Scale-free networks

Principles of Complex Systems | @pocsvox
CSYS/MATH 300, Fall, 2015 | #FallPoCS2015

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center

Vermont Advanced Computing Core | University of Vermont

\w (anyum.w! A The
- Sy @ ’ ﬁq UNIVERSITY
++7 LV o VERMONT
@POCS
| R E

oeo

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie
Productions

Outline

Scale-free networks
Main story
Model details
Analysis
A more plausible mechanism
Robustness
Krapivisky & Redner’'s model
Generalized model
Analysis
Universality?
Sublinear attachment kernels
Superlinear attachment kernels
Nutshell

References

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks
Main story
Model details
Analysis

Amore lausile

model

Generalized model

Kenels

Superlinear attachment
Nutshell

References

DA 10of55

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks

Generalized model

Analysis
Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

@< PoCS

EhIvERSITY |ﬁ|
o VERMONT

wa 20f55

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks
Main story
Model details
Analysis

Amore plausible
mechanism

Ro s
isky & Redner's

Universality?
Sublinear attachment
kernels

Superlinear attachment
kernels

Nutshell

References

@ PoCS

ﬁ LMV!:Rb!l'Y |§|
P2 ¥ VERMONT

Qe 3of55

PoCS | @pocsvox

Scale-free
networks

Scale-free

s X
THE, Nerwngg N

FREE of SCALE |

Scale-free networks

» Networks with power-law degree distributions
have become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py, ~ k=7 for‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [?)
Times cited: ~ 207 734@ (as of September 23, 2014)

» Somewhat misleading nomenclature...

Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not...
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Some real data (we are feeling brave):

From Barabasi and Albert’s original paper ':
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
L0pes (A) Yocor = 2.3, (8) Yoy = 21 and (C)

Yoower

Random networks: largest components

v=25
(k)=18

v=25 =25 =25 =25
(k)=16 (k) =1.50667 (k) =1.62667 (k)=1.8

Scale-free networks

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?
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BA model

vy

Key ingredients:

Barabasi-Albert model = BA model.

Growth and Preferential Attachment (PA).

vy

Step 2:

Step 1: start with m disconnected nodes.

1. Growth—a new node appears at each time step

t=0,1,2,..

2. Each new node makes m links to nodes already

present.

3. Preferential attachment—Probability of
connecting to ith node is o k;.

vy

BA model

» Definition: 4, is the attachment kernel for a node

with degree k.
» For the original model:

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.

A =k
» Definition: Pyyacn (k. t) is the attachment
probability.
» For the original model:
) k;(t) k;(t)
P,ach(node 4, t) = C = *
TV k@) ot kN (1)

where N(t) = mg +t is # nodes at time ¢
and N (t) is # degree k nodes at time ¢.

Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

E(ki,N+1 - ki,N) =m

=

ki N

Jj=1

Nt}

()

» Assumes probability of being connected to is

small.

» Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will

be smooth and stable.

> Approximate k; .4 —k; n with &k, ,:

where t = N(t) —my.

t
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» Deal with denominator: each added node brings m

new edges.
N(t)

2 ky(t) =2tm

Jj=1

» The node degree equation now simplifies:

da, _ ki®) k() _ 1
dtki’t B mz;\f:(f) kj(t) =m 2mt 2t i(®

» Rearrange and solve:

diy(t) _dt _
ki (t) 2t

» Nextfindc; ...

Approximate analysis

» Know ith node appears at time

; [ i—mg fori>mg
Bstart = A fori <m,

» So for i > mg (exclude initial nodes), we must have

1/2
) fort >t; sart

mm:m<
ti,start

2

» All node degrees grow as +'/2 but later nodes have

larger ¢, are Which flattens out growth curve.
» First-mover advantage: Early nodes do best.
» Clearly, a Ponzi scheme(4.

> m=3

> ti,start =
1,2,5, and 10.
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Degree distribution

» So what's the degree distribution at time ¢?

» Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

dt start
Pr(ti,start)dti,start = %
» Also use
1/2 2
m=t
k;(t)=m =t = —.
(1) (ti,start> Gstart k()2
Transform variables—Jacobian:
dti,start _ m?t
dk; ks ()3

Degree distribution

>
Pr(k;)dk, = Pr(ti,start)dti,start
4
= Pr(tz‘,start)dki dté’il:art
4
1 m?2t
Ttk (0)3
> 2
= Qdei
>
x k;3dk

i

Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size

distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)
» In practice, v < 3 means variance is governed by

upper cutoff.
» ~ > 3: finite mean and variance (mild)
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Back to that real data:

From Barabasi and Albert’s original paper ':

10 o o -
107 4, 10 |
) . B Y c
10 Lo \
10 ., 10 o
. 10° " 1S
<0 10 N g %
& " 10 '
: \ Y
t 10° AN 3L -
10° . - e 107§ Py
i ., LN R .
10° ; 10 . 10"
10

.
100 100 10° 10’ 1ﬁ2 10° 10

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =

325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

51065 (A) Yactor = 23, (B) Yo = 2.1 2014 (C) Ypyer = 4

Examples

Web ~ =~ 2.1forin-degree
Web ~ =~ 2.45 for out-degree
Movie actors  =~2.3
Words (synonyms) ~ =~ 2.8

The Internets is a different business...

Things to do and questions

v

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

v

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect 4?

Q.: Do we need preferential attachment and
growth?

» Q.: Do model details matter? Maybe ...

vy

vy
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> Let's look at preferential attachment (PA) a little
more closely.

» PAimplies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

» For example: If Py, (k) o< k, we need to
determine the constant of proportionality.

» We need to know what everyone's degree is...

» PAis = an outrageous assumption of node
capability.

» Buta very simple mechanism saves the day...
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» Instead of attaching preferentially, allow new
nodes to attach randomly.

» Now add an extra step: new nodes then connect
to some of their friends’ friends.

» Can also do this at random. ’

» Assuming the existing network is random, we B —

know probability of a random friend having
degree k is References

Qp x kP

» So rich-gets-richer scheme can now be seen to
work in a natural way.
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Robustness S
networks
» Albert et al., Nature, 2000:
“Error and attack tolerance of complex Scale-free
networks

networks” ']

» Standard random networks (Erdés-Rényi)
versus Scale-free networks:

®s e 8 o000

Exponential
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Robustness
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(most connected first)

from Albert et al., 2000

Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or
not.

» Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person's webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.

Robustness

Not a robust paper:

; | “The“Robust yet Fragile” nature of the

[ +o

Q%

<
=1
-
D
=
=]
0]
[
N

| Doyle et al.,

Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005, [

» HOT networks versus scale-free networks

» Same degree distributions, different
arrangements.

» Doyle et al. take a look at the actual Internet.
» Excellent project material.
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Generalized model

Fooling with the mechanism:
» 2001: Krapivsky & Redner (KR)[*! explored the
general attachment kernel:

Pr(attach to node i) x A, = kY

where A4, is the attachment kernel and v > 0.

» KR also looked at changing the details of the
attachment kernel.

» KR model will be fully studied in CoNKS.

Generalized model

» We'll follow KR's approach using rate equations (4.

» Here's the set up:

dn, 1
ditk =7 [Ap_1Np_1 — ApNp] + 61
where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

4. Aisthe correct normalization (coming up).

5. Seed with some initial network
(e.g., a connected pair)

6. Detail: Ag=0

Generalized model

» In general, probability of attaching to a specific
node of degree k at time ¢ is

A
Pr(attach to node i) = ——*-

A(t)
where A(t) =327 AN ().
» E.g., for BAmodel, A, =kand A= 37" kN(t).
» For A, =k, we have

Aty =D K Ny(t) =2t
k'=1
since one edge is being added per unit time.

» Detail: we are ignoring initial seed network’s
edges.

PoCS | @pocsvox

Scale-free
networks

Scale-free

- 9
UNIVERSITY |o|
P8 Virvior (3]

D 350f55

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks
fain sto

References
]

= a
e o)
é UNIVERSITY |§|
< VERMONT 10}

v 360f55

PoCS | @pocsvox

Scale-free
networks

Scale-free
networks

O]
INIVERSITY |§|
“ VERMONT 10l

D 380f55


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/everything/doyle2005a.pdf
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Rate_equation
http://www.uvm.edu
http://www.uvm.edu/~pdodds

Generalized model

» So now
% - % [Ap_1 N1 — ApNi] + 0py
becomes
dd% _ % [(k—1)Ny,_; — ENg] + 6,

» As for BA method, look for steady-state growing
solution: N, = n,t.

» We replace d N, /dt with dnt/dt = n.

» We arrive at a difference equation:

n;, = 2%( (k= Dng_qf —kngf] + 0pq

Universality?

» As expected, we have the same result as for the
BA model:

N, (t) = ny, ()t o< k=3¢ for large k.

» Now: what happens if we start playing around

with the attachment kernel A,?
> Again, we're asking if the result v = 3 universal (5?

» KR's natural modification: 4, = k¥ with v # 1.

» But we'll first explore a more subtle modification
of A,, made by Krapivsky/Redner ]

» Keep A, linear in k but tweak details.
» |dea: Relax from A, = kto A, ~ kas k — oc.

Universality?

» Recall we used the normalization:

t) = i k' Ny (t

k'=1

) =~ 2t for large ¢.

» We now have

= Z ANy ()

k'=1
where we only know the asymptotic behavior of
Ay
» We assume that A = ut

» We'll find u later and make sure that our
assumption is consistent.

» As before, also assume N (t) = n,t.
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» For A, =k we had

Scale-free
networks

1
e =35 (k= 1D)ng_q —kng] + 054
» This now becomes

1
ng = m [Ap_1mp g — Apng] + 051

= (A +png = Ap_1ny_q + 16y, Ntshe

» Again two cases:

Ak—l = a

w+ Ay
.U\uvumw |o|
VERMONT

Q> 430f55
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k=1my = k>1my =ng 4
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» Time for pure excitement: Find asymptotic
behavior of n,, given A, — k as k — oo.

» For large k, we find:

» Since p depends on A4,, details matter...
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» Now we need to find p.
» Our assumption again: A = ut = Z;il N (t) Ay
» Since N, = n,t, we have the simplification
K= Z L Ay
» Now sub5|tute in our expression for n,,:

e e

A
» Closed form expression for u.
» We can solve for p in some cases.

» Our assumption that A = ut looks to be not too
horrible.
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Universality? et Superlinear attachment kernels rocS| @pocson

Scale-free Scale-free

networks networks
» Consider tunable A; = aand A, =k for k > 2.
Scale-free Scale-free

» Again, we can find v = . + 1 by finding p. networks networks

» Closed form expression for u: » Rich-get-much-richer:

k“—““) Ay ~ k¥ with v > 1,

M

= Thk+p+1)
. » Now a winner-take-all mechanism.
#mathisfun » One single node ends up being connected to
> almost all other nodes.
1+v1I+8a R o
pwlp—1)=2a=pu= — peferences » For v > 2, all but a finite # of nodes connect to one
_ Nz | node.
» Since v = + 1, we have w
5‘ ,
0<a<ow=2<y<x ==
» Craziness... } e B B
Q¢ 46 of 55 “a 510f55
Sublinear attachment kernels ey Nutshell: e g
networks networks
Scale-free Overview Key Points for Models of Networks: Scale-free
. . . networks networks
> Rich-get-somewhat-richer: oy » Obvious connections with the vast extant field of wonsny
graph theory.

Ay ~EYwith0 < v < 1. o
» But focus on dynamics is more of a

physics/stat-mech/comp-sci flavor.
» Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

v

General finding by Krapivsky and Redner: )

ng ~kve o k'~v+correction terms

Nutshe

» Stretched exponentials (truncated power laws). ]
. o References » Some essential structural aspects are understood:
» aka Weibull distributions. e | P ; -
. ) ) degree distribution, clustering, assortativity, group
» Universality: now details of kernel do not matter. I structure, overall structure, ...
» Distribution of degree is universal providing v < 1. b » Still much work to be done, especially with respect /.
to dynamics... #excitement T
} Rt |} e
D 48of 55 v 530f55
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