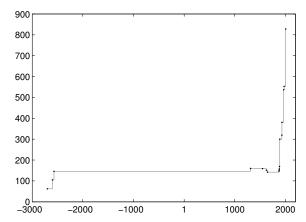
Asides on Curious and Interesting **Things**

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2016

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Random Randomness References

What's this?

COcoNuTS

Random Randomness References

少 Q (~ 4 of 46

COcoNuTS

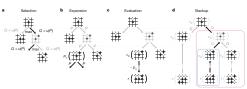
Random

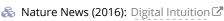
References

These slides are brought to you by:

COcoNuTS

UNIVERSITY OF


少 q (~ 1 of 46


Random Randomness References

Advances in sociotechnical algorithms:

"Mastering the game of Go with deep neural networks and tree search" Silver and Silver, Nature, **529**, 484–489, 2016. [6]

•9 q (~ 5 of 46

Random Randomness References

MINIVERSITY VERMONT

•9 q (~ 2 of 46

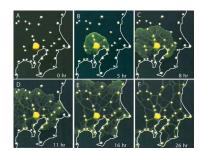
COcoNuTS

"Rules for Biologically Inspired Adaptive Network Design"

Tero et al., Science, **327**, 439-442, 2010. [7]

Random Randomness References

Random


Outline

Randomness

References

https://www.youtube.com/watch?v=GwKuFREOgmo

"Citations to articles citing Benford's law: A Benford analysis"

Tariq Ahmad Mir, Preprint available at http://arxiv.org/abs/1602.01205, 2016. [4]

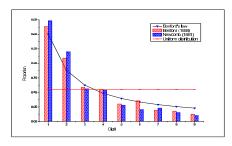


Fig. 1: The observed proportions of first digits of citations received by the articles citing FB and SN on September 30, 2012. For comparison the proportions expected from BL and uniform distributions are also shown

COcoNuTS

Random Randomness References

43

UNIVERSITY OF

少 Q (~ 7 of 46

Random

References

Irregular verbs

Cleaning up the code that is English:

"Quantifying the evolutionary dynamics of language"

Lieberman et al., Nature, **449**, 713–716, 2007. [2]

- Exploration of how verbs with irregular conjugation gradually become regular over time.
- Comparison of verb behavior in Old, Middle, and Modern English.

COcoNuTS

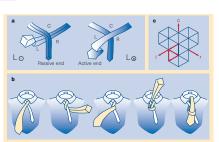
Random

Randomness

References

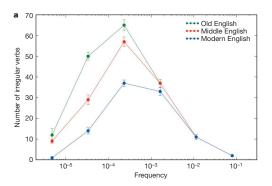
少 q (~ 10 of 46

COcoNuTS


Random

References

Applied knot theory:



"Designing tie knots by random walks" Fink and Mao, Nature, **398**, 31–32, 1999. [1]

by a persisti walk 1116.

COcoNuTS Irregular verbs

- Universal tendency towards regular conjugation
- Rare verbs tend to be regular in the first place

UNIVERSITY VERMONT ൗ < ॡ 11 of 46

COcoNuTS

Random

Randomness

References

Applied knot theory:

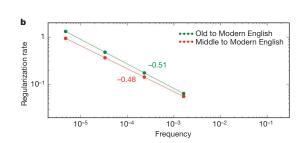
h	γ	γ/h	$K(h, \gamma)$	S	b	Name	Sequence
	1	0.33	1	0	0		L _o R _⊗ C _o T
	1	0.25	1	-1	1	Four-in-hand	L _∞ R _☉ L _∞ C _☉ T
	2	0.40	2	-1	0	Pratt knot	L _o C _o R _o L _o C _o T
,	2	0.33	4	0	0	Half-Windsor	L _o R _o C _o L _o R _o C _o T
	2	0.29	6	-1	1		L₀R₀L₀C₀R₀L₀C₀T
	3	0.43	4	0	1		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	2	0.25	8	0	2		$L_{\otimes}R_{\circ}L_{\otimes}C_{\circ}R_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$
	3	0.38	12	-1	0	Windsor	L _o C _o R _o L _o C _o R _o L _o C _o T
	3	0.33	24	0	0		LoRoCoLoRoCoLoRoCo1
	4	0.44	8	-1	2		L.C.R.C.L.C.R.L.C.1

- h = number ofmoves
- center moves

- $\begin{array}{ll} \& & b = \frac{1}{2} \sum_{i=2}^{h-1} |\omega_i \textbf{+} \omega_{i-1}| \\ & \text{where } \omega = \pm 1 \end{array}$ represents winding direction.

COcoNuTS

UNIVERSITY OF VERMONT


•9 q (~ 8 of 46

Random Randomness References

Irregular verbs

- Rates are relative.
- The more common a verb is, the more resilient it is to change.

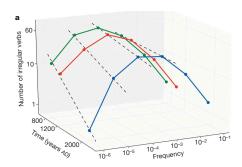
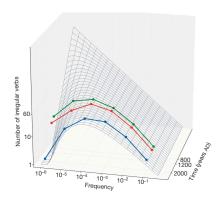

Irregular verbs

Table 1 | The 177 irregular verbs studied 10-4-10-3 2,000


177 Old English irregular verbs were compiled for this study. These are arranged a bin that have regularized. The half-life is shown in years. Verbs that have regularized.

Red = regularized

& Estimates of half-life for regularization ($\propto f^{1/2}$)

- « 'Wed' is next to go.
- -ed is the winning rule...

Projecting back in time to proto-Zipf story of many tools.

Personality distributions:

"A Theory of the Emergence, Persistence, and Expression of Geographic Variation in Psychological Characteristics"

Rentfrow, Gosling, and Potter, Perspectives on Psychological Science, 3, 339-369, 2008. ^[5]

Five Factor Model (FFM):

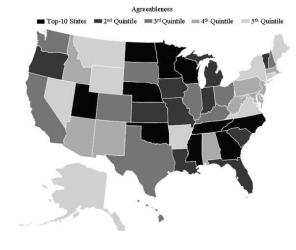
- Extraversion [E]
- Agreeableness [A]
- & Conscientiousness [C]
- Neuroticism [N]
- Openness [O]

"...a robust and widely accepted framework for conceptualizing the structure of personality... Although the FFM is not universally accepted in the field..." [5]

A concern: self-reported data.

COcoNuTS

Random

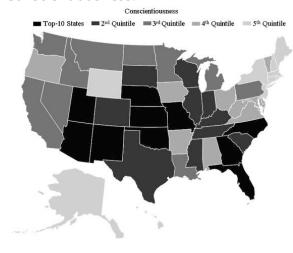

Randomness

References

•9 q (> 16 of 46

Agreeableness:

COcoNuTS


Random References

UNIVERSITY OF VERMONT

少∢~ 17 of 46

Conscientiousness:

COcoNuTS

Random Randomness References

•9 α № 18 of 46

COcoNuTS

Random

References

UNIVERSITY OF VERMONT

少○ 14 of 46

COcoNuTS

Random

Randomness

References

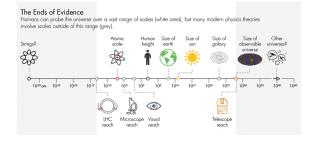
Extraversion ■ Top-10 States ■ 2nd Quintile ■ 3rd Quintile ■ 4th Quintile ■ 5th Quintile

Openness

■ Top-10 States ■ 2nd Quintile ■ 3rd Quintile ■ 4th Quintile ■ 5th Quintile

Random Randomness References

COcoNuTS


From A Fight for the soul of Science **☑** in Quanta Magazine (2016/02):

Limits of testability and happiness in Science:

Random Randomness References

COcoNuTS

∙0 q (~ 22 of 46

COcoNuTS

Random References

UNIVERSITY OF VERMONT

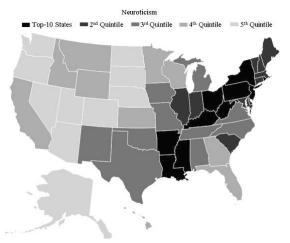
少 Q (~ 19 of 46

Random References

Europe:

Many errors called out in comments. Why hasn't this been done well?

COcoNuTS


Random

Randomness

References

Neuroticism:

Openness

COcoNuTS

Random Randomness References

John Conway's Doomsday rule **♂** for determining a date's day of the week:

Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.
1898	1899	1900	1901	1902	1903	-	1904	1905	1906	1907	-	1908	1909
1910	1911	-+	1912	1913	1914	1915	-	1916	1917	1918	1919	-	1920
1921	1922	1923	-	1924	1925	1926	1927	-	1928	1929	1930	1931	-
1932	1933	1934	1935	-	1936	1937	1938	1939	-	1940	1941	1942	1943
-	1944	1945	1946	1947	-+	1948	1949	1950	1951	-+	1952	1953	1954
1955	-	1956	1957	1958	1959	-	1960	1961	1962	1963	-	1964	1965
1966	1967	-	1968	1969	1970	1971	-	1972	1973	1974	1975	-	1976
1977	1978	1979	-	1980	1981	1982	1983	-	1984	1985	1986	1987	-
1988	1989	1990	1991	-	1992	1993	1994	1995	-	1996	1997	1998	1999
-	2000	2001	2002	2003	-	2004	2005	2006	2007	-	2008	2009	2010
2011	-	2012	2013	2014	2015	-	2016	2017	2018	2019	-	2020	2021
2022	2023	-	2024	2025	2026	2027	-	2028	2029	2030	2031	-	2032
2033	2034	2035	-	2036	2037	2038	2039	-	2040	2041	2042	2043	-
2044	2045	2046	2047	-	2048	2049	2050	2051	-	2052	2053	2054	2055
-	2056	2057	2058	2059	-	2060	2061	2062	2063		2064	2065	2066
2067	-	2068	2069	2070	2071	-	2072	2073	2074	2075	-	2076	2077
2078	2079	-+	2080	2081	2082	2083	-+	2084	2085	2086	2087	-	2088
2089	2090	2091		2092	2093	2094	2095		2096	2097	2098	2099	2100

- Norks for Gregorian (1582-, haphazardly) and the increasingly inaccurate Julian calendars (400 and 28 years cycles).
- Apparently inspired by Lewis Carroll's work on a perpetual calendar.

Outline:

- Determine "anchor day" for a given century, then find Doomsday for a given year in that century.
- Remember special Doomsday dates and work from there.
- 💫 Naturally: Load this year's Doomsday into brain.

Century's anchor day (Gregorian, Sunday \equiv 0):

$$5 imes \left(\left \lfloor rac{YYYY}{100}
ight
floor \mod 4
ight) \mod 7 + \mathsf{Tuesday}
ight)$$

Offset:

$$\left(365YY + \left\lfloor \frac{YY}{4} \right\rfloor \right) \mod 7 = \left(YY + \left\lfloor \frac{YY}{4} \right\rfloor \right) \mod 7$$

COcoNuTS

Random

Randomness

References

COcoNuTS

Random

References

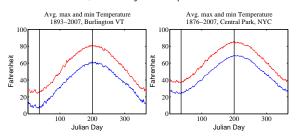
Memorable Doomsdays:

Month	Memorable date	Month/Day	Mnemonic ^[6]
January	January 3 (common years), January 4 (leap years)	1/3 or 1/4	the 3rd 3 years in 4 and the 4th in the 4th
February	February 28 (common years), February 29 (leap years)	2/28 or 2/29	last day of February
March	"March 0"	3/0	last day of February
April	April 4	4/4	4/4, 6/6, 8/8, 10/10, 12/12
May	May 9	5/9	9-to-5 at 7-11
June	June 6	6/6	4/4, 6/6, 8/8, 10/10, 12/12
July	July 11	7/11	9-to-5 at 7-11
August	August 8	8/8	4/4, 6/6, 8/8, 10/10, 12/12
September	September 5	9/5	9-to-5 at 7-11
October	October 10	10/10	4/4, 6/6, 8/8, 10/10, 12/12
November	November 7	11/7	9-to-5 at 7-11
December	December 12	12/12	4/4, 6/6, 8/8, 10/10, 12/12

Pi day (March 14), July 4, Halloween, and Boxing Day are always Doomsdays.

The bissextile year 2

"The Julian calendar, which was developed in 46 BC by Julius Caesar, and became effective in 45 BC, distributed an extra ten days among the months of the Roman Republican calendar. Caesar also replaced the intercalary month by a single intercalary day, located where the intercalary month used to be. To create the intercalary day, the existing ante diem sextum Kalendas Martias (February 24) was doubled, producing ante diem bis sextum Kalendas Martias. Hence, the year containing the doubled day was a bissextile (bis sextum, "twice sixth") year. For legal purposes, the two days of the bis sextum were considered to be a single day, with the second half being intercalated; but in common practice by 238, when Censorinus wrote, the intercalary day was followed by the last five days of February, a. d. VI, V, IV, III and pridie Kal. Mart. (the days numbered 24, 25, 26, 27, and 28 from the beginning of February in a common year), so that the intercalated day was the first half of the doubled day. Thus the intercalated day was effectively inserted between the 23rd and 24th days of February."



Random Randomness References

The Teletherm, an early conception:

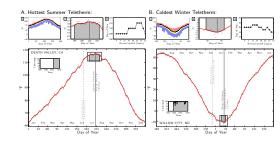
- Halfway between Winter Solstice and Spring Equinox
- Bonus: Groundhog Day ☑, Imbolc ☑, ...
- Aesteval Teletherm \approx July 19 (164 days later).

COcoNuTS

Random

Randomness

References


COcoNuTS

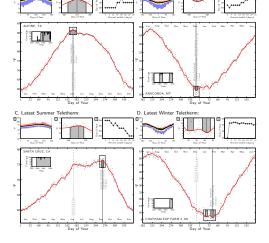
Random

References

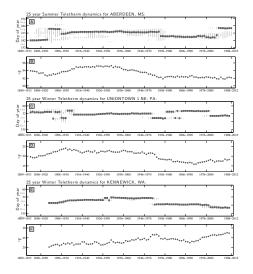
In review: "Tracking the Teletherms: The spatiotemporal dynamics of the hottest and coldest days of the year" [27],

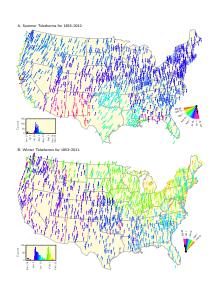
Dodds, Mitchell, Reagan, and Danforth.

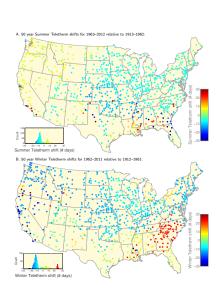
6000ish pages of Supplementary Information (all figures)



COcoNuTS


Random Randomness References





少 q (~ 30 of 46

COcoNuTS

Random

Randomness

References

Homo nonprobabilisticus, continued:

Important detour: The final digits of primes are not entirely random (how did we not know this?).

- Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- $\ensuremath{\mathfrak{S}}$ Flip a coin $n \geq 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?
- 🙈 Estimate: On average, how many flips does it take to first see the sequence HH?
- & What's the probability of first flipping a HT sequence on the n-1th and nth flips?
- What's the probability of first flipping two heads in a row (HH) on the (n-1)th and nth flips?

COcoNuTS

Random

Randomness

References

COcoNuTS

Random

References

COcoNuTS

UNIVERSITY VERMONT

少 q (~ 31 of 46

Random References

Homo nonprobabilisticus, continued:

Average number of flips: 4 and 6.

COcoNuTS

Random

Randomness

References

COcoNuTS

Random

Randomness References

Universal numbers

From here ☑.

5 + 5 = 10 fingers and hence base 10. We could be happy with base 6,

Accidents of evolution give us

- 8, 12, ...
- We like these:
 - 60 seconds in a minute
 - 60 minutes in an hour.
 - $2 \times 12 = 24$ hours in a day.
 - 360 degrees in a circle.

We've liked these kinds of numbers for a long time:

7 1	∢7 11	∜7 21	₩7 31	4€ 7 41	₹ 7 51
77 2	477 12	4(77 22	(((77 32	15 77 42	15 77 52
777 3	1777 13	41777 23	44(777 33	45/77 43	15 777 53
Ø 4	177 14	4(57 24	**** 34	14	₹\$ \$\$ 54
777 5	15	(1) 25	*** 35	₹ ₩ 45	₹ ₩ 55
777 6	16	*(₩₩ 36	₩ 46	₹ \$\$\$ 56
7	() 17	(() 27	### 37	17 47	14.39 57
₩ 8	18	₹₩ 28	₩₩ 38	₹ 48	₹₹ 58
## 9	19	4 7 29	*** 39	** 49	₩₩ 59
4 10	44 20	444 30	40	∜ 50	

- 2000 BC: Babylonian base 60/Sexagesimal system.
- (duodecimal/dozenal 🗹), 6 (senary), 8, 16, 20

Highly composite numbers: ☑

(vigesimal), 60.

COcoNuTS

Random Randomness References

- A HCN = natural number with more divisors than any smaller natural number.
- 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040 (Plato's optimal city population **♂**), ...
- 🙈 OEIS sequence A002182

By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

Superior highly composite numbers:

# prime factors	SHCN	prime factorization	prime exponents	# divisors d(n)		primorial factorization	
1	2	2	1	2	2	2	
2	6	2 · 3	1,1	22	4	6	
3	12	2 ² · 3	2,1	3×2	6	2 · 6	
4	60	$2^2 \cdot 3 \cdot 5$	2,1,1	3×2 ²	12	2 · 30	
5	120	$2^3 \cdot 3 \cdot 5$	3,1,1	4×2 ²	16	2 ² · 30	
6	360	$2^3 \cdot 3^2 \cdot 5$	3,2,1	4×3×2	24	2 · 6 · 30	
7	2520	$2^3 \cdot 3^2 \cdot 5 \cdot 7$	3,2,1,1	4×3×2 ²	48	2 · 6 · 210	
8	5040	$2^4 \cdot 3^2 \cdot 5 \cdot 7$	4,2,1,1	5×3×2 ²	60	$2^2 \cdot 6 \cdot 210$	
9	55440	$2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$	4,2,1,1,1	5x3x2 ³	120	$2^2 \cdot 6 \cdot 2310$	
10	720720	$2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$	4,2,1,1,1,1	5×3×2 ⁴	240	2 ² · 6 · 30030	

 \Re SHCN = natural number n whose number of divisors exceeds that of any other number when scaled relative to itself in a sneaky way:

$$\frac{d(n)}{n^{\epsilon}} \geq \frac{d(j)}{j^{\epsilon}} \text{ and } \frac{d(n)}{n^{\epsilon}} > \frac{d(k)}{k^{\epsilon}}$$

for j < n < k and some $\epsilon > 0$.

COcoNuTS

Random

Randomness

References

There's more: Superabundant numbers

 \Re n is superabundant if:

$$\frac{\sigma_1(n)}{n} > \frac{\sigma_1(j)}{j}$$

for j < n and where $\sigma_x(n) = \sum_{d \mid n} d^x$ is the divisor function.

449 numbers are both superabundant and highly composite.

Yet more: Colossally abundant numbers:

n is colossally abundant if for all j and some $\epsilon > 0$:

$$\frac{\sigma_1(n)}{n^{1+\epsilon}} \geq \frac{\sigma_1(j)}{j^{1+\epsilon}}$$

3 Infinitely many but only 22 less than 10^{18} .

COcoNuTS

Random

Randomness

References

COcoNuTS

Random

References

Some very, very silly units of measurement courtesy of the Imperial system ?:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- \clubsuit 1 acre = 1 furlong \times 1 chain = 43,560 square feet.
- 160 fluid ounces in a gallon.
- 14 pounds in a stone.
- A Hundredweight = 112 pounds.

Also:

- Fahrenheit, Celcius, and Kelvin.
- The entire metric system.

COcoNuTS

Random Randomness References


COcoNuTS

Random Randomness References

UNIVERSITY VERMONT

少 q (~ 39 of 46

Training with stories as fuel:

少 Q (~ 42 of 46

COcoNuTS

References III

Randomness References Random Randomness References

COcoNuTS

Randomness:

[7] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki.

Rules for biologically inspired adaptive network design.

Science, 327(5964):439-442, 2010. pdf

COcoNuTS

Random

Randomness

References

References I

[1] T. M. Fink and Y. Mao.

Designing tie knots by random walks.

Nature, 398:31–32, 1999. pdf ☑

[2] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. A. Nowak. Quantifying the evolutionary dynamics of language. Nature, 449:713–716, 2007. pdf

[3] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman.
Quantitative analysis of culture using millions of

COcoNuTS

Random

Randomness

References

References II

[4] T. A. Mir.

Citations to articles citing Benford's law: A Benford analysis, 2016.

Preprint available at http://arxiv.org/abs/1602.01205.pdf

[5] P. J. Rentfrow, S. D. Gosling, and J. Potter. A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics.

Perspectives on Psychological Science, 3:339–369, 2008. pdf 2

[6] D. Silver et al.

Mastering the game of Go with deep neural networks and tree search.
Nature, 529:484–489, 2016. pdf ☑

