with probability By, References

we can handle various problems:
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- Spreading on degree-correlated networks

Definition
General mixing

Assortativity by

Next: Generalize our work for random networks S vy

to degree-correlated networks. ELEE
As before, by allowing that a node of degree k is i -
activated by one neighbor with probability B, ,, References

we can handle various problems:
1. find the giant component size.

R CocoNuTs

The O]
ﬁ UNIVERSITY |g|
2l VERMONT |0

A 200f 39


http://www.uvm.edu
http://www.uvm.edu/~pdodds

COcoNuTS

 Spreading on degree-correlated networks

Definition
General mixing

Assortativity by

Next: Generalize our work for random networks S vy

to degree-correlated networks. R
As before, by allowing that a node of degree k is et
activated by one neighbor with probability B, ,, References

we can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
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 Spreading on degree-correlated networks

Definition
General mixing
Assortativity by

degree

Next: Generalize our work for random networks

to degree-correlated networks. ELEE
As before, by allowing that a node of degree k is i -
activated by one neighbor with probability B, ,, Referefces

we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
3. find the probability of spreading for simple
threshold models.
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Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.
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General mixing
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- Spreading on degree-correlated networks

Definition
General mixing

Assortativity by
degree

Goal: Find f,, ; = Pr an edge emanating from a

Contagion
degree j + 1 node leads to a finite active s entin
subcomponent of size n. el L
Repeat: a node of degree k is in the game with sa i
probability By, .
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- Spreading on degree-correlated networks

Definition
General mixing

Assortativity by
degree

Goal: Find f,, ; = Pr an edge emanating from a

degree j + 1 node leads to a finite active Csff“fimd
subcomponent of size n. U
Repeat: a node of degree k is in the game with sa i
probability By, .

Define B, = [By,].
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- Spreading on degree-correlated networks

Definition
General mixing

Assortativity by
degree
Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active

subcomponent of size n.

Contagion

Repeat: a node of degree k is in the game with sa i
probability By, ;.
Define B, = [By,].
Plan: Find the generating function
Fi(z;B,) = ZZO:O R
v: .CocoNuTs
| 4 (R

DA 210f39


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Spreading on degree-correlated networks

Recursive relationship:

oo
e.
Fi(z;B,) =2°> 21— Byyy 1)
k=0 Rj

o= €k = 1k
+$’;§;Bk+1,1 [By (2B -
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Spreading on degree-correlated networks

Recursive relationship:

o0 €‘
Fi(x;B,) =2°) 22(1—-B, 4 ,)
k=0 Rj

o= €k = 1k
+$’;R—j3k+1,1 [By (2B -

First term = Pr (that the first node we reach is not
in the game).
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- Spreading on degree-correlated networks

Recursive relationship:

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).
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General mixing
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COcoNuTS

- Spreading on degree-correlated networks

Recursive relationship: Definition

General mixing

oo e Assortativity by
= ik degree
FJ <$7 Bl) % .fL'O Z R%(l n Bk+1’1) Contagion
k=0 J spr i
&\ ek k el
+z Z ?Bk+1,1 [Fk) (:U7 Bl)] References
k=0 ~J
First term = Pr (that the first node we reach is not
in the game).
Second term involves Pr (we hit an active node
which has k outgoing edges). Sy
Next: find average size of active components % copo
reached by following a link from a degree j + 1
node = F/(1; B,). |
4 4 [Eeey
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3 Spreadihg on degree-correlated networks

Differentiate F;(x; B,), setz = 1, and rearrange.
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Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. s L

Assortativity by

We use F,.(1; B,) = 1 which is true when no giant e
component exists. R

Expe

References
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- Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. s L

Assortativity by

We use F,.(1; B,) = 1 which is true when no giant e
component exists. We find: R

rigg abili

Expected s

oo oo w
75 75 References
k=0 k=0
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- Spreading on degree-correlated networks

Definition

Differentiate F;(z; B, ), set = = 1, and rearrange. s L
Assortativity by
degree

We use F,.(1; B,) = 1 which is true when no giant
component exists. We find: Csff:if g‘i.nm

Expected size

eferences
R,F/(1;B,) Zeﬂch+1 1+Z ke ;i Bri1 A Fr (L B!

Rearranging and introducing a sneaky 4,

oo

Z (0,5 Ry — kByi1 1€5%) Fir(l; LR Z €k Brt1,1- I cocours
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Spreading on degree-correlated networks

In matrix form, we have
where

Ac.s,]
[ Tolis J+1,k+1

[F”(1; B,)] = Fl(1;B,),

= ijk o k?Bk+1,1€jka

[E]j+1,k+1 = ejk? and [Bl]k+1 = Bk-f—l,l‘
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degree
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COcoNuTS

3 Spreadihg on degree-correlated networks

So, in principle at least: Definition
General mixing

g 1 .
F (1, ) AE Bl EBl QZZ?;SIMW by

Comag\on
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Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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- Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.
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 Spreading on degree-correlated networks

So, in principle at least:

Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.
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COcoNuTS

 Spreading on degree-correlated networks

SO, in prInCIp|e at |eaSt Definition
General mixing
chrae s s gl 4 Lo
F (1,31) — AE7§1 EBl g(;;eret;tmt/by
) g o : Contagion
Now: as F’(1; B,), the average size of an active seradog ondtn
component reached along an edge, increases, we gl
move towards a transition to a giant component. e
Right at the transition, the average component
size explodes.
Exploding inverses of matrices occur when their
determinants are 0.
The condition is therefore: 3 oconas
det AE731 =0 |
'i'?iuvﬁm'rv |8|
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 Spreading on degree-correlated networks

General condition details:

detAE,Bl = det [6ijk—1 3732 (k R ]‘)Bk},lej—l,k:—l] = O
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- Spreading on degree-correlated networks

General condition details:

Definition

detAE’Bl — det [5ijk—1 e (k e 1>Bk,lej—1,k_]_] . General mixing

Assortativity by

degree
The above collapses to our standard contagion Contagion
condition when e, = R,R,, (see next slide). sl
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COcoNuTS

- Spreading on degree-correlated networks

General condition details:

Definition

[ mixing
detA = :det 5 R Yy k_]_B e. :O Genera g
E, B, [ Jjk k=1 ( ) k,1 3_1,k_1] N

degree

The above collapses to our standard contagion Contagion
condition when e, = R; R, (see next slide). ot S

When El — BI1, we have the condition for a stmple: = e
disease model's successful spread

det [0, Ry 3 —=Blk—1e; ; 53] =0.
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 Spreading on degree-correlated networks

General condition details:

Definition

General mixing

detA. » =det|§. R, ; —(k—1)By je. = 0. i

E,B; [Jk k-1 ( ) k1 J_l’k_l] Assortativity by
degree

The above collapses to our standard contagion Contagion
Spreading condition

condition when e, = R,R,, (see next slide). *! T e
When B, = B1, we have the condition for a simple  «eierences
disease model’s successful spread

When El — 1, we have the condition for the
existence of a giant component:

CocoNuTs

det [0, Ry — (B=Dejq 5 1] =0.
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 Spreading on degree-correlated networks

General condition details:

Definition
General mixing
det 14E’B1 —== det [5jk2Rk—1 o (k; o 1)Bk,163—1,k—1] A O. Aggoma[mt\/ by
degree
The above collapses to our standard contagion Contagion
condition when e, = R,R,, (see next slide). *! i S

When B, = B1, we have the condition for a simple  «eierences
disease model’s successful spread

det [(5ij]€_1 - B(k == ]-)ej—l,k:—l] =0

When El — 1, we have the condition for the
existence of a giant component:

CocoNuTs

det [0, Ry — (B=Dejq 5 1] =0.

Bonusville: We'll find a much better version of this [ty [2]

o VERMONT 10|
set of conditions later... SoTrTy
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Retrieving the cascade condition for uncorrelated
networks
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Spreadlng on degree correlated networks

Definition

- We'll next find two more pieces:

General mixing

1. Pyig, the probability of starting a cascade Assortativity by

degree

Contagion
Spreading condition
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COcoNuTS

Spreading on degree-correlated networks

: Definition

vve ll A General mixing
1. Pyig, the probability of starting a cascade bt
2. S, the expected extent of activation given a small oy

Spreading condition

seed.

Expected size

References
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Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

H(z B)y=e) P [F @B
k=0
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- Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

lishi— O BT
k=0

Generating function for vulnerable component
size is more complicated.
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 Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1— H<1§ El)
= e
S By, [Fk~1(1;B1)] :
k=0
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- Spreading on degree-correlated networks
Want probability of not reaching a finite
component.

Ptrig = Strig =1-— H<1§ Bl)

= b Z Py [kal(l;-él)]k‘
k=0

Last piece: we have to compute F, ,(1; B,).
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- Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)

- Sk
b Z P [kal(l; Bl)]
k=0
Last piece: we have to compute F, ,(1; B,).

Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

Fi(1;By) =37, %j(l — B 1)+

. ojTBk+1 1 [Fk(l B )]k-
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- Spreading on degree-correlated networks

Definition

Want probability of not reaching a finite
component.

General mixing

Assortativity by
degree

Ptrig = Strig =1- H(]., Bl) Contagion

ition
Triggering pre obabmy
Exf

=i Z P, [Fk71(1§ El)} ! . Refer‘e‘m“cés
k=0

Last piece: we have to compute F, ,(1; B,).

Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

Fi(1;By) =37, %?(1 it AR
k
Yoneo BeBri1a [Fe(LBy)]
Iterative methods should work here.
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Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.
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- Spreading on degree-correlated networks =~ "
Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Definition
General mixing

Assortativity by

Need to compute 6, ,, the probability that an edge :ngee
leading to a degree j node is infected at time ¢.
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- Spreading on degree-correlated networks

Truly final piece Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 0, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:

i Gj(ét) = ¢ + (1 = ¢g) x

k=1 ijl i=0 i s
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- Spreading on degree-correlated networks

Truly final piece Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 0, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:
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References
0 t11 = G(0;) = do + (1 = ¢g) x
oo k—1
€i—1,k—1 Z ki1 k—1—
y = Ol O B
k=1 ijl =0 ( i )
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- Spreading on degree-correlated networks
As before, these equations give the actual
evolution of ¢, for synchronous updates.
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- Spreading on degree-correlated networks

As before, these equations give the actual

evolution of ¢, for synchronous updates.
Contagion condition follows from ¢, ,, =

G

(8,).
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- Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
Contagion condition follows from 6§, ., = G(6,).
Expand G around 6, = 0.
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- Spreading on degree-correlated networks =~ """
As before, these equations give the actual

evolution of ¢, for synchronous updates. Re
Contagion condition follows from 6, ., = G(6,). Sl
= s = Assortativity by
Expand G around 6, = 0. degree
)G e 82G 6 Contagion
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 Spreading on degree-correlated networks
As before, these equations give the actual

evolution of ¢, for synchronous updates. gl
Contagion condition follows from 6, , = G(6,). Sl
= g — Assortativity by
Expand G around 6, = 0. degree
)G e 82G (6) Contagion
i o, 1
0;,e01 = G;(0)+ Z ag 21 Z Wei,t—i_
= kit S k=1 k,t
References
If Gj(ﬁ) =+ 0 for at least one j, always have some
infection.
If GJ'@ = 0V j, want largest eigenvalue
G, (0)
[T;j ] > 1
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 Spreading on degree-correlated networks
As before, these equations give the actual

evolution of ¢, for synchronous updates. gl
Contagion condition follows from 6, , = G(6,). Sl

= s = Assortativity by
Expand G around 6, = 0. degree

- Contagion
. G ;( 1 =, 9%G;(0)
05,001 = G5(0)+ et S
g D s ol e

References
If Gj(ﬁ) + 0 for at least one j, always have some
infection.
If GJ'@ = 0V j, want largest eigenvalue

8G,(0)

e
Condition for spreading is therefore dependent on
eigenvalues of this matrix:

3Gj<6) S ¢t
80k,t Rj‘l

Insert question from assignment 9 (4 DB IS
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- How the giaht component changes with

© assortative
o neutral

A disassortative

assortativity:

10
08 [

é 06 [

£ i

S04

- 02
0.0 heets

10

exponential parameter K

from Newman, 2002 (5]

100

More assortative
networks
percolate for
lower average
degrees

But
disassortative
networks end up
with higher
extents of
spreading.
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